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• Wastewater omnipresent significant 
predictor of TLF dynamics, but impor-
tance varies 

• Groundwater is a dilutionary control on 
TLF in groundwater-dominated sub- 
catchments. 

• Microbial sources significant in 52 % of 
sub-catchments 

• Complex interplay of wastewater, base-
flow and microbial sources drive TLF 
dynamics. 

• Importance of different sources depends 
on sub-catchment characteristics.  
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A B S T R A C T   

Tryptophan-like fluorescence (TLF) is used to indicate anthropogenic inputs of dissolved organic matter (DOM), 
typically from wastewater, in rivers. We hypothesised that other sources of DOM, such as groundwater and 
planktonic microbial biomass can also be important drivers of riverine TLF dynamics. We sampled 19 contrasting 
sites of the River Thames, UK, and its tributaries. Multivariate mixed linear models were developed for each site 
using 15 months of weekly water quality observations and with predictor variables selected according to the 
statistical significance of their linear relationship with TLF following a stepwise procedure. The variables 
considered for inclusion in the models were potassium (wastewater indicator), nitrate (groundwater indicator), 
chlorophyll-a (phytoplankton biomass), and Total bacterial Cells Counts (TCC) by flow cytometry. The waste-
water indicator was included in the model of TLF at 89 % of sites. Groundwater was included in 53 % of models, 
particularly those with higher baseflow indices (0.50–0.86). At these sites, groundwater acted as a negative 
control on TLF, diluting other potential sources. Additionally, TCC was included positively in the models of six 
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(32 %) sites. The models on the Thames itself using TCC were more rural sites with lower sewage inputs. 
Phytoplankton biomass (Chlorophyll-a) was only used in two (11 %) site models, despite the seasonal phyto-
plankton blooms. It is also notable that, the wastewater indicator did not always have the strongest evidence for 
inclusion in the models. For example, there was stronger evidence for the inclusion of groundwater and TCC than 
wastewater in 32 % and 5 % of catchments, respectively. Our study underscores the complex interplay of 
wastewater, groundwater, and planktonic microbes, driving riverine TLF dynamics, with their influence deter-
mined by site characteristics.   

1. Introduction 

Anthropogenic effects are having increasingly serious impacts on 
surface water quality globally, threatening aquatic ecosystems and 
public health (Akhtar et al., 2021; Dodds et al., 2013; Huang et al., 2021; 
du Plessis, 2022). These detrimental impacts are predominantly attrib-
uted to wastewater discharges and agriculture (Van Drecht et al., 2009; 
Li et al., 2022; du Plessis, 2022; UN DESA, 2022). Whilst increased and 
enhanced legislation, monitoring and management has improved river 
water quality and ecological metrics, with respect to some parameters, 
water quality remains unacceptably poor in many locations (du Plessis, 
2022; UN DESA, 2022; Whelan et al., 2022). For example, only 38 % of 
European surface waters are in “good” chemical status, under the Water 
Framework Directive (WFD) standards. In addition, 100 % of rivers in 
Belgium, England, Germany, and Sweden currently fail WFD standards. 
(Environment Agency, 2023; Hannah et al., 2022; Kristensen et al., 
2018). 

Anthropogenic activity delivers a vast quantity of Organic Matter 
(OM) into many rivers (Stanley et al., 2012; Wagner et al., 2015). For 
example, Dissolved Organic Carbon (DOC) concentrations have doubled 
(1884–2014) in the River Thames, and 90 % of this trend is attributed to 
increased urban land cover and the resultant increased input of sewage 
effluent (Noacco et al., 2017). This organic pollution can be detrimental 
to ecosystems and increases risk to human health due to the introduction 
of pathogens (Sirota et al., 2013; Strokal et al., 2019; Wen et al., 2017) 
Such organic matter tends to be labile (Stanley et al., 2012) and can 
drive increases in microbial biomass and activity (Lambert et al., 2017; 
Williams et al., 2010). It can also lead to phytoplankton blooms (Bowes 
et al., 2014), alter microbial community composition (Zhang et al., 
2020), and contribute to reduced biological diversity and ecological 
integrity (Arthington et al., 2010). 

Fluorescence spectroscopy can characterise and quantify fluorescent 
fractions of organic matter and help understand their origin, riverine 
processing, and fate (Fellman et al., 2010; Hudson et al., 2007). The 
technique is sensitive, reagentless, non-destructive, and provides rapid 
results (Bridgeman et al., 2011), enabling in situ deployments (Carstea 
et al., 2020). Fluorescent peaks can be broadly split into those associated 
with humic-like and protein-like OM (Hudson et al., 2007). It is the 
protein-like peaks that are more commonly associated with anthropo-
genic waste, notably those observed at excitation and emission wave-
lengths of 275 nm and 340 nm, respectively (Coble, 1996). This peak is 
termed peak T or Tryptophan-Like Fluorescence (TLF). It resembles the 
fluorescent properties of the amino acid tryptophan, although it is 
commonly associated with protein residues or high-molecular weight 
DOM, as well as free amino acids (Fellman et al., 2010). 

The dominant source of TLF in rivers is typically considered to be 
wastewater (Ahmad and Reynolds, 1999; Baker, 2001; Khamis et al., 
2017). Consequently, strong positive relationships have been observed 
between TLF and both Biological Oxygen Demand (BOD) (Baker and 
Inverarity, 2004; Hudson et al., 2008; Hur et al., 2008; Hur and Cho, 
2012; Khamis et al., 2017) and faecal indicator organisms (Baker et al., 
2015; Sorensen et al., 2018a). Laboratory studies have also shown that 
tryptophan-like fluorophores can be produced and consumed by bacte-
ria (Bridgeman et al., 2015; Cammack et al., 2004; Elliott et al., 2006; 
Fox et al., 2017, 2018) and phytoplankton (Henderson et al., 2008; I. 
Khan et al., 2019; Ly et al., 2019; Nguyen et al., 2005; Villacorte et al., 

2015). Positive relationships between TLF and Total bacterial Cell 
Counts (TCC) have also been observed in groundwater (Sorensen et al., 
2020, 2021) and drinking water supply networks (Bridgeman et al., 
2015). Nevertheless, we are not aware of previous studies directly 
linking TLF dynamics to microbial biomass within riverine environ-
ments. Riverine TLF dynamics can also be influenced by dilution (Baker, 
2002; Pellerin et al., 2011; Saraceno et al., 2009), by sources of water 
containing less labile OM, such as groundwater (Chen et al., 2010). 

Our study investigates controls of key potential environmental 
drivers; wastewater, groundwater, and for the first-time, TCC and 
chlorophyll-a, on riverine TLF dynamics in a range of sites of the River 
Thames, UK. We hypothesise that wastewater is not the only important 
driver of TLF dynamics in all anthropogenically impacted sites and seek 
to explore other drivers such as land use, groundwater and aquatic 
microbes. 

2. Methods 

2.1. Study area 

The River Thames is the longest river wholly in England at 354 km to 
its tidal limit, and has a catchment area of 9948km2.The catchment is 
home to 15 million people (Fig. 1) (Marsh et al., 2008) and has a 
temperate climate, with mean average (1985–2014) total annual rainfall 
and average air temperature of 730 mm (maximum 950 mm in 2000) 
and 11 ◦C (maximum 12 ◦C in 2014), respectively (Bussi et al., 2016a). 
Our study area is defined as the Thames upstream of London, incorpo-
rating its tributaries of the Coln, Leach, Windrush, Evenlode, Cherwell, 
Ray, Thame, Ock, Pang, Enborne, Loddon and The Cut. 

The River Thames flows across limestone in the upper reaches, 
mudstones in the Oxford area, chalk over the middle reaches south of 
Oxford and north of Reading, and finally, clays covering the Reading and 
London area (Bloomfield et al., 2009; M.G Sumbler and British 
Geological Survey, 1996). This change in geology dictates the change in 
the groundwater regime and hence baseflow index across the catchment. 
The porous chalk and limestone are highly productive aquifers and the 
Base Flow Index (BFI) of the Thames and tributaries on these carbonate 
rocks are generally high (>0.8) (Bloomfield et al., 2009; M.G Sumbler 
and British Geological Survey, 1996). However, the bedrocks that un-
derlie Swindon to Oxford and Reading to London are more imperme-
able. Here, the Thames and its tributaries have lower BFI values (<0.65) 
((Bloomfield et al., 2009; M.G Sumbler and British Geological Survey, 
1996). 

There are a wide range of land uses within the catchment, including 
agriculture in the upper reaches, more forested land between Oxford and 
Reading, and increasing urban coverage from Reading to London 
(Marston et al., 2022). Due to the wide range of land uses, geology, and 
hydrogeology, the River Thames also has a rich diversity of wildlife 
(Environment Agency, 2021). For example, the network of chalk streams 
across the catchment creates unique and rare ecosystems which are 
globally and nationally important (Environment Agency, 2021). 

Nineteen monitoring sites were selected within the catchment 
(Fig. 1), including six sites along the Thames and 13 tributaries, pri-
marily to encompass a range of upstream catchment characteristics 
(Bowes et al., 2018). In addition, the locations were selected to be 
easily/safely accessible by road, at bridges where possible to enable 
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easier access to the centre of the river, and to be close or near to Envi-
ronment Agency (EA) flow gauging stations (Bowes et al., 2018). 
Characteristics upstream of each site are shown in Table S1.1. Catch-
ment area was determined (Bowes et al., 2018) using the flood estima-
tion handbook. The land use percentage cover was calculated using the 
Centre for Ecology and Hydrology (CEH) intelligent river network 
(Dawson et al., 2002) and the UK Land and Cover Map 2000 (Fuller 
et al., 2002) using River and Catchment Query and Extraction Layer 
(RAC-QUEL) (Bowes et al., 2018). Sewerage Population Estimate (SPE) 
is an estimated load given to the sewerage treatment works (STW) 
calculated from a typical per capita biological oxygen demand (BOD) and 
the population served by the STW (Keller et al., 2006). This is then 
standardised to the catchment area. BaseFlow Index (BFI) for each site 
was taken from the UK Hydrometric Register (Marsh et al., 2008). 

2.2. Fieldwork and laboratory methods 

For 62 weeks from June 2012 to August 2013, the 19 sites were 
sampled weekly from the centre of the river using a bucket between 9 
am–6 pm (Bowes et al., 2018a; Old et al., 2019b). The bulk sample was 
subdivided onsite into samples for chemistry, microbiology, and fluo-
rescence analysis. All samples were immediately stored in cool boxes 
and subsequently refrigerated within 8 h of collection on return to the 
laboratory. 

2.2.1. Fluorescent dissolved organic matter: TLF 
Samples for fluorescence and absorbance analysis were filtered 

through 0.45 μm cellulose nitrate filters into 15 mL polypropylene 
centrifuge tubes (Old et al., 2019). Old et al., 2019 validated the per-
formance of these filters and tubes, demonstrating no contamination in 
field blanks, and negligible retention of dissolved tryptophan by the 
filters (<5 % at 0.3 Raman Units (RU) to <1.5 % at 1RU). Analysis was 
carried out within 24- 48 h of sampling using a Varian Cary Eclipse 
spectrophotometer with slit width of 5 nm, path length of 10 mm, 
integration time of 12.5 ms, excitation wavelength of 200-500 nm (5 nm 
steps) and emission wavelength of 280-500 nm (2 nm steps)(Old et al., 
2019). Instrument corrections, following manufacturer instructions, 
were conducted to account for lamp output and instrument sensitivity 
(Holbrook et al., 2006). Absorbance was measured in a 10 mm cuvette 
on a Varian Cary 50 UV–vis spectrophotometer at 1 nm intervals from 
800 to 200 nm. These data were then corrected to account for long- 
wavelength scatter using the Blough et al., 1993 methodology. The 
absorbance data was then used to correct for inner filtering effects using 
the Lakowicz, 2006 methodology. Finally, the fluorescence data was 
converted to Raman units using Lawaetz and Stedmon, 2009 methods. 

Parallel factor (PARAFAC) analysis had previously been undertaken 
on the fluorescence of 1505 Excitation Emission matrices (EEMs) by Old 
et al. (2019) (See SI1.11 for further details). PARAFAC was completed 
using DOMFluor toolbox in MATLAB following Stedmon and Bro, 2008. 
The validated PARAFAC model contained 4-components, including a 
peak centred at 285 nm/325-355 nm (Ex/Em), which is consistent with 
a TLF peak from Coble, 1996, Hudson et al., 2008 and Parlanti et al., 
2000. As this analysis had previously been completed by Old et al. 
(2019) and due to the advantages of PARAFAC, namely disentangling 

Sample Sites
Thames and Tributaries
Major towns and cities
Thames Catchment

Fig. 1. Site locations across the River Thames catchment.  
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potential overlapping fluorophores, this TLF contribution data is used in 
subsequent analysis rather than running an addition peak picking al-
gorithm. Further details of PARAFAC modelling can be found in Old 
et al. (2019), and the excitation and emission loading plots from Old 
et al. (2019) can be found in Fig. S1.11. 

2.2.2. Total bacterial cell counts (TCC) 
The samples for TCC analysis were collected in autoclaved poly-

propylene bottles (Read et al., 2015). Flow cytometry (FCM) was then 
used to count total bacterial cells. SYBR Green I stain was used, which 
reacts with bacterial nucleic acids to give off a green fluorescence which 
is detected by FCM. Each sample was then analysed for 1 min at a flow 
rate of approximately 5ul per minute using a Gallios flow cytometer 
(Beckman Coulter, High Wycombe, UK). A 488 nm laser was used, and 
TCC was determined using manually drawn gates in Kaluza 1.2 software 
(Beckman Coulter, High Wycombe, UK) on a cytogram of side scatter vs 
FL1. Further detail can be found in (Read et al., 2015). 

2.2.3. Water chemistry 
The sub-sample was collected in a 125 mL amber glass bottle, which 

was also used for pH and alkalinity analysis. Similar sub-samples for 
calcium, nitrate, total dissolved nitrogen (TDN), ammonia (NH4), so-
dium, potassium, boron, and total dissolved phosphorus (TDP) analysis 
were collected and filtered through 0.45 μm cellulose nitrate membrane 
filter into three 60 mL polypropylene bottles. Unfiltered bulk water 
samples were filtered and soaked overnight in 90 % acetone while stored 
in a refrigerator to extract chlorophyll-a, which was then quantified by 
spectrophotometry. Details of the analytical methods used can be found 
in Bowes et al. (2018). 

2.2.4. Selecting wastewater, groundwater, and in situ microbial indicators 
Single water quality parameters were selected to indicate waste-

water, groundwater (which we assume to be the dominant source of 
baseflow at these sites), and in situ microbial processes that could 

potentially drive TLF dynamics. The selected parameters were informed 
by previous studies (Fox et al., 2017, 2018; Henderson et al., 2008; 
Khamis et al., 2020) and by investigating parameter interrelationships. 
For each site, parameter interrelationships were analysed using Spear-
man's Rank and hierarchical clustering (SI 1.2). Hierarchical clustering 
was performed on the median of the Spearman's rank coefficients across 
all sites, which form four clusters that we consider representative of: 
wastewater (potassium, TDP, boron, sodium), groundwater (nitrate, 
TDN, calcium, pH), microbial (TCC, Chlorophyll-a) and NH4 (shown in 
Fig. 2). Four clusters were chosen for the hierarchical clustering method, 
as additional clusters created single variable clusters. For example, a 5- 
cluster hierarchical clustering algorithm had a fifth cluster consisting 
solely of Sodium. 

Potassium was selected to indicate potential wastewater contribu-
tions of TLF. Potassium consistently clustered alongside other waste-
water variables, such as boron, TDP, and sodium, (Fig. 2; Fig. S1.2). The 
median Spearman's Rank correlation coefficient between potassium and 
TDP was 0.79, additionally the median potassium has a Spearman's 
Rank correlation with SPE of r = 0.760 (p < 0.005). More common 
wastewater indicators like TDN, TDP, and NH4 were not suitable due to 
the variation of tertiary treatment of wastewater across the catchment 
(Bowes et al., 2018). For example, in the River Leach (site T04), TDP has 
no significant correlation with either potassium or ammonium (see 
Fig. S1.2). TDN does not relate to other typical wastewater variables in 
the median correlation matrix in Fig. 2, and rarely does at any individual 
site (Fig. S1.2). The majority of TDN consists of nitrate, with the mean 
proportion between 0.84 and 0.95 across the sites. 

Nitrate was chosen to indicate potential groundwater contributions 
of TLF via baseflow. Nitrate clusters near to and positively correlates 
with other variables associated with groundwater emanating from 
calcareous bedrock such as calcium, and pH (Fig. 2). Furthermore, 
previous research has attributed the vast majority of nitrate inputs to the 
Thames upstream of London to groundwater (Bowes et al., 2018; Stuart 
et al., 2016). Nitrate was chosen over pH and calcium because it had the 

Fig. 2. Correlation Matrix with p values <0.05 of the median Spearman's Rank correlation of each variable across each site and arranged into four clusters using 
hierarchical clustering. 
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weakest correlation with potassium, the chosen wastewater variable. 
The median nitrate, pH and calcium Spearman-rank coefficient with 
potassium were 0.219, 0.242, and 0.317, respectively. 

Finally, TCC and chlorophyll-a measurements were used as in-
dicators of in situ microbial processes potentially affecting TLF. 
Chlorophyll-a measurements were used as an indication of phyto-
plankton biomass (Bowes et al., 2012, 2018) and TCC represented the 
total planktonic bacterial cell counts. 

2.2.5. Disentangling relative contributions of wastewater, groundwater, and 
in situ microbial indicators on TLF dynamics at each site 

The four indicator variables were used as possible predictors in a 
series of linear mixed models (Marchant, 2018) of the temporal varia-
tion of TLF at each site. This model type was chosen as multiple pre-
dictor models will allow for a more detailed understanding and analysis 
of how the different potential sources of TLF vary between sites. 

This model can be written in Eq. (1): 

y = Mβ+ ε, (1)  

where y is a vector of n measured and transformed (see below) TLF 
values, M is an n × q matrix containing the values of q predictor vari-
ables corresponding to the n TLF measurements, β is a vector of q 
regression coefficients and ε is a vector of n residuals. 

In standard linear regression, the linear model residuals are assumed 
to be independent which can lead to the significance of predictors being 
over-stated if the residuals are, in fact, temporally correlated. (i.e. if 
measurements made a week apart, for example, are more likely to be 
similar than those made several months apart). The residuals of a linear 
mixed model are permitted to be temporally correlated and this corre-
lation is accounted for when quantifying the uncertainty associated with 
estimated regression coefficients. The degree of temporal correlation is 
estimated as part of the model fitting procedure. 

In this case we assume that the temporal correlation, C(τ), between a 
pair of measurements made τ time units apart can be represented by a 
nested nugget and exponential function in Eq. (2) (Webster and Oliver, 
2007): 

C(τ) = c0 + c1

(
1 − exp

(τ
a

))
. (2) 

We estimated the three parameters of this function (the nugget 
variance c0, the partial sill variance c1 and the temporal parameter a) by 
maximum likelihood (Marchant, 2018). A Box Cox transformation is 
applied to the TLF data to ensure that the residuals are consistent with a 
Gaussian distribution (Marchant, 2018). This procedure also leads to 
estimates of the linear regression coefficient of each potential predictor 
βi and the corresponding standard error (i.e. the uncertainty) of each of 
these estimates σi (Marchant, 2018). 

The Z-score for each predictor, defined as βi/σi, is a measure of our 
confidence that the true value of βi is not zero. If the true value were 
zero, then the Z-score would be expected to be drawn from a Gaussian 
distribution with zero mean and variance one. Hence, a Z-score value 
with magnitude >1.96 would occur with probability <0.05. When the 
calibrated model leads to a Z-score with magnitude >1.96, the corre-
sponding predictor can be considered to be significant at the p = 0.05 
level. In this paper, we consider the significance of multiple predictor 
variables. In this multiple hypothesis testing situation and the case 
where all the true βi were zero, the probability that at least one Z-score 
had magnitude >1.96 would be >0.05. Bonferroni (1936) showed that if 
q hypotheses were being tested at level p, a threshold on the test statistic 
(in our case the Z-score) based on the p/q level would lead to a con-
servative adjustment for this problem. 

We used an iterative or stepwise modelling procedure to decide 
which predictors should be included in the model for a particular site. 
The initial model included all four potential predictors. This model then 
underwent leave-one-out cross validation and any outliers (defined as 
the measured value being more than four standard deviations from the 

predicted value) were identified and removed. The model was then 
refitted and any predictors with a significant Z-score were included in 
the model. We selected a p level of 0.05. Since the four predictors used in 
modelling were selected from an initial list of 11, we conservatively 
adjusted for multiple hypothesis tests by basing the Z-score threshold on 
a p value of 0.05/11. The resultant threshold was 2.84. 

In addition to the magnitude of the Z-score, the proportion of Vari-
ance Explained (VE) by a predictor can also be seen as a measure of the 
strength of the relationship between that predictor and TLF. We 
approximate the VE of the model by Eq. (3): 

1 −
variance(ε)
variance(y)

. (3) 

Furthermore, we approximate the VE by a single predictor variable, 
as the variance explained by the full model minus the variance explained 
by the full model without the predictor of interest. We note that the VE 
by a model can be negative. This should not occur when all the predictor 
variables are significant, but could occur following the removal of a 
predictor, if that leads to one of the remaining predictors no longer being 
significant. In that case it is possible that the approximate VE is >1. 

2.2.6. Understanding how catchment characteristics influence the drivers of 
TLF dynamics 

Principle Component Analysis (PCA) was used to investigate how 
catchment characteristics, shown in Table S1.1, impacted the relative 
contributions of wastewater, groundwater, and in situ microbial pro-
cesses on TLF dynamics. PCA was conducted using the prcomp function 
in the stats package within R (R Core Team, 2023). 

3. Results 

3.1. Seasonal TLF trends 

Across the catchment, most sites show lower TLF values during the 
winter and higher values during the summer (See Fig. S1.10). Sites T14, 
T04 and T01 are exceptions where there is little variation seasonally, 
evidenced by lower than average variance (T14 = 0.005, T04 = 0.006, 
T01 = 0.003, Median Variance = 0.009). These sites also have a higher 
BFI than average (T14 = 0.723, T04 = 0.865, T01 = 0.842, Median BFI 
= 0.642). Overall, there is also a strong negative correlation between 
TLF variance and BFI (r = − 0.781). 

3.2. Wastewater drivers of TLF dynamics 

There was a statistically significant relationship between the 
wastewater predictor, potassium, and TLF at 17 out of 19 site (Fig. 3). 
Potassium had the highest mean Z-score (9.074) and was the predictor 
with the highest Z-score in 12 models (Fig. 3). There was a trend for 
increasing potassium Z-scores at sites further downstream within the 
catchment (Fig. 3). Potassium also, had the highest median VE explained 
(0.614) and had the highest VE in 13 models (Fig. 4). Models with a 
higher Z-score and VE for the potassium predictor tended to be located 
in sites with higher SPE and more urban land. This is shown on the PCA 
plot (Fig. 5A1–2).On average, sites on the Thames tended to have a 
higher Z-score and VE than on tributaries (Thames median Z-score =
11.3, tributary median Z-score = 5.6, Thames median VE = 0.0588, 
Tributary median VE = 0.0395). An exception to this is at site T18, 
which is a tributary with the highest Z-score and highest SPE (lower left 
of Fig. 5A1 and top right on Fig. 5B2). 

3.3. Groundwater drivers of TLF dynamics 

The groundwater predictor, nitrate, was the second most common 
predictor and was used negatively on all occasions (Fig. 3). Nitrate had 
the second-highest median Z-score magnitude (− 5.32). For six out of 19 
models, the evidence for including groundwater was stronger than all 
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other predictors (Fig. 3). Models which used nitrate had the second 
highest median variability explained (0.123) and tended to be located 
further upstream in the Thames catchment (Fig. 4). Nitrate had the 
highest VE in five out of 19 models (Fig. 4). 

Models with nitrate as a predictor and the most negative Z-scores but 
the higher VE tended to be located in areas with higher BFI and more 
arable land (Fig. 6A1–2). Finally, more negative Z-scores were found on 
tributaries rather than the Thames sites (Thames median z score =
− 2.72, Tributary median z score = − 4.57, Thames median VE = 0.054, 

Tributary median VE = 0.123). These Thames sites had a higher median 
SPE than the tributary sites at 244 and 71, respectively. 

3.4. In situ microbial drivers of TLF dynamics 

The in situ microbial predictors TCC and chlorophyll-a were included 
in seven out of 19 models with median average Z-scores of 3.91 and 
4.74, respectively (Fig. 3). TCC was the predictor with the strongest 
evidence for inclusion in one model (Fig. 3 and Fig. 7A). More models 

Fig. 3. Results of linear mixed models for each site, where TLF is the objective variable and Potassium, Nitrate, TCC and Chlorophyll-a possible predictors. Starting 
with the site furthest upstream and ending with the site further downstream in the catchment. The colour scale denotes the Z-score of the predictor (Z Score < − 2.84, 
Z Score > 2.84), with dark red detonating a positive Z-score near 25, dark blue denoting a negative Z-score near − 25, and white indicating no presence in the model. 
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with statistically significant evidence for inclusion in the model for TCC 
were tributary sites (four versus two). On top of this there was an 
appreciable difference between the median Z-scores of Thames and 
tributary models that use TCC (median Z-Score = 3.74, 4.59). Addi-
tionally, two sites that use chlorophyll-a as a predictor, one is situated on 
the Thames and one is situated on a tributary. 

For VE, TCC has the third highest median VE (Fig. 4) and had the 
highest VE in one out of 19 models again site T01 (Fig. 4). Again, there 
was an appreciable difference between the VE of Thames and tributary 
models (median VE = 0.059, 0.088). Chlorophyll-a VE had the lowest 
median VE across all models (0.018) and didn't have the highest VE for 
any model (Fig. 4). 

The models of Thames sites using TCC were the Thames sites that 
tended to have larger catchment areas and moderate BFI and arable land 

cover, and lower urban land cover and SPE (Fig. 7A). There is also a 
cluster of three of the four models of tributary sites that had lower flows, 
smaller catchments, and more woodland/grassland land cover (Fig. 7A). 
There was no consistent trend for models using chlorophyll-a as a pre-
dictor and catchment characteristics (Fig. 7B). 

4. Discussion 

4.1. Drivers of TLF dynamics and links to catchment characteristics 

Wastewater (estimated using potassium concentrations as a proxy) 
had the strongest evidence for inclusion in models for surface water TLF 
in 63 % of sites and explained the most variance of TLF in 68 %. These 
were generally models for sites with the highest sewerage loading and 

Fig. 4. Results of linear mixed models for each site, where TLF is the objective variable and Potassium, Nitrate, TCC and Chlorophyll-a possible predictors. Starting 
with the site furthest upstream and ending with the site further downstream in the catchment. The colour scale denotes the variance of TLF explained(VE) by each 
predictor in the model with dark orange denoting near 1 VE, yellow indicating a VE less than or equal to 0, and white denoting no occurrence in the model The final 
column contains total model VE. 
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proportion of urban area (Fig. 5). Indeed, there was a strong positive (r 
> 0.7) Spearman's Rank correlations between SPE and potassium Z-score 
and VE. Whilst wastewater was a significant predictor of TLF dynamics 

in all sites, it was in 89 % which supports the traditional view in liter-
ature (Baker et al., 2003; Carstea et al., 2010; Hudson et al., 2007; Old 
et al., 2019). 

Fig. 5. A: Principal component analysis of site characteristics where a colour scale from yellow(0) to red (high) indicates (A1) potassium Z-score and (A2) potassium 
VE. Circular points denote a Thames site and triangular a tributary. Points with an outline indicate potassium has the highest Z-score or VE at that site's model. B: 
Scatterplot of Potassium Z-score (B1) VE (B2) verses SPE. Blue denotes Potassium has the highest Z-score or VE at that site's model. 

Fig. 6. A: Principal component analysis of site characteristics with site points coloured using colour scales according to nitrate mixed linear model results. For A1 a 
colour scale from yellow(near 0) to dark green(− 10) indicates a nitrate Z-score and for A2 a colour scale from red(1) to yellow(0) VE. Circular points denote a 
Thames site and triangular denotes a tributary site. Points with an outline indicate potassium has the highest Z-score or VE at that site's model. B: Boxplots of BFI are 
split into sites that use Nitrate as a predictor and those that don't. 
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Nitrate from groundwater sources had statistically significant evi-
dence for inclusion in the TLF models for 53 % of sites and had the 
strongest evidence for inclusion in models for TLF dynamics in 32 % of 
sites and explained the most variance in 26 %. Indeed, at T04 it was the 
sole variable included in the model for TLF. These sites tend to be further 
upstream where groundwater indices are higher and land use is domi-
nated by arable agriculture (Fig. 6A1–2). These sites are not pristine and 
do all receive some wastewater inputs from Wastewater Treatment 
Works (WwTW) but to a lesser extent than those further downstream. 
Groundwater serves as a negative control on TLF in surface water 
catchments, where higher contributions of groundwater dilute the 
wastewater source. Groundwater typically contains lower amounts of 
dissolved organic matter than surface water (Harjung et al., 2023). 
Furthermore, groundwater DOM is considered to be more recalcitrant 
than surface waters, as more labile DOM is preferentially broken down 
by biotic and abiotic processes as water passes through soils (Roth et al., 
2019). For example, even vulnerable groundwater-derived public water 
sources experiencing frequent faecal breakthroughs in the UK, including 
in the Thames Catchment, had limited evidence of a TLF peak following 
PARAFAC analysis (Sorensen et al., 2018b). This is similar to a previous 
study on this data, which looked at the median data across each site (Old 
et al., 2019). 

Microbial sources emerged as a significant predictor of TLF dynamics 
in 37 % of sites. Phytoplankton biomass was only a significant predictor 
at two sites, and never had the strongest evidence for inclusion in the 
models, despite the seasonal occurrence and subsequent breakdown of 
phytoplankton blooms across the catchment (See Fig. S1.3). Both models 
use the phytoplankton biomass predictor with positive Z-Scores, sug-
gesting a positive relationship between phytoplankton abundance and 
riverine TLF, as seen in marine studies (Chari et al., 2019). However, 
there was no consistent trend between sites that had statistically sig-
nificant evidence for the inclusion of chlorophyll-a in the models and 
catchment characteristics (Fig. 7B, Fig. S1.7). Bacterioplankton abun-
dance (TCC) was used in 32 % of models and had the strongest evidence 
of inclusion in the models in 5 % of models and explained the most 
variance in 5 %. Similarly, for phytoplankton, all had positive Z-Scores, 
again suggesting greater bacterial abundance is related to TLF in the 
river. Importantly, there is a tendency for sites where TCC is a significant 
predictor to have a lower sewage input (Median SPE for sites without 
inclusion of TCC = 244PE/km2, Median SPE for sites with inclusion of 
TCC = 143.2 PE/km2). Also, there was not any trends with other site 
characteristics (Fig. 7a, Fig. S1.6). Indeed, at these sites TCC correlates 
weakly with potassium, thus suggesting that bacterial cells did not 
directly originate from WwTWs. 

Our study demonstrates a balance of processes is at play across most 
sites, as 63 % of site models use more than one predictor despite our 
adjustment to account for multiple hypothesis test. Indeed, the 

consistency or dynamism of the source will influence its dominance in 
the model. For instance, the 37 % of sites (seven models) that only use 
one predictor, six use the wastewater predictor potassium. Two of these 
sites have the largest SPE (T17 = 711PE/km2, T18 = 1522 PE/km2) and 
all surpass the median SPE for all sites (198 PE/km2). Therefore, the 
wastewater source of TLF is likely to be predominant and overshadow 
other sources, processing, or dilution of TLF. This impacts how well we 
can separate out or even find evidence for other less dominant sources. 
For instance, the in situ microbial drivers, are not likely to be constant 
and are highly seasonal. However, when we separate these from 
wastewater, as done in this study, we can see that in situ microbial 
drivers are observed and even can have stronger evidence of inclusion in 
the models when wastewater inputs are lower. Overall, this means the 
relative balance of the sources of TLF are highly dependent on individual 
site characteristics which affect potential for the autochthonous and 
allochthonous dominance of the TLF source (Wilson and Xenopoulos, 
2008). 

Under future environmental and population changes, the drivers of 
TLF may alter in the Thames Basin. The predicted combination of lower 
flows and increased urbanisation may mean a larger input of sewage into 
The Thames, unless alternative disposal pathways are implemented 
(Bussi et al., 2016b; Hutchins et al., 2018; Johnson et al., 2009). This 
could mean an increase in wastewater as a dominant driver of TLF and 
reduced dilution through groundwater, as groundwater contribution to 
river flows is also predicted to decline (Hutchins et al., 2018). Both of 
these processes are likely to increase TLF intensity. Lastly, some of our 
rivers are warming in response to environmental changes (Johnson 
et al., 2009). Further increases in river temperatures combined with 
lower flow could lead to greater riverine microbial activity, resulting in 
microbial processes becoming more important as a driver of TLF dy-
namics (Bussi et al., 2016b; Johnson et al., 2009). In the laboratory 
Elliott et al. (2006) and Fox et al. (2017) both found that increased in-
cubation temperature increased TLF production. Indeed, for algae, Bussi 
et al. (2016b) and Hutchins et al. (2018) concluded environmental, 
population and land use changes will lead to an extended phytoplankton 
growing season on The Thames. Taken together, it is likely that we will 
see an increase in the sources and intensity of TLF in the Thames at its 
tributaries. 

4.2. Limitations and future work 

There are two limitations to using bacterioplankton cell counts as a 
predictor for TLF dynamics. Firstly, laboratory studies have found 
stronger relationships between TLF and certain microbial taxa (Bridge-
man et al., 2015; Fox et al., 2017; Villacorte et al., 2015). Secondly, Fox 
et al. (2017) found the in-situ production of organic matter displaying 
TLF could be better quantified by bacterial activity rather than bacterial 

Fig. 7. Principal component analysis of site characteristics. Blue denotes the site uses A: TCC or B: Chlorophyll-a within the model. Red indicates no occurrence of 
TCC or Chlorophyll-a within that site's model. Circular points denote a Thames site and triangular denotes a tributary site. Points with an outline denote that TCC has 
the highest Z-score at that site's model. 
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enumeration in laboratory experiments. Therefore, it is possible that in 
situ microbial processes may have a more influential impact on riverine 
TLF dynamics than described herein and future work should investigate 
the influence of microbial activity and microbial community composi-
tion on TLF dynamics. 

Furthermore, there are limitations of a weekly data resolution. Short- 
term pulses of TLF fluorophores could be missed, e.g., from precipitation, 
Combined Sewerage Overflow (CSO) pollution or phytoplankton activ-
ity. In situ fluorescence sensors have revealed that pulses of fluorescent 
OM can be driven by precipitation events with less than a week's 
duration (Carstea et al., 2009; Croghan et al., 2021; Khamis et al., 2020), 
notably in response to more short-term precipitation events (Carstea 
et al., 2009). CSO pollution events can last a few hours, frequently in 
response to a WwTWs being overloaded by rainfall or blockages in the 
distribution network (Giakoumis and Voulvoulis, 2023). This means 
short-term pollution events could be missed at weekly sampling reso-
lution, which could have a critical impact on the TLF measurements, as 
research has shown an event like this would have a high TLF signal 
(Baker et al., 2003). 

Many factors play into how quickly a phytoplankton bloom forms 
and how quickly it ends; for example, hydrology (Bowes et al., 2012; 
Hardenbicker et al., 2014; Reynolds and Descy, 1996), temperature 
(Desortová and Punčochář, 2011) and nutrient loading (Bowes et al., 
2012; Tavernini et al., 2011; Wu et al., 2011). Phytoplankton blooms 
can be short-lived and weekly sampling may not adequately capture the 
dynamics of the bloom, missing peaks, and subsequent breakdown 
(Dubelaar et al., 2004; Thyssen et al., 2008). An illustrative case is site 
T01 (see Fig. S1.3), where there seems to be a bloom at the beginning of 
May. However, this is confirmed by only two high data points and the 
data resolution does not capture the subsequent breakdown, during 
which large quantities of organic matter can be mobilised (Stedmon and 
Markager, 2005; Villacorte et al., 2015). Therefore, future work should 
improve the temporal resolution of TLF dynamics during particular 
events such as phytoplankton blooms and/or CSO pollution events. 

When examining the sampling period of the study, the conditions 
were fairly typical for the majority of sites. Across the sites, the median 
percentage difference between mean flow across the sampling period 
and mean flow from National River Flow Archive (NRFA) period of re-
cord was − 5.3 %. However, there were higher flows than the maximum 
previously recorded by the NFRA across the summer and winter of 2012 
(See Fig. S1.8). There was some flooding that occurred in the winter of 
2012 at sites T01 – T12, and spring of 2013 at sites T13-T14, T16-T19. 
Higher seasonal flows across the catchment could have potentially 
altered the relationship found between groundwater and TLF at some of 
the sites. 

5. Conclusions 

Wastewater proxy (potassium) had statistically significant evidence 
of inclusion into the models of riverine dissolved TLF dynamics in 17 out 
of 19 sites of the anthropogenically impacted River Thames, UK. How-
ever, wastewater only had the strongest evidence for inclusion in the 
models of only 63 % sites. Groundwater proxy (nitrate) emerged as 
having the strongest evidence of inclusion in 32 % of site models and 
was included negatively in 53 % of models. Microbial sources (TCC and 
chlorophyll-a) were included positively in the models of seven sites, 
with bacterial cells surpassing wastewater or baseflow as having the 
strongest evidence for inclusion in one site model. Bacterial cell counts 
were utilised in more models than phytoplankton biomass, which was 
only used in two sites, and never had the strongest evidence for inclusion 
in the models, despite the seasonal phytoplankton blooms across the 
Thames site. 

The relative importance of these predictors for the model of each 
site's TLF dynamics was determined by the characteristics of the sites. 
For example, the higher the sewage loading, the stronger the evidence of 
inclusion in the model the wastewater predictor had, with the four site 

models only using wastewater as a predictor having above the median 
SPE in the data set. There was no evidence to suggest that the bacterial 
cells systematically emanate from wastewater treatment works. There-
fore, the bacterial contribution of dissolved TLF may relate to in situ 
processing of organic matter. Our study underscores the complex 
interplay of wastewater, baseflow, and microbial sources, driving TLF 
dynamics in riverine environments, with their influence determined by 
site characteristics. 
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