
Future Generation Computer Systems 157 (2024) 499–515

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Principled and automated system of systems composition using an
ontological architecture
Abdessalam Elhabbash a,∗, Yehia Elkhatib b, Vatsala Nundloll a, Vicent Sanz Marco c,
Gordon S. Blair d

a School of Computing and Communications, Lancaster University, UK
b School of Computing Science, University of Glasgow, UK
c National Institute of Advanced Industrial Science and Technology, Japan
d Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, United Kingdom

A R T I C L E I N F O

Keywords:
System of systems
Self-adaptation
Autonomous systems
Ontology
Runtime composition
Internet of things

A B S T R A C T

A distributed system’s functionality must continuously evolve, especially when environmental context changes.
Such required evolution imposes unbearable complexity on system development. An alternative is to make
systems able to self-adapt by opportunistically composing at runtime to generate systems of systems (SoSs)
that offer value-added functionality. The success of such an approach calls for abstracting the heterogeneity of
systems and enabling the programmatic construction of SoSs with minimal developer intervention. We propose
a general ontology-based approach to describe distributed systems, seeking to achieve abstraction and enable
runtime reasoning between systems. We also propose an architecture for systems that utilizes such ontologies
to enable systems to discover and ‘understand’ each other, and potentially compose, all at runtime. We detail
features of the ontology and the architecture through three contrasting case studies: one on controlling multiple
systems in smart home environment, another on the management of dynamic computing clusters, and a third
on autonomic connection of rescue teams. We also quantitatively evaluate the scalability and validity of our
approach through experiments and simulations. Our approach enables system developers to focus on high-level
SoS composition without being constrained by deployment-specific implementation details. We demonstrate the
feasibility of our approach to raise the level of abstraction of SoS construction through reasoned composition at
runtime. Our architecture presents a strong foundation for further work due to its generality and extensibility.
1. Introduction

Computing systems have advanced from a combination of connected
devices to a more intricate arrangement of interconnected collections
of heterogeneous systems, such as Internet of Things (IoT) [1,2], smart
grids [3], ad-hoc networks (MANETS, VANETs, FANETs) [4], and oth-
ers. Each of these types of systems comprises a number of heteroge-
neous components that collectively implement diverse functions and
communicate using different protocols. Furthermore, these various sys-
tems often need to interact and collaborate to achieve their objectives.
For example, isolated rescue teams need to access each other’s ser-
vices, such as data look-up; robots and drones need to coordinate
to cover a deployment areas with minimal effort; environmental IoT
systems process their data on a micro-cloud in their vicinity and
offload certain processing to the cloud when needed; and so on. In
this sense, larger systems are constructed through the interaction of

∗ Corresponding author.
E-mail addresses: a.elhabbash@lancaster.ac.uk (A. Elhabbash), yehia.elhabbash@glasgow.ac.uk (Y. Elkhatib), vatsala@lancaster.ac.uk (V. Nundloll),

v.sanzmarco@cmc.osaka-u.ac.jpk (V. Sanz Marco), g.blair@lancaster.ac.uk, gblair@ceh.ac.uk (G.S. Blair).

smaller ones, a practice known as System of Systems (SoS) composition
or construction [5].

An SoS thus involves a number of constituent systems (CSs). Ac-
cording to the level of authority the SoS has on the CSs, SoSs can be
grouped into four types, directed, acknowledged, collaborative and virtual.
A directed SoS is designed to achieve SoS-level goals. CSs do not have
their own objectives and they all work to achieve the SoS goals. In
an acknowledged SoS, CSs have their own independent goals but they
contribute to specified SoS-level goals. In collaborative SoSs, CSs agree
on a shared SoS-level goal and contribute to achieving it. A virtual
SoS does not have either specified or agreed goals and its behavior is
emergent at runtime [5,6].

However, the inherent characteristics of SoSs make their devel-
opment challenging [7,8]. First, an SoS is by definition a complex
system built from a number of sub-systems that in turn are made
vailable online 10 April 2024
167-739X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.future.2024.03.034
Received 6 September 2023; Received in revised form 21 February 2024; Accepted
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

22 March 2024

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:a.elhabbash@lancaster.ac.uk
mailto:yehia.elhabbash@glasgow.ac.uk
mailto:vatsala@lancaster.ac.uk
mailto:v.sanzmarco@cmc.osaka-u.ac.jpk
mailto:g.blair@lancaster.ac.uk
mailto:gblair@ceh.ac.uk
https://doi.org/10.1016/j.future.2024.03.034
https://doi.org/10.1016/j.future.2024.03.034
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.03.034&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Future Generation Computer Systems 157 (2024) 499–515A. Elhabbash et al.
Fig. 1. An overview of how holons opportunistically compose to form more complex
holons.

up of different components, and so on. Second, SoSs are typically
deployed in environments where the context changes. This is where
the need arises to veer from a strict operational plan that has been
defined at design time, and form a more complex system in order to
maintain the intended abstract behavior or to provide new behavior
that is only possible by uniting with other systems under the new
circumstances. Examples include adaptive IoT applications, volunteer
and crowd computing, disaster recovery, military defense operations,
and other forms of cyber–physical systems. Third, the development of
SoSs is dynamic in nature. This is grounded in the knowledge that
systems tend to be persistent and long-living [9] and, as such, their
objectives and functionalities evolve over time as they are constantly
added, modified, or removed at different time scales. This could also
predicate changes in architectural and functional dependencies.

Current approaches to constructing SoSs assume that the developer
has in-depth knowledge of the internal structure of each system and
its components [10–13]. Considering the aforementioned challenges
and characteristics of SoSs, it is evident that such approaches are
deficient. We argue that SoS construction needs to be autonomous
and dynamic, relying on systematic approaches to attain internal and
context awareness. All systems should be able to accumulate knowledge
about their own structure and behavior. Then, systems should exchange
and be able to understand such knowledge at runtime so that they can
opportunistically compose and form complex SoSs.

To achieve this form of behavior, there is a need for semantically
and comprehensively expressing the system structure, capturing the
information required for dynamically composing systems such as those
relating to communication (e.g., unique identifiers), service discovery,
quality of service, physical properties (e.g., power level and location),
environmental properties (e.g., temperature and pressure), etc.. We
refer to this comprehensive structure description of a system as a
holon [14]. A holon is constantly modified to reflect the system struc-
ture and contain any new or modified information, and then published
to aid discovery and reasoning about composition. When holons com-
pose, they form a new super-holon that represents the SoS. This newly
constructed holon will have its own specification, which is published
so it can further compose with other SoSs, and so on; see Fig. 1. In
this manner, the holon concept forms the basis of an ecosystem where
systems are able to opportunistically interact based on context, and
compose to create more complex holons arising spontaneously in a
bottom-up manner.

The holon ecosystem requires means of utilizing system description
to reason about SoS construction at runtime in a programmatic and
adaptive manner. Our solution is to adopt ontologies to capture holon
specification at design time and as it evolves post-deployment. On-
tologies are engineering tools for formal and explicit specification of a
shared conceptualization [15]. They provide vocabularies to represent
knowledge that can be utilized programmatically to understand the
corresponding content, such as system parameters, offered services,
and requirements. As these are expressed through standard concepts,
they allow other holons to understand the described holon and make
decisions about how to interact with it.

In [14] we proposed a vision towards the construction of distributed
SoSs using holons. Then, in [16], we defined the basic conceptual
structure of a holon with particular focus on self-describing IoT systems.
In [17], we proposed an ontology-based approach for the dynamic and
500
autonomous construction of distributed SoSs. In essence, once a holon is
specified using our ontology, its description can be broadcasted to other
systems that can in turn compile this description to understand the
functionality of the sending system, reason about it, and determine how
to communicate with it. In this article, we investigate how ontologies
can be used to capture the holon specification, we elaborate on the ar-
chitecture for constructing and composing SoSs, we offer an expanded
set of use cases as well as a quantitative overhead evaluation, and we
present a detailed discussion of the findings. The use cases demonstrate
the feasibility of the using the holons for the construction of different
types of SoSs. Our contributions in this article are the following:

1. A framework for enabling opportunistic SoS composition. This
works by supporting holon specification, compilation, dissemi-
nation, and modification.

2. A qualitative evaluation of this holonic framework using three
different case studies that emphasize the dynamic needs of SoS
construction and configuration.

3. A quantitative evaluation of the scalability and validity of the
proposed framework.

The remainder of this article is organized as follows. In Section 2,
we introduce the preliminaries of SoS composition and describe the
problem space. In Section 3, we outline our research methodology
and research questions. Section 4 presents the architectural overview,
which starts with the concept of the holon as a design primitive and
its lifecycle. Section 5 expands on the specification of a holon using
an ontological model that we devised by adopting and extending well
known ontologies. Section 6 expounds the mechanics of using our
holonic ontologies in order to reason about their composition to form
an SoS at runtime. We then present three detailed case studies of using
our framework in various contexts: a smart home of composite nature
in Section 7, managing a computational cluster of unstable nature in
Section 8, and establishing impromptu rescue teams under disaster
conditions in Section 9. We provide an experimental feasibility study
of our framework in Section 10. We provide reflective discussions in
Section 11, provide a future outlook in Section 12, and conclude in
Section 13.

2. Related work

The concept of SoSs has been featured in the literature for over
two decades cf. [5]. Different approaches were proposed to construct
SoSs. The significant body of work looming here is the Service Ori-
ented Architecture (SOA) legacy. SOA allows a system to expose its
functionalities as services, and then SOA composition technologies can
be applied to form an SoS; cf. [18–20]. We argue that such SOA-based
automation is not suitable for the following reasons. First, SOA does
not readily provide concepts that capture physical system properties
such as the context they are operating in. The service composition
supported by SOA is mainly functionality-based composition. However,
SoS composition is wider than this as it also requires knowledge about
system properties and context to reason about the composition, espe-
cially in cyber–physical systems. Second, services in SOA are assumed
to be published in a repository that an orchestrator can consult to
select services from. This assumption is not valid in the general SoS
context which is fully distributed. Third, SOA-based SoS developers are
expected to know a lot about individual systems, or alternatively invest
significant time learning them. Fig. 2 outlines the tasks that need to
be performed by vendors, system developers, and the system for SOS
composition. Developers are required to acquire knowledge about the
APIs and properties of the elementary systems they need to compose.
Then, they need to leverage that knowledge to design and implement
the SoS, and finally deploy it. This requires the developer to focus
on the elementary systems instead of the whole SoS. Efforts in this
direction (e.g., [21]) typically build a model (e.g., a graph) to describe
systems and their interactions. Then, contextual data is used to respond



Future Generation Computer Systems 157 (2024) 499–515A. Elhabbash et al.

R

R

R

R

R

to queries initiated by users to build an SoS at runtime by composing
services that abstract the sought-after system functionalities.

Non-SOA efforts include facilitating discovery and composition us-
ing cellular infrastructure [22] and network middleboxes [23]. Such
approaches, however, require specific infrastructure deployment for
mediation and, more importantly, still assume too much on the part of
the developer in terms of reasoning about the discovered systems. This
final task is crucially difficult without identifying the modus operandi
of the systems. Some studies have chosen to do this at design time (e.g.,
[24]) by analyzing the qualitative mission objectives of systems, but
these are difficult to express in a programmatic manner that enables
automated reasoning at runtime.

Other studies that define a notion similar to that of a holon in-
clude [25–27]. However, these studies are focused on goal-driven
service composition without means of allowing systems to reason and
self-compose. Other works [28–30] extend the holonic approach to
enable systems to reason about self-composition based on a captured
context. The basic idea is to continuously resolve conflicts between
low-level goals such that when these low-level goals are achieved, a
high-level goal is also achieved. Nevertheless, these models still lack
support for a comprehensive representation of systems (e.g., including
physical properties and reliability requirements), which limits system
capabilities to reason about interaction with other systems to form an
SoS.

Agent-based ontological approaches have been proposed in which
each agent is defined by a set of static and dynamic aspects. [31]
created a unified ontology that borrows concepts from a number of
existing ontologies that are used to describe resources and data formats
in IoT platforms. [32] proposed a framework to support development
of IoT applications, leveraging basic ontology to describe sensor data
and identify emerging events. In the context of adaptive IoT appli-
cations, [33] created an ontology-based knowledge base to represent
behavior of system elements in addition to data generated from sensors.
The purpose is to provide a shared source of information to enable
adaptive IoT applications. Other examples include [34–36]. These stud-
ies are less systematic in their approach than our holon ontology.
Moreover, they do not indicate how composition is reasoned about in
a heterogeneous environment.

3. Problem space and research strategy

Composing SoS from existing systems at runtime is still an area that
requires further research [14,37,38]. An open challenge is achieving
the construction and adaptation of systems and composition functional-
ities with minimal developer effort. The current practice of SoS compo-
sition relies on manually composing elementary systems at design time.
Unfortunately, this requires SoS developers to acquire knowledge about
the internal properties of each system, such as their functionalities (e.g.,
services) and vendor-specific APIs used for interactions. For example,
consider the dimensionality and heterogeneity of IoT applications.
Different vendors constantly produce devices using specific technology
stacks [39]. This results in a large space of heterogeneous elementary
systems that need to compose. Such challenges of heterogeneity and
dimensionality make the design-time SoS composition approach time-
consuming, error-prone, and beyond human capabilities [2]. Moreover,
the dynamicity of current computing environments requires the run-
time adaptation of SoSs by recomposing elementary systems, which
adds to the complexity of the process.

In addition, it is important to distinguish that the holonic approach
is a bottom-up approach that aims to describe, as opposed to the numer-
ous top-down architectures that pursue to prescribe, e.g., ThingML [40],
CDOnto [41], FloWare [42], and others. Some of these ontologies (e.g.,
SAREF [43]) are very domain-focused and not suitable for general IoT
systems.

Based on the above, our ultimate goal is to shift the developers’
focus from learning the internals of elementary systems to thinking at
501
Fig. 2. Comparing the responsibilities in the current SoS composition approaches, and
in the proposed approach.

the level of SoSs. The aftermath of describing high-level SoS logic (as
is shown in Fig. 2) is that elementary systems would autonomously
discover and compose with each other. The achievement of this goal
requires (1) a comprehensive description of atomic systems (their
services, properties, and context) that enable autonomous composition
between systems; and (2) an architecture that exploits such descriptions
and supports SoS composition and adaptation.

We seek to answer the following general research questions.

Q1: What are the right abstractions to represent different systems
within an SoS framework?

Q2: What systems principles and techniques are required to support
SoS composition?

Q3: Which extensions are needed for SoS composition and adaptation
in heterogeneous, large-scale environments?

We propose an ontological approach towards real-time reasoning
around the composition of systems of systems. This is made possible by
an architecture we have built for comprehending what an SoS is made
up of, if composition is required, and how such composition would take
place. Moreover, the architecture automatically actions the low-level
mechanics that enable the composition. As such, we are assessing our
proposal’s fit against the above research questions. Therefore, we pose
additional research questions to investigate the feasibility and utility of
our proposed solution.

Q4: What is the cost of adopting the proposed holonic approach
specifically in terms of reasoning about and actioning system
composition at runtime?

Q5: Are the outcomes of holonic composition correct in terms of
meeting the developer’s high-level SoS logic?

In our study, we adopt a hybrid experimental evaluation strategy:
We conduct qualitative appraisals in controlled testbed experiments of
various natures, specifically in the domains of IoT, emergency commu-
nication, and infrastructure management. We augment this by quan-
titatively assessing real open-source systems to investigate how our
architecture can enable developers to easily build the next generation
of adaptive applications.

4. The holonic lifecycle

A holon starts as an atomic one, which might then evolve to being a
composite one. An atomic holon represents a single system that provides
one or more functionalities. A composite holon includes functionalities
provided by a number of systems interacting with each other either
directly or through others. For holons to compose, atomic holons need
to be comprehensively specified by the system developer. After that, the
system will be dynamically constructed as the holons iterate in their
lifecycle. The four stages of a holon’s lifecycle (Fig. 3) are outlined
below and described in more detail in the following two sections.

Specification. A system developer uses an ontology to create the
holon from a number of elementary descriptions. This includes a holon



Future Generation Computer Systems 157 (2024) 499–515A. Elhabbash et al.
Fig. 3. A holon’s lifecycle.

identifier, the physical properties of the system (e.g., power level),
quality of service (e.g., availability and reliability), environmental prop-
erties (e.g., location), policies (e.g., routing protocol), services (e.g.,
sensing temperature), among others. All these are specified using our
ontological model, described in Section 5. For our purposes, we assume
that device manufacturers undertake the task of defining the atomic
holons that describe their devices. We will later revisit this assumption.

Dissemination. A created holon disseminates its specification so
that it can be discovered by others. Different dissemination strategies
can be adopted: push, pull, and lookup. In the push strategy, the holon
periodically broadcasts its latest description. In contrast, a pull strategy
uses heartbeat signals; i.e., the holon periodically sends ‘Hello’ messages
to establish interaction with other systems, which could then request
the full holon description. This strategy reduces overhead, so it is useful
in energy-constrained environments. In the lookup strategy, the holon
registers its description with a registry that can be consulted by other
systems to obtain it. This strategy is used when infrastructure assistance
is guaranteed. We adopt the push strategy for the scope of this article.
This achieves the goal of keeping holons proactively aware of changes
in other holons with regard to their properties and the services pro-
vided. However, we leave the development and comparison of other
strategies for future work. One other thing to discuss is the time frame
of dissemination, which is a parameter that impacts both performance
and consistency. A large time frame of dissemination would reduce the
overhead of processing the holons but would slow conveying changes
in the entire system. Intuitively, a small time frame would have the
opposite impact. However, the problem of specifying the dissemination
time frame is a classical problem that has been extensively discussed
in the literature on distributed systems. The use of a protocol that
adaptively adjusts the time frame is one attractive solution [44].

Compilation. This aims to understand other holons and their func-
tionalities. This is achieved by parsing the received descriptions (in
the form of XML representations), identifying the functionalities con-
tained within, and how they interact with that of the received holon.
Compiling these functionalities into one holon represents a new SoS
comprising of the interacting holons. At this stage, the holon captures
changes in the system, which may lead to the evolution of the holon.
It is worth noting here that we assume that the atomic holons are
specified at design time and do not evolve over the life cycle of the
system. However, composite holons continuously evolve to reflect the
changes in the system. In addition, a composite holon represents a
composite system that may be involved in another system to form an
SoS. In this case, a composite holon is used in another composite holon
to describe the SoS.

Modification. Holons can change at runtime due to a change in
the physical system (e.g., update of a service) or due to a structural
change (e.g., composition to a new holon). In either case, the holon
description will be modified to reflect the change. Upon obtaining a
modified version of a holon, the receiving holon will recompile its own
holon and disseminate it. This will convey the changes to the whole
SoS.

The next section gives details about each of the above stages.
502
Table 1
Survey of existing sensor-based ontologies.

Ontology Suitable? Comments on suitability

A3ME ✓

CoDAMOS ✓

MMI ✕ Not well tested in other contexts
O&M ✕ No expressive representations of time and space
Ontonym ✓

OntoSensor ✕ Concepts and properties not transferable to
different contexts

SDO ✕ Not available for use
Sensei, SAREF ✕ Some properties are not well defined
SensorML ✕ Basic; weak concept documentation
Swamo ✓

5. The ontological model

For a holon to be able to compose with another at runtime, it must
advertise its own definition in a systematic way that can be easily
understood by the receiving holon. For this, the definition needs to
embody the different concepts surrounding the holon, triggering the
need for an appropriate structure to represent it. In this respect, an
ontology seems to be the best technique for capturing the definition
and behavior of a holon [31].

5.1. Background and ontology selection

An ontology is a formal and explicit specification of a shared con-
ceptualization. It models some aspect of the world (i.e., a domain),
and provides a simplified view of certain phenomena in this domain.
The description of the domain is based on a vocabulary that explicitly
defines its concepts, properties, relations, functions, and constraints.

For our purposes, the ontology will be used by a holon to advertise
its services, the types of input parameters required for said services, and
the types of outputs they produce, if any. Furthermore, the ontology is
used to identify physical properties such as the power level (consumed
during operation), location (the actual, tangible place where system
components are situated), operating system, mobility (capability to
relocate), etc..

Whilst an entirely new ontology can be developed from scratch,
we deemed it more constructive to look at existing ontologies and
extend suitable ones, i.e., the ones that contain the semantics required
to describe holons, if and where necessary. This is in line with the
common practice within the semantic community to re-use existing
ontologies wherever possible, which mitigates the heterogeneity caused
by various ontologies serving similar purposes. In order to identify the
most appropriate ontology to represent holons, we looked at different
sensor and observation ontologies. We started with those surveyed by
the W3C Semantic Sensor Network (SSN) Incubator Group [45],1 and
continued with our own study of others. Our main selection criteria are:
(i) inclusion of well-defined concepts for device capabilities, including
hardware and software (e.g. shared resources); (ii)inclusion of well-
defined concepts for physical properties, including time and space; (iii)
easily extensible for new devices and system contexts; (iv) available to
use as open source; and (v) well documented.

Table 1 summarizes the main ontologies that we reviewed. Based
on this investigation, the ontologies we found suitable for extension
are (in chronological order): CoDAMOS, Swamo, A3ME, and Ontonym.
We concluded to use CoDAMOS [46] due to its inherent predisposition
for modification, making it easily extensible for defining context-aware

1 We specifically did not opt for the SSN ontology, as our focus is not
limited to sensor-based systems, but rather more on capturing the abstract
nature of a holon and how to reason about whether a holon is atomic or
composite.



Future Generation Computer Systems 157 (2024) 499–515A. Elhabbash et al.
Fig. 4. Our extensions to the CoDAMOS ontology, enabling the representation of holons to form SoSs.
computing infrastructures varying from small embedded devices to
high-end service platforms. Furthermore, CoDAMOS’s concepts closely
match the kind of definitions we want to create for a holon. For
example, the Service concept – i.e., having a service profile – can be used
to define the types of services provided or required by a holon. Note,
however, that this does not imply that the other shortlisted ontologies
cannot be used. Indeed, A3ME [47] (to pick just one other ontology)
could be merged with CoDAMOS to describe further concepts related
to holonic design; for instance, the APIPublic CoDAMOS concept can be
further described as GlobalAddress, LocalAddress, or OtherAddress using
the Address concept of A3ME.

We use CoDAMOS as the basis ontology with the aim of answering
the research questions posed in Section 3, particularly RQ1. Whilst we
have not made use of all the CoDAMOS concepts, we have nonetheless
extended this ontology to meet our requirements for a holon. How-
ever, unused concepts could be built upon for use cases beyond those
presented in this work.

5.2. Extensions

Among its various concepts, there are four basic CoDAMOS concepts
that stand out in terms of designing holons: User, Environment, Platform,
and Service. The User concept represents individuals or entities inter-
acting with the system. Users can be human users, other systems, or
entities that engage with the defined system. It has a profile, a role,
and a task. The task can have activities and/or uses a service. The
Environment concept refers to the context or surroundings in which the
system operates. It could include physical or virtual settings, conditions,
or external factors that influence the behavior of the system. It defines a
location (relative or absolute), a time, and an environmental condition
(e.g., temperature, pressure, humidity, lighting, noise). The Platform
concept represents the underlying infrastructure or technology stack
on which the system operates. This could include hardware, software
frameworks, operating systems, or other components that support the
system’s functionality. It has an Environment and can provide a Service
(used by User). The Service concept represents a distinct functionality
or capability provided by the system. It has a profile, a model, and
grounding. A Software concept links to Service through a property
called providesService, and can be differentiated as middleware, VM, or
OS. The Task concept makes use of a Service. Other resources such as
memory, network, power or storage can also be modeled accordingly.

Fig. 4 depicts how we extended CoDAMOS to accommodate the
requirements of a holon. The Profile is extended to show profile pref-
erences for routing messages in a system such as Ordering, Reliability
and Delay. A new concept Node is added to capture the types of nodes
encountered in a system: physical and abstract. This allows systems to
be organized in a hierarchical way with physical systems at the very
503
bottom of the hierarchy as leaf holons, and abstract systems as their
parents, and so on till a root holon at the very top. All of these are added
as concepts under the Holon concept. Furthermore, Service Properties
has been extended to accommodate routing properties such as Delay,
Reliability and Ordering.

The Service concept from CoDAMOS has been extended using Ser-
vice from A3ME to describe service types such as RealWorldService,
HardwareService, SoftwareService, and OtherService. The StorageResource
concept from CoDAMOS has been extended using the Storage concept
from A3ME, resulting in the sub-concepts: Flash, HD, ROM, RAM ; the
PowerResource concept from CoDAMOS has been extended through
the Energy concept of A3ME which describes Renewable, NotLimited,
OtherEnergy, Passive and Battery ; the APIPublic concept has been fur-
ther described as GlobalAddress, LocalAddress, OtherAddress using the
Address concept of A3ME.

For implementing these extensions we used the Protégé ontology
editor [48]. A high-level view of our full holonic ontology is shown in
Fig. 5 and published as open source at https://github.com/Elhabbash-
A/holons.git.

5.3. Application

As a demonstration, we show how two holons can be composed
using their underlying description. As such, the starting point is where
each holon defines itself using the ontology: its properties, the services
it provides, and the parameters used. These descriptions are broadcast
by each respective holon.

On receiving such broadcast, holons will compose with each other
if they meet the criteria for composition, for instance: if a holon 𝐻1
is requiring a service 𝑋, and it encounters another holon 𝐻2 that is
providing such service, then 𝐻1 can initiate the composition procedure
with 𝐻2. Once 𝐻1 gets composed with 𝐻2, it needs to update its
definition to reflect its new state as a composed holon, i.e., an SoS,
that is now providing service 𝑋. This update is carried out at runtime
through creating an instance of the holon concept (called, say, 𝐻3) to
represent the new holon that has been encountered, and it also holds
the definition of 𝐻2 in this case.

Moreover, the ontology retains the ability to infer new knowl-
edge based on the domain information provided. For example, there
is a defined concept called composedHolon that is used to identify
whether a holon is simple or composed. In this context, given that
a holon has been composed to another holon, the ontology reasoner
can determine whether this holon is a composed one. If 𝐻2 gets out
of reach, then the ontology of the composed 𝐻1 will be updated to
accommodate this change, simply by removing the 𝐻3 instance and
clearing composedHolon.

https://github.com/Elhabbash-A/holons.git
https://github.com/Elhabbash-A/holons.git
https://github.com/Elhabbash-A/holons.git


Future Generation Computer Systems 157 (2024) 499–515A. Elhabbash et al.
Fig. 5. The metal-model of the full holon ontology.
6. SoS construction model

At a high level, our approach first transforms a holon to be repre-
sented as a weighted tree that reflects its interaction with other holons.
Upon receiving a request for a service, the tree is used to find the holon
through which the service can be accessed. We present the architecture
that realizes this approach.

6.1. Composition model

Each holon needs to build a model that represents its awareness
about the existence of other holons and their services. This model
(called the composition model) is used to interact (compose) with the
other systems by accessing their services. The composition model of
a holon is represented as a weighted tree 𝑇 rooted by the holon and
with a depth of three. The children of the root are the holons that
are directly reachable by the root holon. The leaf nodes represent the
detected functionalities that are provided by or accessed through the
children holons. Each leaf node 𝑖 is assigned a weight that represents
the cost of accessing the corresponding functionality 𝐹𝑖. For simplicity,
in this article we define the cost as the distance between the root and
the holon providing 𝐹𝑖 in terms of the number of intermediate holons.
Other cost functions such as delay, reliability or aggregated Quality of
Service (QoS) can also be used and the definition of cost SoS contexts
can vary significantly based on mission logic, criteria, and other factors
beyond simple levels of indirection. Nonetheless, it is worth mentioning
that a holon is not aware where a functionality 𝐹𝑖 is located. However,
the holon is aware of the cost of accessing 𝐹𝑖 and through which holon
can 𝐹𝑖 be accessed. Fig. 6 shows an example of a holon connected to
three other holons in its neighborhood. Functionality 𝐹2 can be reached
through both 𝐻1 and 𝐻2, but it is less costly to access through 𝐻1.

The composition model is frequently updated during the lifecycle
of a holon, e.g. to add/remove new holon branches, and to update
the services of current ones. Adding and updating are performed upon
receiving holon ontologies, whereas removing is performed if the on-
tology is not received during a certain time period; this is set to be
504
Fig. 6. Composition/interaction modeling example.

three times the dissemination period as sufficient length of time in
most scenarios to receive a response, however this of course could be
modified as necessary.

6.2. Behavioral model

We assume that a system developer will create the atomic holon
using the ontology described in Section 5. Once deployed, the holon
lives in the described lifecycle (Section 4). Fig. 7 offers a high level
view of the behavioral model of the SoS composition process using the
holonic approach. The figure shows the following main components.

OWL parser. This component receives and parses ontologies from
surrounding holons to create objects that represent each holon and its
functionalities. We adopt OWLAPI V5.1 [49] to parse ontologies and
extract the knowledge therein.

Fig. 8 displays an overview of the mapping of ontology elements to a
holon object. For each Class element, a Java class is created to represent
it. For example, a Java class Service represents the ontology 𝑆𝑒𝑟𝑣𝑖𝑐𝑒
concept, Profile represents the 𝑃𝑟𝑜𝑓𝑖𝑙𝑒 concept, and so on. The
Instance elements of the ontology are instances of the Class elements.
The instances are linked together using 𝐷𝑎𝑡𝑎𝑇 𝑦𝑝𝑒 or 𝑂𝑏𝑗𝑒𝑐𝑡 properties.
Such structure is mapped as attribute objects of the Holon object.



Future Generation Computer Systems 157 (2024) 499–515A. Elhabbash et al.
Fig. 7. The behavioral model of the composition process.

Fig. 8. The relationship between ontology elements and those of a holon.

For example, assume the ontology contains an element 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑖 that
is an element of class 𝑆𝑒𝑟𝑣𝑖𝑐𝑒. This instance can be linked to the
𝐻𝑜𝑙𝑜𝑛 concept using an object property element called ℎ𝑎𝑠𝑆𝑒𝑟𝑣𝑖𝑐𝑒. In
the Java Holon class, this is mapped by having an attribute called
service_i of type Service in the Holon class. Finally, in the
ontology 𝑉 𝑎𝑙𝑢𝑒 elements represent some of the parameters values that
are mapped as attribute values of the Holon Java objects. An example
is the value 25 ◦C of the 𝑇 𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 element which is assigned to the
temperature attribute in the Holon Java object. The OWL parser
then passes the created Holon object to the Compiler.

Compiler. This component formulates a notional model of the
developing SoS as seen from the perspective of the receiving holon. This
model takes the form of a tree data structure where the receiving holon
is at the root, with each branch representing a neighboring holon and
the functionalities provided either natively by it or indirectly through
it. To construct or modify the tree, the Compiler creates a branch that
represents the received holon object and its provided functionalities
as children. The cost of each functionality is also updated at this
stage. The exact method for updating the cost would depend on the
specific criteria and algorithms employed within the system for cost
estimation. The goal is to ensure that the cost accurately reflects the
resource requirements or other pertinent considerations associated with
each functionality within the evolving System of Systems (SoS). For
instance, if the cost method is based on the number of hops, it implies
that the cost associated with each functionality is determined by the
distance or level of connectivity between the receiving holon and the
holons providing those functionalities. In this context, updating the
cost would involve counting the number of intermediary holons (or
‘‘hops’’ between the receiving holon and each functionality-providing
holon. After that, the newly formed branch is attached to the root
holon as a child. The Compiler then passes the constructed tree to the
Server/Mediator and OWLRenderer.

Server/Mediator. This component receives requests for the func-
tionalities provided by the system and serves them. It uses the con-
structed holon tree to specify whether the request can be satisfied by
the system or needs to be directed to another holon. If the requested
functionality is provided by the holon, then the system processes the
request and responds to the requester. Otherwise, the system acts as
a mediator and redirects the request to the holon that provides the
request, waits for the response, and passes back the response to the
requester.
505
Reasoner. This component checks whether executable services are
available to satisfy the received request. The Server/Mediator compo-
nent uses it to check if concrete functionalities are available in the
holon tree and whether all pre-conditions that are required to execute
the services are satisfied before executing them. For this purpose, the
reasoner component receives the holon tree from the Compiler to
reason about existence of executable functionalities.

OWLRenderer Fundamentally, this component represents the
knowledge of a developing SoS based on interaction with new holons.
It reads the holon tree data structure from the Compiler and converts
each node and the corresponding attributes into the appropriate XML
tags that construct a valid ontology (i.e., an inverse mapping of Fig. 8).
To render the ontology into an OWL description, we also use OWLAPI.

Disseminator. Upon receiving an OWL description representing
the holon and the compositions with other holons, the Disseminator
publishes this description by broadcasting it — as is the policy in the
Push strategy (see Section 4).

7. Case study I: Autonomic smart home

In our first case study, we examine the exchange of ontologies
between holons to realize high-level SoS logic. This represents con-
struction of an acknowledged SoS. The experimental context here is of a
smart home application that emerges as an SoS constituting a number
of independent IoT deployments.

7.1. Background and challenges

Smart Home is an IoT application that enables users to intelligently
manage their homes with minimal intervention. Devices are utilized to
monitor home conditions (e.g., temperature, humidity) and the state
of appliances (e.g., battery levels) to enable smart management of
energy consumption, security, and various housekeeping functions.
However, it is no longer realistic to assume a defined and small scale
of smart home deployments. As smart home systems are increasing
in popularity, the dimensionality of IoT devices used is increasing as
new devices with increased capabilities are constantly being offered in
the market [50]. Thus, their deployment environments are continually
evolving [51], making self-adaptation a necessity [1,10].

Homogeneity also cannot be taken for granted [52]. As these devices
are developed by various vendors, it is natural that heterogeneous
technologies and APIs exist. Smart home application developers, thus,
need to learn these various technologies and APIs in order to develop
IoT applications that manage the different aspects of a smart home in a
coherent manner. This can be even more challenging when taking into
consideration the dynamicity of this environment as new devices can
be constantly added to the smart home. Such challenges are making
smart home application development a complex task.

Finally, IoT applications generally limit consumers to the predeter-
mined deployment environments they were designed for [53]. Con-
sequently, they are brittle and susceptible to suboptimal operation
when their context changes, e.g., due to a backhaul network fault or a
server outage. Under such conditions, centralized (mainly cloud-based)
approaches fall short especially in network-constrained conditions [54].
Instead, IoT applications often need a way to be able to adapt at the
edge without preparation or central coordination.

7.2. Overview of our approach

We illustrate how the adoption of our ontology-based approach
helps to significantly mitigate the mentioned complexity. Building on
the approach of integrating web services with IoT technology to enable
remote access of data gathered by IoT devices (e.g., [55]), we argue
that our approach enables the automatic discovery of services that
are required for an adaptive smart home management application.
Application developers need to specify the abstract workflow of the



Future Generation Computer Systems 157 (2024) 499–515A. Elhabbash et al.
Fig. 9. Smart home controller.

Table 2
Smart home devices and services.

Device Service Description

Window openWindows Opens the windows (by actuators)
closeWindows Closes the windows (by actuators)

Thermo-meter getTemeprature Returns the home temperature
Heater switchHeaterOn Switches on the heating

switchHeaterOff Switches off the heating
getStatus Returns true if the heating is on

Fridge replaceFilter Tells if the filter should be replaced
foodLevelLow Returns true if food level is low

Fig. 10. Object properties of the device ontologies.

application execution where each task in the workflow represents
an abstract service. Then, concrete implementations of the abstract
services are selected for realizing the workflow.

We consider each device as a holon that is described ontologically
(probably by the vendor). The management application is also consid-
ered a holon that receives other holon ontologies, parses and compiles
them, and then uses their services. Application developers specify the
abstract workflow of the smart home management application. Then,
the Server/Mediator component selects the concrete services that im-
plement the abstract services of the workflow. A concrete workflow (the
application) is passed to an execution unit that executes the application
and passes the results to the smart home actuators. Fig. 9 illustrates the
above steps.

7.3. Experimental setup

We developed a proof of concept application focused on smart home
temperature management. We assume it has the following smart de-
vices: heaters, thermometers, windows, and a fridge, and they provide
the services listed in Table 2.

We created a simple ontology (shown in Fig. 10) for each of the
devices. We also created an abstract workflow to keep the smart home
temperature at 22 ◦C, as depicted in Fig. 11. The application reads
the temperature from the thermometers. If it is less than 22 ◦C, the
application calls the heaters’ switchHeaterOn service to switch on
the heating and the windows’ closeWindows to close the windows.
If the temperature is higher than 22 ◦C but less than 25 ◦C, it turns off
the heater (calling switchHeaterOff). If the temperature is higher
than 25 ◦C it also opens the windows (by calling openWindows).
506
Fig. 11. Prototype workflow.

Fig. 12. Object properties of the controller ontology.

Table 3
Experimental cases of the workflow in Fig. 11.

Temp. Invoked services

10 ◦C getTemperature → switchHeaterOn → closeWindows
18 ◦C getTemperature → switchHeaterOn → closeWindows
22 ◦C getTemperature → switchHeaterOff → closeWindows
23 ◦C getTemperature → switchHeaterOff → closeWindows
26 ◦C getTemperature → switchHeaterOff → openWindows

7.4. Behavior

Fig. 12 shows a snapshot of the controller ontology after parsing the
device ontologies and constructing the SoS tree. The ontology shows
that the controller provides services that are provided by the devices
themselves (see Fig. 10) in addition to servicesSelector, which
selects concrete services for the abstract workflow.

The execution starts with reading the temperature from the ther-
mometer by calling the getTemeprature service. Table 3 presents
the experimental cases and the invoked cases for each case. As the
table illustrates, the sequence of invoked services complies with the
abstract workflow provided by the developer to the controller, de-
spite the developer not hard-coding the required connections between
devices. For example, when the temperature is 22 ◦C, the execution
unit invokes the services getTemperature, switchHeaterOff,
and closeWindows respectively, which complies with the abstract
workflow (Fig. 11).

This case study demonstrates the potential for easing the develop-
ment of IoT applications, where application developers do not need to
know the details of smart device APIs. Definition of device ontologies



Future Generation Computer Systems 157 (2024) 499–515A. Elhabbash et al.
Table 4
Developer tasks required to implement the smart home case study.

Classical approach Holonic approach

1. Understand the services, APIs, and
properties of the devices listed in
Table 2.
2. Design the composition of services
based on required functionality and
context.
3. Develop code to compose the
services.
4. Deploy the system.

1. Define the abstract workflow of the
required functionality on the
controller.
2. Deploy the devices listed in Table 2.

(by vendors) and an abstract application workflow (by smart home de-
veloper) are sufficient for runtime application synthesis and execution
by the proposed architecture. Table 4 presents a comparison of the tasks
required from smart home developers to implement this case study in
both the classical and holonic approaches.

8. Case study II: Dynamic cluster management

We now focus on dynamic holon interaction. In this case study, we
demonstrate how holons of similar ontologies (i.e., containing the same
services) but in constant movement can interact with each other despite
continuous creation and modification of new SoSs. Our context is
cluster management using Apache Mesos. This represents construction
of a directed SoS.

8.1. Background and challenges

Inspired by heterogeneous fog clusters [56,57], we set a scenario
where device interaction is constant. We use Apache Mesos [58], an
orchestration tool commonly used to manage resources that are shared
between different applications and their sub-tasks. In effect, Mesos
enables the viewing of data centers and other computing clusters as
a single consolidated resource.

Although Mesos is a very useful utility, it was designed mainly for
shared resources in relatively stable environments such as data centers.
As such, the computing cluster can only change (i.e., grow or shrink)
through manual modifications to the configuration by the user. Mesos
was not designed to work in an environment where node status is in
constant flux due to movement, unreliable power, or communication
outages. These are typical challenges in fog computing [59,60]. Mesos
is also designed to work in a hierarchical fashion, whereby Agents
(worker nodes) can only communicate directly to the Master but not
through other Agents [58,61].

8.2. Overview of our approach

Both of the above restrictions can be overcome using the holonic
ontology, which offers opportunistic composition (overcoming the first
restriction) and horizontal composition between self-describing clusters
in the form of holons (second restriction). We draw a scenario here
to demonstrate this using containers running over an unreliable infras-
tructure such as edge PoPs [62]. In this scenario, each node can be
a Master or an Agent. Following the basic design of Mesos, Masters
are responsible for dispatching containers to the Agents, who in turn
operate the containers.

8.3. Experimental setup

A simple example is given here to illustrate how holons could
be used to facilitate the union of Mesos clusters with mobile nodes
without the need for establishing direct communication. Owing to the
high mobility of nodes during the tests, the composition of SoSs is
dynamic, creating several additions and removals of the Mesos Services.
507
Fig. 13. The ontology model of Mesos NodeA.

Fig. 14. Prototype workflow of Dynamic Cluster Management when a node reaches
another node.

This would have been prohibitive to accomplish using Mesos’ manual
configuration.

We tested this use case study using 100 devices that can move freely.
Every device is considered a node for Mesos and is individually defined
as a holon at the beginning of the experiment. Shortly afterwards (a
minute later), bigger holons begin to be created, containing one or more
devices. After that, each holon starts an internal process of randomized
leader election [63] to elect a master from amongst the constituent
devices.

Each holon contains parameters to define its identifier, mobility,
and whether or not it is a Mesos Master (e.g., Fig. 13). Additionally,
each holon contains three services: AskForMaster is performed ev-
ery time two holons reach each other for the first time, where it would
return the ID of the Master. After which, a holon will perform the
SendMaster service to send such ID. BridgeToMaster is used by
the nodes to communicate with the Master through its Agents. Fig. 14
shows an abstract workflow of the experiment when a node reaches a
new node from another Mesos cluster. A second abstract workflow has
been created when a node receives a new ontology, which is depicted
in Fig. 15. Both abstract workflows are used by the nodes to allow
dynamic union of Mesos clusters with mobile nodes. Device removal
is left as future work.

8.4. Behavior

Fig. 16a presents the starting point with holons 𝐻1 and 𝐻2. 𝐻1 is
formed of four nodes: nodeA, working as a Master, while nodeB, nodeC
and nodeD as Agents. On the other hand, 𝐻2 is formed of two nodes:
nodeF, a Master, and nodeE, an Agent. In this case, 𝐻1 and 𝐻2 cannot
reach each other.

As nodeC and nodeE come in range of one another (Fig. 16b), they
are triggered to exchange ontologies and call AskForMaster and



Future Generation Computer Systems 157 (2024) 499–515A. Elhabbash et al.
Fig. 15. Prototype workflow of Dynamic Cluster Management when a node receive a
new ontology.

Fig. 16. How to use holons to construct an SoS of Mesos clusters running on constantly
moving nodes.

Table 5
Tasks required from Mesos developers to implement the dynamic cluster management
case study.

Classical approach Holonic approach

Repeatedly:
1. Select a cluster Master.
2. Add nodes to cluster.
3. Add services to cluster.
4. Remove nodes from cluster.
5. Remove services from cluster.

1. Define the cluster node as a holon using
the ontology.
2. Implement the cluster Master election
algorithm.
3. Deploy the holons.

subsequently SendMaster. The orange arrow in the figure represents
this interaction.

Then, nodeC and nodeE broadcast their new ontologies to neighbors
(Fig. 16c). Now, 𝐻1 and 𝐻2 are not just in contact with each other, they
are part of a new super-holon 𝐻3, which is the union of 𝐻1 and 𝐻2 as
all their nodes receive the updated ontology and adopt it as their new
ontology.

All Agents are sharing the Masters nodeA (from 𝐻1) and nodeF
(from 𝐻2). This is achieved using the service BridgeToMaster,
performed continuously by nodeC and nodeE while they can reach
each other. The resulting SoS 𝐻3 has 2 Master nodes and 4 Agents.
Therefore, each of the two Masters can communicate to all Agents in
𝐻3 as if they were connected directly. Similarly, this approach is also
able to deal with Master mobility as long as the basic structure of a
Mesos cluster is not broken down.

As such, the ontological exchange and reasoning of holons allows
Apache Mesos to transcend its innate design shortcomings and enables
it to form a dynamic cluster structure. Achieving such structure through
manual configuration (which is the only way possible using native
Mesos) significantly restricts adaptation and reduces cluster efficiency
by a factor of 5 compared to using holons. Table 5 compares the tasks
required from Mesos developers to implement this case study in both
the classical and proposed approaches.
508
Fig. 17. Computational tasks are completed faster on dynamic Mesos clusters
constructed using holons as opposed to native Mesos cluster configurations.

8.5. Simulations

For evaluating the efficacy of automated expansion of Mesos clusters
through the use of holon ontologies, we used the Omnet++ discrete-
event simulation framework [64] to simulate 100 nodes. We set the
node transmission range to 20 m and speed to 1.43 m∕s, an aver-
age walking speed [65]. The nodes used individual-level (random
walks) [66] as a mobility model.

We used Mesosaurus [67] to create task loads to test the perfor-
mance of the formed clusters. Specifically, we seek the length of time
required by a Mesos Master to perform a specific task. The task created
for this experiment is one that a Master with 5 Agents will normally
perform in about 20 s. Execution time is expected to decrease with more
Agents.

Fig. 17 plots the average task execution time across all Mesos clus-
ters after 20 experiment runs. Using Mesos’ native cluster management
method, task execution time decreases slightly (from ≈ 23 s) as Masters
expand their clusters through the use of scripts that add nodes they
encounter in their environment. This improvement in performance,
however, eventually plateaus (≈ 20 s) as churn overwhelms Masters
through frequent configuration management, despite the use of au-
tomated scripts. On the other hand, using holons introduces some
overhead in terms of ontology creation and reasoning. This results
in a slightly inflated initial execution time (≈ 27 s). However, as
nodes encounter others during the lifetime of the simulation, Mesos
clusters identifying as holons expand dynamically according to changes
in their environment. Compiling and reasoning overheads soon become
relatively insignificant, enabling Mesos holons to achieve an average of
17 s execution time, a 15% improvement in performance.

9. Case study III: Disaster rescue team formation

In this final case study, we demonstrate how holons can interact
opportunistically under unforeseen circumstances. This represents con-
struction of a collaborative SoS. We study how holons discover each
other and compose to gain mutual access to functionalities. Our context
was an infrastructure-less environment caused by a natural/man-made
disaster.

9.1. Background and challenges

This scenario involves a case of disaster settings where no
infrastructure-based communication is available because of large-scale



Future Generation Computer Systems 157 (2024) 499–515A. Elhabbash et al.
power outage,2 for instance. Rescue teams can be deployed over areas
of interest. If we assume that such an area is wide, mountainous, or sus-
ceptible to high levels of interference (as in large metropoles) and the
rescue teams employ MANET-based communication, then they could
easily become isolated. To deal with this, the rescue administration
can deploy some kind of vehicles – e.g., robots or Micro Air Vehicles
(MAVs) – to facilitate communications. The rescue team devices should
be able to dynamically discover the MAVs, compose, and communicate
with other teams through them. In effect, the MAVs act as bridges to
enable communication between rescue teams. Furthermore, each rescue
team system may provide services and/or data that can be needed by
or useful to other rescue teams; such as specialist recovery procedures,
computational capacity to carry out intensive real-time risk analytics,
list of rescued individuals, list of confirmed casualties, disaster area
maps and schematics, notification services for how the wider disaster
unfolds, etc..

Similar scenarios have been discussed by other works. However,
they tended to focus on software/hardware design (cf. [69]), coverage
capabilities (cf. [70]), or geographical placement (cf. [71]). There
currently is no work on how to enable impromptu deployed vehicles to
compose at runtime with ground teams without any pre-configuration,
and to adapt to changes in their execution environments, something
that is likely.

9.2. Overview of our approach

In order to enable this self-organizing case, each rescue team system
and MAV is considered a holon with its own self-describing ontology
that it periodically broadcasts. The description, based on the standard
ontology of Section 5, includes: the ID of the holon, the services that the
holon provides, and the information that is required to communicate
with the holon and access its services. Upon receiving a new ontology,
the receiving holon parses the description and, thus, discovers the
surrounding holons and how to interact with them. The ontology also
includes any compositions the sending holon currently has, which
enables the receiving holon to compose indirectly with other holons
not in its one-hop range.

9.3. Experimental setup

Fig. 18a shows the deployment of the rescue teams. After deploy-
ment, Team A and Team B broadcast their respective holon descrip-
tions (every 3 s). After mutually parsing the descriptions, the teams
start to communicate; e.g., by calling data look-up services. As rescue
operations progress, teams move apart and eventually lose commu-
nication, as shown in Fig. 18b. In this case, the ontologies can no
longer be received and Team A and Team B discover that the data
look-up services are no longer available. To resolve this, the response
coordination center prepares and deploys Team C in the form of a MAV.
This system broadcasts its description and, similar to the above, can
then communicate with Team A and Team B. Consequently, Team A
and Team B discover (from the holon of Team C) that the data look-
up services they previously used are available again through Team C.
To test the above, we developed data look-up and messaging services
as RESTful services. The data look-up service provides simulated data
representing the number of victims found in the disaster area, whereas
the messaging service provides reliable asynchronous communication
between rescue teams. Each system broadcasts its holonic description,
parses the received descriptions, and provides interfaces for communi-
cating with and invoking the services of dynamically discovered holons.
Fig. 18 also shows an abstract workflow of the experiment, whereby
a team searches for another team’s service to obtain data/access a
service. The workflow is used to automatically discover data lookup
services of other teams to facilitate knowledge sharing.

2 Similar to what happened in Lancaster during Storm Desmond in
December 2015 [68].
509
Fig. 18. A scenario of rescue teams during a flooding disaster where communication
is disrupted due to power outages, and its abstract workflow.

Fig. 19. The ontology model of the Team A system.

Fig. 20. The ontology model of the Team A system after the construction of
Team A-Team B SoS.

9.4. Behavior

We demonstrate the opportunistic SoS construction and
self-organization by examining the ontology model of Team A over the
four states that constitute this case study, as follows.

State 1: The development of the ontology. Fig. 19a shows the object
properties of the Team A holon, including the parameters it holds and
the services it provides. In Fig. 19b we take the data look-up service
as an example to show the data properties of the service. The data
properties include the name (assumed to be unique), parameters (the
required data), the cost (0 in this case as the service is hosted locally
on the Team A system), the URL to access the service, and the return
type.

State 2: Constructing the Team A-Team B SoS. Fig. 20 illustrates the
updated ontology of the Team A system after receiving the ontology
of the Team B system. Fig. 20a shows that two new services appear in
the object properties of the ontology of Team A, while Fig. 20b lists the
data properties of Team B-DataLookUpService. The cost of this
service is 1 as it is hosted in a neighbor system a single hop away.

State 3: Deconstructing the Team A-Team B SoS. As rescue progresses,
each team independently carries out its own operations that might



Future Generation Computer Systems 157 (2024) 499–515A. Elhabbash et al.
Fig. 21. The ontology model of the Team A system after the construction of Team A-
Team C- Team B SoS.

Table 6
Tasks required from developers to realize the rescue case study.

Classical approach Holonic approach

1. Develop the service discovery logic.
Repeatedly:
2. Manually check for available teams
in the range and select their services.
3. Understand the APIs of the selected
services.
4. Manually wire the application logic
with the selected services.

1. Define the team system as a holon
using the ontology.
2. Implement the holon discovery
and integration logic.
3. Deploy the holons.

involve moving to cover different parts of the disaster-struck terrain.
As Team A and Team B drift away from each other, they lose direct
communication as is depicted in Fig. 18b. Communications time out
and the SoS formed in the previous step is dissolved. The ontology and
the composition models of Team A revert to what is represented in
Fig. 19.

State 4: Constructing Team A-Team C-Team B SoS. A new system,
Team C, is deployed into the disaster terrain to act as a communication
bridge. Fig. 21 outlines the updated ontology model of the Team A
system after receiving the Team C ontology. Fig. 21a shows that the
Team B services appear back in the object properties of the ontology
of Team A. Moreover, Fig. 21b shows the data properties of Team B-
DataLookUpService, the cost of which is 2 as it is now available
indirectly through a third system (Team C). Table 6 compares the tasks
required from developers to implement this case study in both the
classical and proposed approaches.

9.5. Running example

To simulate the case study, we deployed Raspberry Pi microcomput-
ers to represent members of the rescue teams. We specifically explore
the efficacy of the mechanism to opportunistically compose a rescue
super-system when faced with network-level disruption, as illustrated
in Fig. 18.

The microcomputers were initially configured to communicate with
each other through the same wireless network. Consequently, Teams A
and B reason and compose directly (State 2). For this experiment, we
created a stream of requests between the teams to measure quality of
service. The requests were issued by Team A to obtain updates from
Team B on the number of found victims. We then modified Team B
microcomputers to use a different network and, hence, were no longer
able to communicate with Team A. Next, we deployed Team C, which
we configured to use both networks to act as a bridge between Teams A
and B. Again we evaluate the ability of invoking services of other
systems, now through indirect composition (State 4). Under both states
of composition, requests were successfully received and responded to
by Team B. For reference, the average response times under State 2
and State 4 were 91 ms and 281 ms, respectively. Naturally, the latter
response time is higher as requests are inter-mediated through Team C.

10. Quantitative evaluation

The methods of our proposed framework include means of parsing
holon ontologies to build a tree that represents SoS construction, and
510
subsequently rendering the tree to disseminate modified ontologies that
reflect SoS evolution. As the efficiency and efficacy of these methods
are of paramount significance, we conducted experiments to investigate
the time required to parse and render the ontologies at different scales.
We also assess the validity of these different stages of processing holons.
From this, we draw conclusions about the ability of using holons to
compose SoS during runtime and at scale. The platform used in the
following experiments was Intel Core i7 with 16 GB RAM, running
Linux Ubuntu v16.04, and Java SE v1.8.0. The presented results are
the mean values from 100 repetitions.

10.1. Parsing

This first experiment measures the time taken to convert a received
ontology into a tree (Section 6). Recall that the tree contains the holon
object as a root and the services provided by/via it as its children.
We vary the number of children (i.e., provided services) as the main
dimension affecting the scalability of our parsing stage. In Fig. 22(a),
we observe that parsing time increases linearly with the number of ser-
vices, amounting to < 0.35 s for a very complex SoS that provides 1000
services either directly or indirectly. We find this level of complexity
to be acceptable, as it indicates the feasibility of parsing an increasing
number of holons in an SoS.

10.2. Ontology size

This experiment focuses on investigating the size of the ontology
(in MB), which demonstrates the size of the control traffic exchanged
between the constituent systems. Similar to the above, we vary the
number of services provided by/via the holons. In Fig. 22(b), we
observe that ontology size increases linearly with the number of ser-
vices, amounting to around 2𝑀𝐵 for a very complex SoS that provides
1000 services either directly or indirectly. We argue that this level of
complexity to be practically acceptable for an extremely complex SoSs.
However, compression techniques can be applied to reduce the size of
the exchanged ontology between holons, when needed.

10.3. Rendering

We now examine rendering time defined as the time to convert
a holon tree into an ontology that is ready to be disseminated. We
varied both the number of neighbor holons (children) and their services
(leaves), and observed that the rendering overhead increases with both
(Fig. 22(c)). This is acceptable for SoSs with up to 100 services per
holon, where rendering overhead is ≈ 5 s. However, this inflates for
holons with 1000 or more sub-systems, where it could take up to a
minute to create an ontology that could be used for composition.

10.4. Validation

In this subsection, we assess the efficacy of the parsing and render-
ing operations using two experiments. In the first experiment we adopt
the process depicted in Fig. 23a. We create ontologies for 100 holons
with random values for each of their parameter and service values.
We then pass the ontology files to the OWLParser, which creates the
corresponding holon trees. The trees are passed to the OWLRenderer
to render them into ontologies. Next, we use OWLAPI to query both
the created ontologies and the rendered ones to check if the results
are equivalent. For all 100 ontologies, the returned values were indeed
equivalent. In the second experiment, we adopt the process portrayed
in Fig. 23b. Here, we synthesized 100 compiled trees, each of which
represents an SoS. We then passed the trees to the OWLRenderer to
render them into a separate SoS ontology for each tree. We queried
both the rendered ontologies and the created trees to systematically
compare the results. Again, the returned values were equal for all 100
cases.



Future Generation Computer Systems 157 (2024) 499–515A. Elhabbash et al.
Fig. 22. Ontology parsing time (a), ontology size (b), and rendering time (c) as complexity increases through either the number of holons or services per holon.
Fig. 23. Our methods to validate ontology parsing and rendering experiments, deemed
valid when the information returned by the queries match.

11. Implications and limitations

In light of the above experiments, we now discuss the implications
of our work by reflecting on the research questions we posed in
Section 3. We also discuss the limitations of our work.

11.1. Abstractions for SoS representation (RQ1)

Holons provide a means for systems to richly describe themselves,
and independently reason about the change in their environment and
how it might affect their set up and operation. This enables systems to
reflect on their existence and how they fit into their surroundings. This
aligns with the ethos of both reflective middleware [72] (systems build
representations of themselves that they can then adapt) and autonomic
computing [73] (systems manage themselves according to high-level
objectives). In addition, holonic representation allows systems to trans-
fer knowledge about themselves to other systems that they get in
touch with. In addition, each system can build a representation of the
behavior of other systems in its vicinity and ergo form more complex
systems without prior arrangement.

There is an assumption that each system needs to start with a
representation of itself in its simplest form as an ontology. Therefore,
we built our ontological architecture on the most generalizable and
easy-to-use ontology available in the literature. Furthermore, using
our framework makes it relatively easy to create ontologies, where
the development overhead is of much smaller scale than defining
a system’s API, as illustrated by all three use cases. This modest
additional development overhead enables the system to adapt after
deployment, thereby unlocking a new world of complex system creation
that facilitates new forms of context-aware applications.
511
Takeaway: Holons effectively represent systems in an SoS context.
They are verbose enough to capture system characteristics that are
used to reason about and action composition, and require only a
modest development overhead.

11.2. Techniques for SoS composition (RQ2 )

We demonstrated how a developer could define desired behavior
at a high level (Tables 4–5), and a system is subsequently composed
of appropriate sub-systems to align with this. The architecture that we
presented in Section 6 allows systems to independently reason about
their environment, specifically about updates in surrounding holons
and whether they are reachable directly or indirectly. As a result, it also
enables each holon to reason about how such changes would affect its
set up and operation. This powerful concept maintains the separation of
concerns, which is crucial for effective system development, whilst also
reaping the rewards of complex system formation through autonomous
composition. Furthermore, due to its recursive nature, the holonic
ontology could be applied at different levels: at atomic service (e.g.,
temperature sensor), system component (e.g., smart sensors), or meta-
system level (e.g., smart home controller). This enables developers to
write behavior at different levels of granularity with the same modeling
effort, which is particularly beneficial for environments such as the IoT
and cyber–physical systems where context-dependent behavior could
be sought at different levels.

Takeaway: By parsing holons into weighted trees, we can support
reasoning at the recursive holon level, and composing SoSs through
direct and indirect contact. This is performed independently without
centralized techniques.

11.3. SoS adaptation (RQ3 )

The holonic ontology is designed for self-description to enable
reasoning and composition, and the architecture that we built enables
the continuous maintenance of the holonic lifecycle; cf. Fig. 3. This
perpetual preservation and updating (or self-healing) of the different
ontologies that are present in the system ecosystem allows the ‘DNA’ of
the different systems to persist and to adapt to changes in the ecosystem
in a timely fashion. This is fully in line with the vision of autonomous
SoS composition and adaptation. Through our experiments with case
studies, we have tested the ability to achieve such vision in differ-
ent ecosystems of notable heterogeneity (IoT, rescue) and dynamism
(cluster management). We have not, however, tested the ability to
efficiently compose SoSs in ecosystems that exhibit both heterogeneity
and dynamism, especially at a large scale. Nonetheless, we have no



Future Generation Computer Systems 157 (2024) 499–515A. Elhabbash et al.

1

r
A
s
I
t
l
t
t
o
h
r
u

1

p
d
o
p
v
c

reason to believe that the holonic approach would not be suitable in
such environments.

Human intervention is not needed for composition or adaptation.
Involvement is only called for when major requirements changes are
required at the SoS level. For instance, a change in the smart home
requirements that alters the SoS workflow would require the user to
issue such changes as abstract logic. Nonetheless, such intervention is
guaranteed to be minimal as there is no need to know the low-level
details of post-deployment systems such as device-specific APIs.

In designing our framework, we valued the feasibility and correct-
ness of composition and adaptation (we will discuss these issues further
in the two following subsections, respectively). What our framework in
its current form cannot assure, however, is tolerance due to failings at
the holon computational task level. This issue could easily and rapidly
compound in ecosystems of a large scale and dynamic nature. By defi-
nition, holons can have infinite task possibilities, such as temperature
measurement, cluster management, traffic coordination, and content
processing. Fault tolerance mechanisms need to be implemented by
task developers as an inherent part of the task, notwithstanding holonic
description. Such an addition does not modify the holonic ontology or
the behavior we present.

Takeaway: Our architecture augments holonic description to pro-
vide a generic framework for supporting adaptation driven by high-
level desired behavior adaptation. This is evident from our experi-
ments in heterogeneous and dynamic environments.

1.4. Composition overhead (RQ4)

The architecture operates on the basis of continuously parsing and
endering holonic ontologies in order to reason about composition.
fter quantifying the cost of these operations over a wide range of
ystem scales, we find that the cost to be quite minimal in most cases.
t is only the ontology rendering cost that becomes somewhat non-
rivial in cases where a holon would come in contact with a very
arge number (i.e., 1000 s) of other holons. This overhead stems from
he fundamental process of converting ontologies into weighted trees
hat can facilitate reasoning. We chose this technique as we designed
ur architecture to optimize for correctness and reliability. For such
igh scale environments, an alternative is to develop an alternative
endering process that is optimized instead for performance, perhaps
sing heuristic algorithms.

Takeaway: The cost of composition using our architecture is triv-
ial and acceptable for most environments, except those with an
extremely high number of interacting holons.

1.5. Composition correctness (RQ5 )

Composition outcomes, i.e., SoSs, were found to be valid and com-
letely in line with the high-level workflows from which they were
erived. This is unsurprising as our architecture was designed to pri-
ritize correctness and reliability, which inadvertently can sacrifice
erformance, as already discussed. Despite our extensive efforts to test
alidity with a number of real-world and synthetic workflows, we
annot claim external validity.

Takeaway: SoS composition was reliably valid both in qualitative
case studies and in synthesized experiments.
512
11.6. Limitations

Semantic authority. Defining an ontology to describe any IoT sys-
tem is an arduous challenge that presents a difficult tradeoff between
generality and usefulness. Moreover, any ontology will have its own
shortcomings. However, our intention is not to designate a definitive
ontology that should be adhered to by all device manufacturers or
system developers. Instead, our aim is to provide means by which
post-deployment composition is possible in environments that host
various systems. In this spirit, although creating holonic descriptions
by manufacturers is not an unreasonable expectation (cf. recent de-
vices from Bosch, Honeywell, Siemens), automated generation of holon
descriptions is possible and highly accurate [74].
Coverage. Our architecture is applicable to various types of SoS,
as is evident from our experiments that cover IoT, computational
cluster, and ad hoc networking. However, our ontology was founded
on another that was developed for IoT devices. We endeavored to
generalize the ontology to support SoS composition outside the IoT
context, bearing in mind the aforementioned tradeoff. Nevertheless,
further experimentation is warranted on other SoS contexts.
Developer overhead. Obviously, there is an overhead associated
with adopting the semantic tools we present here, which potentially
adds to the resistance to wide adoption. Nevertheless, the overhead is
not insurmountable and is acceptable considering the added value it
brings. Besides, we see that deriving semantic specification using pro-
grammatic means is an achievable objective. Indeed, we are currently
developing an approach using graphical programming techniques [75]
to relax such fundamental constraint that underlies our work.

12. Future directions

We hereby present possible future directions of interest and poten-
tial reward to the community.

12.1. Composition validity and optimization

Although all the composition outcomes were correct in our exper-
iments, there is still work to be done in two primary directions. First,
more tests could be performed to ensure valid composition (i.e., in
line with the high-level objectives set out by the abstract SoS work-
flow) with corner cases such as legacy devices with varying firmware
versions. Second, a given SoS workflow can have multiple valid compo-
sition outcomes. Our architecture can be extended to compare such pos-
sibilities using certain criteria such as energy efficiency or operational
cost.

12.2. Alternative ontology rendering

Further research is needed to study SoS adaptation in more extreme
environments: e.g., highly heterogeneous and dynamic, or with high
sensitivity to faults. This could be done by using the architecture
we propose here, replacing the rendering module by another that is
more performance-savvy, e.g., using heuristic algorithms or constraints
programming.

12.3. Workflow composition

The presented architecture assumes that developers are responsible
for providing a workflow of abstract services that will be used to
identify concrete services to fulfill the system requirements. Two issues
need to be addressed in future research.

The first challenge is the potential presence of conflicts in the holon
ontologies. In the case of multiple services that can satisfy an abstract
service, the suitability of such concrete services needs to be quantified
at runtime in order to reason about their selection. Therefore, an

intelligent and scalable selection of optimal services is required.



Future Generation Computer Systems 157 (2024) 499–515A. Elhabbash et al.

o
W

The second issue is to further raise the level of abstraction, requir-
ing developers to provide only high-level goals instead of a detailed
abstract workflow. The system is then responsible for constructing and
maintaining a workflow that is able to achieve the given goals. This also
calls for intelligent approaches that accumulate and utilize knowledge
of the ability of the constructed workflow to satisfy high-level goals.

13. Conclusion

This article addressed the challenge of constructing systems of
systems (SoSs) in a dynamic and unplanned manner. It presented a
general approach of how to do this based on defining the concept of a
holon as a self-describing system that can recurse to encapsulate other
holons. Beside providing self-awareness, an ontological description of
a holon helps attain context-awareness through the discovery of other
holons. For this, we provided an architecture for SoS construction that
makes use of holon descriptions to discover them, reason about their
functionalities, and integrate them to form complex SoSs.

We demonstrate the feasibility of our framework by examining the
details of three case studies that implement contrasting SoS construc-
tion scenarios. The case studies show that our framework reduces the
complexity of SoS development by abstracting system heterogeneity
using holon descriptions and their autonomic manipulation at runtime.
They also illustrated forms of system composition that are incredibly
difficult, if not impossible, to achieve without prior planning. Further-
more, we assess scalability and validity through a testbed and simu-
lation experimentation, concluding that our framework is realistically
feasible with performance exhibiting a linear trend for manipulating
and reasoning about holonic system descriptions.

This work represents a generic, extensible, and sustainable way of
raising the level of abstraction of SoS construction. In other words,
defining ontologies for the holons and using our simple reasoning
architecture liberates developers from specific system composition and
allows them to be more concerned with how whole systems can interact
with each other at runtime. This novel contribution has strong potential
for applications in various fields as is evident from our contrasting
case studies. In effect, this study generates a new breed of forming
systems at runtime. Moreover, our architecture can be modified to
cater to domain-specific interactions, e.g., if particular transactional or
situational types of awareness are needed.

CRediTauthorshipcontributionstatement

Abdessalam Elhabbash: Conceptualization, Investigation, Method-
logy, Software, Validation, Visualization, Writing – original draft,
riting – review & editing. Yehia Elkhatib: Conceptualization,

Methodology,Projectadministration,Supervision,Visualization,Writing
– review & editing. Vatsala Nundloll: Visualization, Writing – original
draft.Vicent SanzMarco:Validation, Writing – original draft.GordonS.
Blair:Conceptualization,Fundingacquisition.

Declarationofcompetinginterest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing interests:
Abdessalam Elhabbash reports financial support was provided by
EngineeringandPhysicalSciencesResearchCouncil.

Data availability

No data was used for the research described in the article.

Acknowledgment

This work was partly supported by CHIST-ERA, Europe under the
513

UK EPSRC grant EP/M015734/1 (DIONASYS).
References

[1] D. Hughes, Self adaptive software systems are essential for the internet of things,
in: Symposium on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS, ACM, 2018, p. 21.

[2] G. Fortino, C. Savaglio, G. Spezzano, M. Zhou, Internet of things as system
of systems: A review of methodologies, frameworks, platforms, and tools, IEEE
Trans. Syst. Man Cybern.: Syst. 51 (1) (2021) 223–236, http://dx.doi.org/10.
1109/TSMC.2020.3042898.

[3] X. Fang, S. Misra, G. Xue, D. Yang, Smart Grid – the new and improved power
grid: A survey, IEEE Commun. Surv. Tutor. 14 (4) (2012) 944–980.

[4] Ïlker Bekmezci, O.K. Sahingoz, Şamil Temel, Flying ad-hoc networks (FANETs):
A survey, Ad Hoc Netw. 11 (3) (2013) 1254–1270, http://dx.doi.org/10.1016/
j.adhoc.2012.12.004.

[5] M.W. Maier, Architecting principles for systems-of-systems, Syst. Eng. 1 (4)
(1998) 267–284.

[6] J.S. Dahmann, K.J. Baldwin, Understanding the current state of us defense
systems of systems and the implications for systems engineering, in: Annual IEEE
Systems Conference, IEEE, 2008, pp. 1–7.

[7] J. Boardman, B. Sauser, System of systems - the meaning of of, in: IEEE/SMC
International Conference on System of Systems Engineering, 2006, http://dx.doi.
org/10.1109/SYSOSE.2006.1652284.

[8] C.B. Nielsen, P.G. Larsen, J. Fitzgerald, J. Woodcock, J. Peleska, Systems
of systems engineering: Basic concepts, model-based techniques, and research
directions, ACM Comput. Surv. 48 (2) (2015) 18:1–18:41, http://dx.doi.org/10.
1145/2794381.

[9] K. Petersen, M. Khurum, L. Angelis, Reasons for bottlenecks in very large-scale
system of systems development, Inf. Softw. Technol. 56 (10) (2014) 1403–1420,
http://dx.doi.org/10.1016/j.infsof.2014.05.004.

[10] H. Muccini, M. Sharaf, D. Weyns, Self-adaptation for cyber–physical systems:
A systematic literature review, in: Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS, ACM, 2016, pp. 75–81, http:
//dx.doi.org/10.1145/2897053.2897069.

[11] P. Varga, F. Blomstedt, L.L. Ferreira, J. Eliasson, M. Johansson, J. Delsing,
I.M. de Soria, Making system of systems interoperable – the core components
of the arrowhead framework, J. Netw. Comput. Appl. 81 (2017) 85–95, http:
//dx.doi.org/10.1016/j.jnca.2016.08.028.

[12] P. Kumar, R. Merzouki, B. Ould Bouamama, Multilevel modeling of system
of systems, IEEE Trans. Syst. Man Cybern.: Syst. 48 (8) (2018) 1309–1320,
http://dx.doi.org/10.1109/TSMC.2017.2668065.

[13] K.W. Hipel, L. Fang, The graph model for conflict resolution and decision
support, IEEE Trans. Syst. Man Cybern.: Syst. 51 (1) (2021) 131–141, http:
//dx.doi.org/10.1109/TSMC.2020.3041462.

[14] G.S. Blair, Y.-D. Bromberg, G. Coulson, Y. Elkhatib, L. Réveillère, H.B. Ribeiro, E.
Rivière, F. Taïani, Holons: Towards a systematic approach to composing systems
of systems, in: Workshop on Adaptive and Reflective Middleware, ARM, 2015,
pp. 5:1–5:6, http://dx.doi.org/10.1145/2834965.2834970.

[15] D. Fensel, Ontologies: A Silver Bullet for Knowledge Management and Electronic
Commerce, Springer, 2001.

[16] V. Nundloll, Y. Elkhatib, A. Elhabbash, G.S. Blair, An ontological framework
for opportunistic composition of iot systems, in: International Conference on
Informatics, IoT, and Enabling Technologies (ICIoT), IEEE, 2020.

[17] A. Elhabbash, V. Nundloll, Y. Elkhatib, G.S. Blair, V. Sanz Marco, An ontological
architecture for principled and automated system of systems composition, in:
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2020, http://dx.doi.org/10.1145/3387939.3391602.

[18] X. Ye, Towards a reliable distributed web service execution engine, in: Inter-
national Conference on Web Services, ICWS, IEEE Computer Society, 2006, pp.
595–602, http://dx.doi.org/10.1109/ICWS.2006.131.

[19] L. Baresi, L. Pasquale, Live goals for adaptive service compositions, in: Workshop
on Software Engineering for Adaptive and Self-Managing Systems, SEAMS, ACM,
2010, pp. 114–123, http://dx.doi.org/10.1145/1808984.1808997.

[20] R.R. Aschoff, A. Zisman, Proactive adaptation of service composition, in: Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS,
2012, pp. 1–10, http://dx.doi.org/10.1109/SEAMS.2012.6224385.

[21] H. Derhamy, J. Eliasson, J. Delsing, System of system composition based on de-
centralized service-oriented architecture, IEEE Syst. J. 13 (4) (2019) 3675–3686,
http://dx.doi.org/10.1109/JSYST.2019.2894649.

[22] G. Fodor, E. Dahlman, G. Mildh, S. Parkvall, N. Reider, G. Miklós, Z. Turányi, De-
sign aspects of network assisted device-to-device communications, IEEE Commun.
Mag. 50 (3) (2012) 170–177.

[23] A. Elhabbash, G.S. Blair, G. Tyson, Y. Elkhatib, Adaptive service deployment
using in-network mediation, in: International Conference on Network and Service
Management, CNSM, 2018, pp. 170–176.

[24] B. Mokhtarpour, J. Stracener, A conceptual methodology for selecting the
preferred system of systems, IEEE Syst. J. 11 (4) (2017) 1928–1934.

[25] L. Sabatucci, C. Lodato, S. Lopes, M. Cossentino, Highly customizable service
composition and orchestration, in: M. Villari S. Dustdar (Ed.), Service Oriented

and Cloud Computing, Springer International Publishing, 2015, pp. 156–170.

http://refhub.elsevier.com/S0167-739X(24)00105-5/sb1
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb1
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb1
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb1
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb1
http://dx.doi.org/10.1109/TSMC.2020.3042898
http://dx.doi.org/10.1109/TSMC.2020.3042898
http://dx.doi.org/10.1109/TSMC.2020.3042898
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb3
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb3
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb3
http://dx.doi.org/10.1016/j.adhoc.2012.12.004
http://dx.doi.org/10.1016/j.adhoc.2012.12.004
http://dx.doi.org/10.1016/j.adhoc.2012.12.004
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb5
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb5
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb5
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb6
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb6
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb6
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb6
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb6
http://dx.doi.org/10.1109/SYSOSE.2006.1652284
http://dx.doi.org/10.1109/SYSOSE.2006.1652284
http://dx.doi.org/10.1109/SYSOSE.2006.1652284
http://dx.doi.org/10.1145/2794381
http://dx.doi.org/10.1145/2794381
http://dx.doi.org/10.1145/2794381
http://dx.doi.org/10.1016/j.infsof.2014.05.004
http://dx.doi.org/10.1145/2897053.2897069
http://dx.doi.org/10.1145/2897053.2897069
http://dx.doi.org/10.1145/2897053.2897069
http://dx.doi.org/10.1016/j.jnca.2016.08.028
http://dx.doi.org/10.1016/j.jnca.2016.08.028
http://dx.doi.org/10.1016/j.jnca.2016.08.028
http://dx.doi.org/10.1109/TSMC.2017.2668065
http://dx.doi.org/10.1109/TSMC.2020.3041462
http://dx.doi.org/10.1109/TSMC.2020.3041462
http://dx.doi.org/10.1109/TSMC.2020.3041462
http://dx.doi.org/10.1145/2834965.2834970
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb15
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb15
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb15
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb16
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb16
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb16
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb16
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb16
http://dx.doi.org/10.1145/3387939.3391602
http://dx.doi.org/10.1109/ICWS.2006.131
http://dx.doi.org/10.1145/1808984.1808997
http://dx.doi.org/10.1109/SEAMS.2012.6224385
http://dx.doi.org/10.1109/JSYST.2019.2894649
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb22
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb22
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb22
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb22
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb22
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb23
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb23
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb23
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb23
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb23
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb24
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb24
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb24
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb25
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb25
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb25
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb25
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb25


Future Generation Computer Systems 157 (2024) 499–515A. Elhabbash et al.
[26] M. Kit, I. Gerostathopoulos, T. Bures, P. Hnetynka, F. Plasil, An architecture
framework for experimentations with self-adaptive cyber–physical systems, in:
Symposium on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS, 2015, pp. 93–96, http://dx.doi.org/10.1109/SEAMS.2015.28.

[27] A.R. Sadik, B. Bolder, P. Subasic, A self-adaptive system of systems architec-
ture to enable its ad-hoc scalability: Unmanned vehicle fleet-mission control
center case study, in: Proceedings of the 2023 7th International Conference on
Intelligent Systems, Metaheuristics & Swarm Intelligence, 2023, pp. 111–118.

[28] S. Frey, A. Diaconescu, D. Menga, I. Demeure, A generic holonic control archi-
tecture for heterogeneous multiscale and multiobjective smart microgrids, ACM
Trans. Auton. Adapt. Syst. 10 (2) (2015) http://dx.doi.org/10.1145/2700326.

[29] A. Diaconescu, S. Frey, C. Müller-Schloer, J. Pitt, S. Tomforde, Goal-oriented
holonics for complex system (self-)integration: Concepts and case studies, in: IEEE
International Conference on Self-Adaptive and Self-Organizing Systems, SASO,
2016, pp. 100–109, http://dx.doi.org/10.1109/SASO.2016.16.

[30] P. Hnetynka, T. Bures, I. Gerostathopoulos, J. Pacovsky, Using component
ensembles for modeling autonomic component collaboration in smart farming,
in: Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2020, pp. 156–162, http://dx.doi.org/10.1145/3387939.3391599.

[31] R. Agarwal, D.G. Fernandez, T. Elsaleh, A. Gyrard, J. Lanza, L. Sanchez, N.
Georgantas, V. Issarny, Unified iot ontology to enable interoperability and
federation of testbeds, in: IEEE World Forum on Internet of Things (WF-IoT),
2016, pp. 70–75, http://dx.doi.org/10.1109/WF-IoT.2016.7845470.

[32] M.I. Ali, P. Patel, S.K. Datta, A. Gyrard, Multi-layer cross domain reasoning over
distributed autonomous IoT applications, Open J. Internet Things (OJIOT) 3 (1)
(2017) 75–90.

[33] E. Giallonardo, F. Poggi, D. Rossi, E. Zimeo, Making smart buildings and personal
systems cooperate via knowledge base overlays, in: GoodTechs, ACM, 2020, pp.
181–186, http://dx.doi.org/10.1145/3411170.3411261.

[34] M.G. Gillespie, H. Hlomani, D. Kotowski, D.A. Stacey, A knowledge identification
framework for the engineering of ontologies in system composition processes, in:
International Conference on Information Reuse & Integration, 2011, pp. 77–82,
http://dx.doi.org/10.1109/IRI.2011.6009524.

[35] J.-B. Soyez, G. Morvan, R. Merzouki, D. Dupont, Multilevel agent-based modeling
of system of systems, IEEE Syst. J. 11 (4) (2017) 2084–2095.

[36] F. Cervantes, F. Ramos, L.F. Gutiérrez, M. Occello, J.-P. Jamont, A new approach
for the composition of adaptive pervasive systems, IEEE Syst. J. 12 (2) (2018)
1709–1721, http://dx.doi.org/10.1109/JSYST.2017.2655031.

[37] G. Coulson, G.S. Blair, Y. Elkhatib, A. Mauthe, The design of a generalised
approach to the programming of systems of systems, in: Workshop on Autonomic
and Opportunistic Computing, 2015.

[38] Z. Fang, System-of-Systems Architecture Selection: A survey of issues, methods,
and opportunities, IEEE Syst. J. 16 (3) (2022) 4768–4779, http://dx.doi.org/10.
1109/JSYST.2021.3119294.

[39] T. Yamakami, A social dimension view model of divergence of iot standard-
ization, in: L. Barolli, F. Xhafa, N. Javaid, T. Enokido (Eds.), Innovative Mobile
and Internet Services in Ubiquitous Computing, Springer International Publishing,
Cham, 2019, pp. 738–747.

[40] N. Harrand, F. Fleurey, B. Morin, K.E. Husa, ThingML: A language and code
generation framework for heterogeneous targets, in: ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, MODELS,
ACM, 2016, pp. 125–135, http://dx.doi.org/10.1145/2976767.2976812.

[41] S. Benkhaled, M. Hemam, M. Djezzar, M. Maimour, An ontology-based contextual
approach for cross-domain applications in internet of things, Informatica 46 (5)
(2022) http://dx.doi.org/10.31449/inf.v46i5.3627.

[42] F. Corradini, A. Fedeli, F. Fornari, A. Polini, B. Re, FloWare: a model-driven
approach fostering reuse and customisation in IoT applications modelling and
development, Softw. Syst. Model. 22 (1) (2023) 131–158, http://dx.doi.org/10.
1007/s10270-022-01026-9.

[43] L. Daniele, F. den Hartog, J. Roes, The Smart Appliances REFerence (SAREF)
Ontology, in: Workshop on Formal Ontologies Meet Industries, 2015, http:
//dx.doi.org/10.1007/978-3-319-21545-7_9.

[44] P. Levis, E. Brewer, D. Culler, D. Gay, S. Madden, N. Patel, J. Polastre, S. Shenker,
R. Szewczyk, A. Woo, The emergence of a networking primitive in wireless
sensor networks, Commun. ACM 51 (7) (2008) 99–106, http://dx.doi.org/10.
1145/1364782.1364804.

[45] W.S. XG, Review of sensor and observations ontologies, 2011, https://www.w3.
org/2005/Incubator/ssn/wiki/Review_of_Sensor_and_Observations_Ontologies.

[46] D. Preuveneers, J. Van den Bergh, D. Wagelaar, A. Georges, P. Rigole, T. Clerckx,
Y. Berbers, K. Coninx, V. Jonckers, K. De Bosschere, Towards an extensible
context ontology for ambient intelligence, in: European Symposium on Ambient
Intelligence, Springer, 2004, pp. 148–159.

[47] A. Herzog, D. Jacobi, A. Buchmann, A3ME - an agent-based middleware approach
for mixed mode environments, in: International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies, UBICOMM, 2008, pp. 191–196,
http://dx.doi.org/10.1109/UBICOMM.2008.78.

[48] M.A. Musen, The Protégé Project: A look back and a look forward, AI Matters
514

1 (4) (2015) 4–12, http://dx.doi.org/10.1145/2757001.2757003.
[49] M. Horridge, S. Bechhofer, The OWL API: A Java API for OWL ontologies,
Semant. Web 2 (1) (2011) 11–21.

[50] K. Xu, X. Wang, W. Wei, H. Song, B. Mao, Toward software defined smart home,
IEEE Commun. Mag. 54 (5) (2016) 116–122, http://dx.doi.org/10.1109/MCOM.
2016.7470945.

[51] B. Vogel, D. Gkouskos, An open architecture approach: Towards common
design principles for an IoT architecture, in: European Conference on Soft-
ware Architecture, ECSA, 2017, pp. 85–88, http://dx.doi.org/10.1145/3129790.
3129793.

[52] I. Yaqoob, E. Ahmed, I.A.T. Hashem, A.I.A. Ahmed, A. Gani, M. Imran, M.
Guizani, Internet of things architecture: Recent advances, taxonomy, require-
ments, and open challenges, IEEE Wirel. Commun. 24 (3) (2017) 10–16, http:
//dx.doi.org/10.1109/MWC.2017.1600421.

[53] A.H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, Q.Z. Sheng, IoT middleware: A
survey on issues and enabling technologies, Internet Things J. 4 (1) (2017) 1–20,
http://dx.doi.org/10.1109/JIOT.2016.2615180.

[54] Y. Elkhatib, Building cloud applications for challenged networks, in: R. Horne
(Ed.), Embracing Global Computing in Emerging Economies, in: Communica-
tions in Computer and Information Science, vol. 514, Springer International
Publishing, 2015, pp. 1–10, http://dx.doi.org/10.1007/978-3-319-25043-4_1.

[55] M. Soliman, T. Abiodun, T. Hamouda, J. Zhou, C.-H. Lung, Smart home:
Integrating internet of things with web services and cloud computing, in: IEEE
International Conference on Cloud Computing Technology and Science, vol. 2,
2013, pp. 317–320, http://dx.doi.org/10.1109/CloudCom.2013.155.

[56] M. Chiang, T. Zhang, Fog and IoT: An overview of research opportunities, IEEE
Internet Things J. 3 (6) (2016) 854–864, http://dx.doi.org/10.1109/JIOT.2016.
2584538.

[57] M. Noura, M. Atiquzzaman, M. Gaedke, Interoperability in internet of things:
Taxonomies and open challenges, Mob. Netw. Appl. 24 (3) (2019) 796–809,
http://dx.doi.org/10.1007/s11036-018-1089-9.

[58] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph, R.H. Katz, S.
Shenker, I. Stoica, Mesos: A platform for fine-grained resource sharing in the
data center, in: Symposium on Networked Systems Design and Implementation,
NSDI, USENIX, 2011.

[59] L.M. Vaquero, F. Cuadrado, Y. Elkhatib, J. Bernal-Bernabe, S.N. Srirama, M.F.
Zhani, Research challenges in nextgen service orchestration, Future Gener.
Comput. Syst. 90 (2019) 20–38, http://dx.doi.org/10.1016/j.future.2018.07.039.

[60] B. Varghese, P. Leitner, S. Ray, K. Chard, A. Barker, Y. Elkhatib, H. Herry, C.-H.
Hong, J. Singer, F.P. Tso, E. Yoneki, M.F. Zhani, Cloud futurology, IEEE Comput.
52 (9) (2019) 68–77, http://dx.doi.org/10.1109/MC.2019.2895307.

[61] D. Kakadia, Apache Mesos Essentials, Packt Publishing Ltd, 2015.
[62] Y. Elkhatib, B.F. Porter, H.B. Ribeiro, M.F. Zhani, J. Qadir, E. Rivière, On

using micro-clouds to deliver the fog, Internet Comput. 21 (2) (2017) 8–15,
http://dx.doi.org/10.1109/MIC.2017.35.

[63] K. Nakano, S. Olariu, Randomized leader election protocols in radio networks
with no collision detection, in: Algorithms and Computation, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2000, pp. 362–373.

[64] A. Varga, R. Hornig, An overview of the OMNeT++ simulation environment, in:
Conference on Simulation Tools and Techniques for Communications, Networks
and Systems, ICST, 2008, p. 60.

[65] R.V. Levine, A. Norenzayan, The pace of life in 31 countries, J. Cross-Cult.
Psychol. 30 (2) (1999) 178–205.

[66] H. Barbosa, M. Barthelemy, G. Ghoshal, C.R. James, M. Lenormand, T. Louail,
R. Menezes, J.J. Ramasco, F. Simini, M. Tomasini, Human mobility: Models and
applications, Phys. Rep. (2018).

[67] Mesosphere, Mesosaurus, 2016, https://github.com/mesosphere/mesosaurus.
[68] Royal Academy of Engineering, Living without electricity - one city’s experience

of coping with loss of power, 2016.
[69] J.Q. Cui, S.K. Phang, K.Z.Y. Ang, F. Wang, X. Dong, Y. Ke, S. Lai, K. Li, X. Li, F.

Lin, J. Lin, P. Liu, T. Pang, B. Wang, K. Wang, Z. Yang, B.M. Chen, Drones for
cooperative search and rescue in post-disaster situation, in: IEEE International
Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference
on Robotics, Automation and Mechatronics, RAM, 2015, pp. 167–174, http:
//dx.doi.org/10.1109/ICCIS.2015.7274615.

[70] M. Narang, S. Xiang, W. Liu, J. Gutierrez, L. Chiaraviglio, A. Sathiaseelan,
A. Merwaday, Uav-assisted edge infrastructure for challenged networks, in:
IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
2017, pp. 60–65, http://dx.doi.org/10.1109/INFCOMW.2017.8116353.

[71] A. Kumbhar, İsmail Güvenç, S. Singh, A. Tuncer, Exploiting LTE-advanced
HetNets and FeICIC for UAV-assisted public safety communications, IEEE Access
6 (2018) 783–796, http://dx.doi.org/10.1109/ACCESS.2017.2776120.

[72] F. Kon, F. Costa, G. Blair, R.H. Campbell, The case for reflective middleware,
Commun. ACM 45 (6) (2002) 33–38, http://dx.doi.org/10.1145/508448.508470.

[73] J.O. Kephart, D.M. Chess, The vision of autonomic computing, Computer 36 (1)
(2003) 41–50, http://dx.doi.org/10.1109/MC.2003.1160055.

[74] Z. Zhang, Y. Elkhatib, A. Elhabbash, NLP-based generation of ontological system
descriptions for composition of smart home devices, in: International Conference
on Web Services, ICWS, IEEE, 2023, http://dx.doi.org/10.1109/ICWS60048.

2023.00055.

http://dx.doi.org/10.1109/SEAMS.2015.28
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb27
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb27
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb27
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb27
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb27
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb27
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb27
http://dx.doi.org/10.1145/2700326
http://dx.doi.org/10.1109/SASO.2016.16
http://dx.doi.org/10.1145/3387939.3391599
http://dx.doi.org/10.1109/WF-IoT.2016.7845470
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb32
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb32
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb32
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb32
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb32
http://dx.doi.org/10.1145/3411170.3411261
http://dx.doi.org/10.1109/IRI.2011.6009524
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb35
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb35
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb35
http://dx.doi.org/10.1109/JSYST.2017.2655031
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb37
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb37
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb37
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb37
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb37
http://dx.doi.org/10.1109/JSYST.2021.3119294
http://dx.doi.org/10.1109/JSYST.2021.3119294
http://dx.doi.org/10.1109/JSYST.2021.3119294
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb39
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb39
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb39
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb39
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb39
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb39
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb39
http://dx.doi.org/10.1145/2976767.2976812
http://dx.doi.org/10.31449/inf.v46i5.3627
http://dx.doi.org/10.1007/s10270-022-01026-9
http://dx.doi.org/10.1007/s10270-022-01026-9
http://dx.doi.org/10.1007/s10270-022-01026-9
http://dx.doi.org/10.1007/978-3-319-21545-7_9
http://dx.doi.org/10.1007/978-3-319-21545-7_9
http://dx.doi.org/10.1007/978-3-319-21545-7_9
http://dx.doi.org/10.1145/1364782.1364804
http://dx.doi.org/10.1145/1364782.1364804
http://dx.doi.org/10.1145/1364782.1364804
https://www.w3.org/2005/Incubator/ssn/wiki/Review_of_Sensor_and_Observations_Ontologies
https://www.w3.org/2005/Incubator/ssn/wiki/Review_of_Sensor_and_Observations_Ontologies
https://www.w3.org/2005/Incubator/ssn/wiki/Review_of_Sensor_and_Observations_Ontologies
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb46
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb46
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb46
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb46
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb46
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb46
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb46
http://dx.doi.org/10.1109/UBICOMM.2008.78
http://dx.doi.org/10.1145/2757001.2757003
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb49
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb49
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb49
http://dx.doi.org/10.1109/MCOM.2016.7470945
http://dx.doi.org/10.1109/MCOM.2016.7470945
http://dx.doi.org/10.1109/MCOM.2016.7470945
http://dx.doi.org/10.1145/3129790.3129793
http://dx.doi.org/10.1145/3129790.3129793
http://dx.doi.org/10.1145/3129790.3129793
http://dx.doi.org/10.1109/MWC.2017.1600421
http://dx.doi.org/10.1109/MWC.2017.1600421
http://dx.doi.org/10.1109/MWC.2017.1600421
http://dx.doi.org/10.1109/JIOT.2016.2615180
http://dx.doi.org/10.1007/978-3-319-25043-4_1
http://dx.doi.org/10.1109/CloudCom.2013.155
http://dx.doi.org/10.1109/JIOT.2016.2584538
http://dx.doi.org/10.1109/JIOT.2016.2584538
http://dx.doi.org/10.1109/JIOT.2016.2584538
http://dx.doi.org/10.1007/s11036-018-1089-9
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb58
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb58
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb58
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb58
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb58
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb58
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb58
http://dx.doi.org/10.1016/j.future.2018.07.039
http://dx.doi.org/10.1109/MC.2019.2895307
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb61
http://dx.doi.org/10.1109/MIC.2017.35
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb63
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb63
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb63
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb63
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb63
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb64
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb64
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb64
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb64
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb64
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb65
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb65
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb65
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb66
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb66
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb66
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb66
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb66
https://github.com/mesosphere/mesosaurus
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb68
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb68
http://refhub.elsevier.com/S0167-739X(24)00105-5/sb68
http://dx.doi.org/10.1109/ICCIS.2015.7274615
http://dx.doi.org/10.1109/ICCIS.2015.7274615
http://dx.doi.org/10.1109/ICCIS.2015.7274615
http://dx.doi.org/10.1109/INFCOMW.2017.8116353
http://dx.doi.org/10.1109/ACCESS.2017.2776120
http://dx.doi.org/10.1145/508448.508470
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1109/ICWS60048.2023.00055
http://dx.doi.org/10.1109/ICWS60048.2023.00055
http://dx.doi.org/10.1109/ICWS60048.2023.00055


Future Generation Computer Systems 157 (2024) 499–515A. Elhabbash et al.
[75] Z. Wang, Y. Elkhatib, A. Elhabbash, HolonCraft – an architecture for dynamic
construction of smart home workflows, in: Conference on Future Internet of
Things and Cloud (FiCloud), IEEE, 2022, pp. 213–220, http://dx.doi.org/10.
1109/FiCloud57274.2022.00036.

Dr. Abdessalam Elhabbash is a Lecturer in Self-adaptive
Distributed Systems at Lancaster University. He researches
how to develop systems that can learn and adapt to changes
in their environment. His current interests include adaptive
system composition, cloud adaptive decision support, adap-
tive distributed computing, and trustworthy self-adaptive
systems.

Dr. Yehia Elkhatib is a Reader (Associate Professor) at the
School of Computing Science, University of Glasgow, UK.
He works on using data-driven approaches to improve the
performance and programmability of distributed systems.
This includes work on optimized deployment on cloud and
edge resources, post deployment system composition, and
intent-driven network architectures.
515
Dr. Vatsala Nundloll has a PhD in Computer Science.
She has worked on diverse research projects, investigating
into data mining, sensor networks, data integration and
prediction.

Dr. Vicent Sanz Marco is a researcher at the National
Institute of Advanced Industrial Science and Technology
(AIST) in Japan. He received his PhD in Computer Science
from the Universitat Politècnica de València in 2018. His
research interests include self-adaptive systems, embedded
systems, and machine learning.

Prof. Gordon Blair is Head of Environmental Digital Strat-
egy at UKCEH. He is also a Distinguished Professor of
Distributed Systems at the School of Computing and Com-
munications - Lancaster University. He is also Co-Director
of the Center of Excellence in Environmental Data Science
(CEEDS), a joint initiative between UKCEH and Lancaster
University.

http://dx.doi.org/10.1109/FiCloud57274.2022.00036
http://dx.doi.org/10.1109/FiCloud57274.2022.00036
http://dx.doi.org/10.1109/FiCloud57274.2022.00036

	Principled and automated system of systems composition using an ontological architecture
	Introduction
	Related Work
	Problem Space and Research Strategy
	The Holonic Lifecycle
	The Ontological Model
	Background and ontology selection
	Extensions
	Application

	SoS Construction Model
	Composition model
	Behavioral model

	Case Study I: Autonomic Smart Home
	Background and challenges
	Overview of our approach
	Experimental setup
	Behavior

	Case Study II: Dynamic Cluster Management
	Background and challenges
	Overview of our approach
	Experimental setup
	Behavior
	Simulations

	Case Study III: Disaster Rescue Team Formation
	Background and challenges
	Overview of our approach
	Experimental setup
	Behavior
	Running example

	Quantitative Evaluation
	Parsing
	Ontology Size
	Rendering
	Validation

	Implications and Limitations
	Abstractions for SoS representation (RQ1)
	Techniques for SoS composition (RQ2)
	SoS adaptation (RQ3)
	Composition overhead (RQ4)
	Composition correctness (RQ5)
	Limitations

	Future Directions
	Composition validity and optimization
	Alternative ontology rendering
	Workflow composition

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References


