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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• NO3
− concentrations in groundwater 

mapped at a detailed spatial resolution. 
• The effectiveness of the Nitrates Direc

tive in reducing NO3
− hotspots was 

assessed. 
• Limited success of the Nitrates Directive, 

particularly in Southern Europe. 
• Less than half of NO3

− hotspots in 
groundwater covered by the designated 
NVZs.  
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A B S T R A C T   

Monitoring networks show that the European Union Nitrates Directive (ND) has had mixed success in reducing 
nitrate concentrations in groundwater. By combining machine learning and monitored nitrate concentrations 
(1992–2019), we estimate the total area of nitrate hotspots in Europe to be 401,000 km2, with 47% occurring 
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outside of Nitrate Vulnerable Zones (NVZs). We also found contrasting increasing or decreasing trends, varying 
per country and time periods. We estimate that only 5% of the 122,000 km2 of hotspots in 2019 will meet nitrate 
quality standards by 2040 and that these may be offset by the appearance of new hotspots. Our results reveal that 
the effectiveness of the ND is limited by both time-lags between the implementation of good practices and 
pollution reduction and an inadequate designation of NVZs. Substantial improvements in the designation and 
regulation of NVZs are necessary, as well as in the quality of monitoring stations in terms of spatial density and 
information available concerning sampling depth, if the objectives of EU legislation to protect groundwater are 
to be achieved.   

1. Introduction 

Concern over groundwater nitrate (NO3
− ) contamination from agri

culture led to the establishment of the European Union Nitrates Direc
tive (ND) in 1991, the Drinking Water Directive in 1998 and the 
Groundwater Directive in 2006 (Wuijts et al., 2021). In accordance with 
these framework policies, Member States (MS) are required to address 
excessive NO3

− leaching from areas of intensive agriculture (de Vries 
et al., 2021) by designating areas at risk of NO3

− pollution (≥50 mg L− 1) 
as Nitrate Vulnerable Zones (NVZ). The ND requires the implementation 
of Action Programmes with mandatory measures to reduce NO3

− losses in 
the NVZs, such as limits on nitrogen (N) fertilisation rates, which can be 
effective in reducing NO3

− losses (D’Haene et al., 2014). 
The ND allows MS some flexibility in how to meet the main objective 

of reducing NO3
− pollution (Beusen et al., 2015), leading to variations in 

the criteria for designating NVZs (Arauzo, 2017). The effectiveness of 
NVZs in reducing NO3

− pollution relies on an evidence-based delineation 
(Arauzo et al., 2022) and on implementing strategies tailored to local 
conditions (Quemada et al., 2013). The NVZ delineation depends not 
only on the criteria used but also on (environmental) political ambitions 
(European Commission, 2018) and the administrative difficulties asso
ciated with a partial designation of the territory. Ambitious delineations 
that cover the whole territory are implemented only in 10 MS as of 2023. 
For the remaining MS, it is possible that the NVZs do not cover all of the 
groundwater NO3

− hotspots in groundwater. Despite the long-term 
implementation of the ND and related policies, groundwater NO3

−

pollution remains a challenge with many MS struggling to meet the ND 
standards (European Commission, 2021). While the ND does not 
establish any deadline to meet water quality objectives, good ecological 
and chemical status must be achieved by 2027 according to the Water 
Framework Directive (European Commission, 2021). 

The identification of NVZs (Arauzo et al., 2017; 2022; Cameira et al., 
2021) and groundwater pollution hotspots (Jain, 2023) typically rely on 
index-based conceptual approaches, although simulation models (e.g., 
Szalińska et al., 2018) and other concepts (e.g., grey water footprint; 
Serio et al., 2018) have also been used. There are other index-based 
approaches that mainly focus on the agricultural hazard, groundwater 
vulnerability or the risk of NO3

− contamination. In this context, agri
cultural hazard can be defined as land use ratings for N loads (Kazakis 
and Voudouris, 2015), estimated N surplus (Cameira et al., 2019) or an 
estimated NO3

− concentration in the potential aquifer recharge from 
below the root zone (Serra et al., 2021). Although the impact of other 
sources of hazard on groundwater NO3

− contamination, such as urban
ization/industrialization, which can be large e.g., in China (Zhang et al., 
2020; Huang et al., 2018), is limited in Europe due to a much slower 
expansion of built-up areas and the strong development of sanitation 
infrastructure. The definition of groundwater vulnerability varies be
tween methods (e.g., DRASTIC, susceptibility index) (Fannakh and 
Farsang, 2022) but aims to highlight regions where NO3

− is more likely to 
reach groundwater. The risk of NO3

− contamination is a function of the 
agricultural hazard and groundwater vulnerability (Serra et al., 2021) or 
the risk associated with soil permeability (Arauzo et al., 2022). How
ever, these approaches are unable to directly predict groundwater NO3

−

concentrations, often only providing a qualitative assessment of the risk 
of contamination. The methodologies used to designate NVZs in the 

different countries are also often not transparent with few published 
studies (e.g., England; DEFRA, 2016). 

Recently, machine learning models such as random forests (RF) have 
been applied to predict NO3

− concentration in groundwater (Knoll et al., 
2019, 2020; Karimanzira et al., 2023; Deng et al., 2023; Haggerty et al., 
2023), thus allowing to benchmark NVZs. Using this approach offers a 
threefold advantage: (i) direct prediction (and validation) of NO3

− con
centrations in groundwater, (ii) extending predictions to regions with 
less detailed, scarce or no data and (iii) enhanced large-scale monitoring 
of groundwater NO3

− concentrations, which allows the detection of 
whether the groundwater quality target of 50 mg L− 1 per the ND is being 
met in the designated NVZs. 

Trend analyses of NO3
− concentrations in groundwater are commonly 

based on observations from monitoring stations (Hansen et al., 2012). 
However, monitoring networks may fail to cover all hotspots in Europe 
and not all stations provide complete time series, limiting the quality of 
the analyses. This impacts the effectiveness of the designated NVZs in 
addressing the full extent of hotspots across all Europe. Coupling ma
chine learning algorithms with monitoring networks can uncover un
detected hotspots while providing complete temporal coverage. Here we 
hypothesize that by introducing spatiotemporal predictors into machine 
learning models, we can reduce the spatial and temporal constraints 
imposed by monitoring networks when regulating groundwater quality. 
This enables an enhanced assessment of the effectiveness of the ND in 
reducing groundwater NO3

− hotspots. 
We do this by implementing a random forest (RF) model to predict 

annual NO3
− concentration in groundwater in Europe for the period 

1992–2019 at high spatial resolution (0.04◦x0.04◦; ~3 km × 3 km). We 
use the RF model to (i) generate spatially explicit predictions of trends in 
NO3

− concentrations in groundwater across Europe, starting from the 
implementation of the ND to understand how NO3

− concentrations have 
responded to the national policies and regulations, (ii) assess whether 
the current NVZs cover all the areas threatened by NO3

− pollution, and 
(iii) estimate the necessary reductions in NO3

− concentrations to meet 
water quality standards. By doing so, this study aims to contribute to a 
potential improvement of the effectiveness of water and agri- 
environmental policies. 

2. Methods 

2.1. Combining random forests with monitoring networks 

We implemented a random forest (RF) model to predict annual NO3
−

concentration in groundwater at 0.04◦x0.04◦ in Europe (European 
Union plus Norway, Switzerland and the United Kingdom) for the period 
1992–2019, totalling 835,644 cells. This model was previously used to 
predict annual concentrations in Europe at 10 km × 10 km for 
2000–2010 (Serra et al., 2023a) with a R2 of 0.65 ± 0.08. We improved 
this framework by training the model with stations from the period 
2000–2019 rather than for individual years; that is, a single model was 
used to predict concentrations across Europe. This allowed it to over
come the limitations imposed by a restricted spatial coverage of the 
monitoring stations, which cover only the most problematic areas in 
terms of NO3

− pollution in early years (e.g., 1990s/early 2000s) (Serra 
et al., 2023a, b). 
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We collected data of groundwater monitoring (coordinates, sampling 
date/year, concentration) stations across Europe from the European 
Environmental Agency Waterbase (https://www.eea.europa.eu/data-a 
nd-maps/data/waterbase-water-quality-icm-2). We used the annual 
data for the period 2000–2019 to train the RF model, totalling 238,755 
data points from 23,267 stations. We averaged the annual data for the 
stations containing more than one record per year. 

We extracted data from 152 explanatory predictors (0.04◦x0.04◦) 
that may influence NO3

− concentration in groundwater for each station 
(Table S1). The selection of each predictor was made according to the 
following criteria: (i) the predictor should play a role in NO3

− leaching 
dynamics between below the root zone and the phreatic zone, (ii) the 
original spatial resolution must have been 10 km × 10 km or less, (iii) 
management related predictors that vary annually/seasonally (e.g., 
irrigation, fertilisation) were available for the period 1992–2019 and 
(iv) the predictor was publicly available. We first selected the predictors 
based on previous studies (e.g., Ransom et al., 2022; Ouedraogo et al., 
2019; Serra et al., 2023a; Spijker et al., 2021; Wick et al., 2012) and 
checked whether these were in line with the remaining criteria. Table S1 
shows the final predictors used in the model as well as their rationale for 
their selection. We included the year of simulation and lat
itude/longitude as predictors to better account for spatiotemporal 
variation. We also recognise that some potentially important predictors 
were excluded because they did not meet all the criteria. These included 
wastewater treatment and reuse (available only for the year 2015; Jones 
et al., 2021), N loads from wastewater (available only for the 2010s; 
Vigiak et al., 2020) and sector water withdrawals (e.g., spatial resolution 
of about 50 km × 50 km and timeperiod was only until 2010; Huang 
et al., 2018). 

We partitioned the dataset into training (80%) and testing (20%) 
subsets. The model hypertuning focussed on the number of predictors in 
a decision tree (45, 55 or 65), the number of trees from an out-of-bag 
sample (500, 750, 1000, 1500, 2000 and 3000) and node size (2 and 
5). The best model, based on the lowest out-of-bag mean square error, 
was achieved for 65 predictors, 2000 trees and 2 nodes. 

2.2. Hotspot identification 

We defined hotspot areas as a 0.04◦x0.04◦ grid cell with a predicted 
concentration of above 50 mg NO3

− L− 1 as per the ND. Here we use the 
most recent spatial data of the NVZs (EEA, 2021; Fig. S1) to uncover 
whether these are effectively tackling the most pressing areas in terms of 
groundwater pollution. Although the NVZs have been expanding since 
1991, both in terms of area and spatial coverage as more countries 
joined the EU, EEA (2021) does not specify such data nor were we able to 
source it from elsewhere. We defined two different periods (1992–2003 
and 2004–2019) to perform trend analysis (see below) and quantify 
hotspot areas. The year 2003 was chosen as a break point since some 
countries started to implement the whole territory approach (e.g., 
Austria, Ireland). We acknowledge other important years (e.g., estab
lishment of the monitoring programmes in 2007). Knowing the (i) 
location and area of the hotspots per country and (ii) the designated 
NVZs, we computed the hotspot coverage of the NVZs for a given 
country: 

Hotspotcoverage =

∑2019

i=1992
HotspotsNVZ,i

∑2019

i=1992
HotspotsCountry,i

Eq. (1)  

where i corresponds to each year, HotspotsNVZ (km2) and HotspotsCountry 
(km2) refers to the total area of hotspots in a NVZ and country for the 
period 1992–2019, respectively. 

2.3. Estimating the time and reduction in concentrations required for 
compliance with groundwater quality objectives 

We estimated the time required until hotspots are able to comply 
with the groundwater quality objective of 50 mg L− 1. To do so, we 
selected cells where (i) the NO3

− concentration was above the 50 mg L− 1 

threshold in 2019 and (ii) with a declining trend for the period 
2004–2019 per the Sen’s slope: 

TNR =
(
NHconc,2019 − 50

) /
SS04− 19 Eq. (2)  

where TNR is the time necessary for the reduction until groundwater 
NO3

− concentration complies with the ND (yr), NHconc,2019 is the 
groundwater NO3

− concentration above 50 mg L− 1 that attained a 
declining Sen Slope during 2004–2019 (mg L− 1) and SS04-19 is the Sen 
Slope attained for the period 2004–2019 (mg L− 1 yr− 1). Similarly, we 
quantified the appearance of new hotspots by using current concentra
tions (below 50 mg L− 1) with increasing trends by adapting Eq. (2): 

TNH =
(
50 − Nconc,2019

) /
SS04− 19 Eq. (3)  

where TNH is the time of the appearance of a new hotspot (yr) and 
Nconc,2019 is the groundwater NO3

− concentration below 50 mg L− 1 that 
attained an increasing Sen Slope during 2004–2019 (mg L− 1). We 
complemented this with an analysis of the required annual reduction 
that enables hotspots in 2019 to comply with water quality objectives in 
target years: 2027 (target year of the Water Framework Directive) and 
2040 (long-term horizon): 

NecreductionTY =
(
Nconc,2019 − 50

) /
(TY − 2019) Eq. (4)  

where TY is the target year (2027 or 2040), NECreductionTY is the 
necessary reduction in groundwater NO3

− concentration (mg L− 1) and 
Nconc,2019 is the groundwater NO3

− concentration that attained a 
declining Sen Slope during 2004–2019 (mg L− 1). 

2.4. Uncertainty analysis 

We performed an uncertainty analysis using the hyper-tuned random 
forest model. We focussed on the predictors more directly affected by 
the ND (here referred to as N predictors): the N surplus, total N inputs 
from manure and from fertilisers to crop- and grassland. To explore the 
uncertainty of NO3

− concentrations related to the N predictors, we 
multiplied each predictor by 0.75, 0.9, 0.95, 1.05, 1.1 and 1.25 on a 
yearly basis. We calculated the number of hotspots in each uncertainty 
simulation at the European and national levels and compare those data 
with the baseline. 

2.5. Scenario analysis 

We implemented a scenario analysis where annual NO3
− concentra

tions were predicted using the hyper-tuned model for two different 
scenarios: historical (post Green Revolution) and present. For the his
torical and present scenarios, we averaged the N predictors for 
1961–1990 and 2000–2019, respectively. This aimed (i) to take 
advantage of our predictive approach to explore the impact that alter
native management scenarios may have had on groundwater NO3

−

concentrations and hotspot area at the national scale while (ii) disen
tangling the possible effects of the ND on the N predictors. We recognise 
the implicit impact that the ND may have had on others, such as land use 
(rainfed and irrigated crops) and soil organic carbon. 

2.6. Statistical and trend analyses 

In addition to R2 and root mean squared error (RMSE), the perfor
mance of the final model was evaluated using the modified version of the 
Kling-Gupta Efficiency (KGEM), which includes bias (β), correlation (r) 
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and variability (γ) (Dorado-Guerra et al., 2022): 

KGEM = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (β − 1)2

+ (γ − 1)2
√

Eq. (5)  

where r is the correlation coefficient between the simulation and ob
servations, β refers to the bias, calculated as the ratio between the 
simulated and observed means and γ is the ratio between the coefficient 
of variation of the simulation and observations. 

We carried out trend analysis for the three periods (1992–2003, 
2004–2019 and 1992–2019) at the grid and national/European levels. 
We used the non-parametric Mann-Kendall test at 95% significance level 
to detect significant trends and Sen’s slope to estimate trend magnitude. 
We applied the ANOVA and Tukey test to explore statistical differences 
in the scenarios. We also applied Spearman’s rank correlation coefficient 
as another non-parametric measure of rank correlation to identify 
monotonic functions. We detected outliers in the timeseries of hotspots 
at the national and grid levels using Hample filter as points outside the 
ranged composed by the median ±3 median absolute deviations (Pear
son et al., 2016). 

3. Results & discussion 

3.1. Model performance 

The RF model attained a predictive performance of a R2 of 0.81, a 
RMSPE of 12.7 mg NO3

− L− 1 (hereafter units are only expressed as mg 

L− 1), β of 1.0, γ of 0.85 and a modified Kling-Gupta Efficiency (KGEM) of 
0.77. The overall performance showed two distinct periods over time: it 
first increased until 2010 but then it declined (Fig. 1a). The model 
underperformed between 2011 and 2015 as it was unable to predict high 
concentrations (>200 mg L− 1) in Greece and Italy (Figs. S2–3) as evi
denced by the increase in RMSPE to 30 mg L− 1 in 2014 and the sharp 
decline of KGEM. The most important predictors in the RF model are 
showed in Fig. S4, although it is worth noting that no N predictor was in 
the top ten predictors. 

The marked differences in the performance over time are explained 
by annual differences in the number of data points in the testing parti
tion, as well as their spatial coverage. For instance, the average number 
of data points for the period 2000–2010 (n = 3364) is more than double 
of the period 2000–2019 (n = 1541) (Figs. S5–7). The testing partition 
for the former period also has a wider spatial coverage, while the latter 
mostly focusses on a few countries (Fig. S8). This implies that the pre
dictions may contain biases introduced by differences in the annual data 
points in the model training and subsequent validation in the testing 
partition. Indeed, the number of annual data points in the testing 
partition and the prediction year explained a large portion of the vari
ance of the performance metrics, from 64% concerning the RMSE to 79% 
concerning the KGEM (Table S2). The implications of these biases in the 
predictions are further discussed in section 3.6 of this paper. 

Fig. 1. (a) Annual performance metrics (2000–2019) in the testing partition of the random forest model, namely correlation (r), RMSPE, bias (β), variability (γ), 
modified Kling-Gupta Efficiency (KGEM). The dotted lines represent a generalized additive model for the different performance metrics. 
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3.2. Spatial and temporal patterns of groundwater nitrate concentrations 
in Europe 

Fig. 2 shows the surface area of annual hotspots in Europe, which 
was about 107,000 ± 42,000 km2 yr− 1 (mean ± SD for the period 
1992–2019 hereafter). The area of hotspots in Europe increased at a rate 
of 1219 km2 yr− 1 (CI95%: 212–2226; p = 0.44). The period 1992–2003 
showed a declining trend with a contraction in hotspot area of 2250 km2 

yr1 (CI95%: 5704–1666; p = 0.024). We found a contrasting trend for 
the subsequent period pf 2004–2019 where hotspot area in Europe 
increased 7200 km2 yr1 (CI: 5010–9324; p = 0.001). 

We detected a number of years where the hotspot area in Europe are 
likely overestimated (Fig. 2 and Figs. S9–10), particularly in 1994 
(175,000 km2), 2015 (259,000 km2) and 2018 (142,000 km2). This is 
because the model overestimated groundwater NO3

− concentrations in 
specific regions/countries in some years such as Mediterranean Europe 
(Spain, Italy and Croatia) in 2015 and Eastern Europe (Romania and 
Bulgaria) in 1994 (see below). 

Our simulation identified hotspots scattered across Europe (Fig. 3), 
with four distinct regions standing out: (i) Southern/Mediterranean 
Europe with an emphasis on Spain (e.g., Ebro and Guadalquivir basins) 
and in the coastal regions in Southern Italy and Greece; (ii) North
western Europe, covering the European plains from Normandy (NW 
France) to Denmark; (iii) Central Europe around Austria, Czech Republic 
and Slovakia and (iv) Eastern Europe with a hotspot covering a large 
area of Bulgaria and Romania. 

We compared our predictions with the ND Report for the period 
2016–2019 (European Commission, 2021; Figs. S11–12), which 
revealed some discrepancies in the number of stations, spatial coverage 
and NO3

− concentrations. The dataset from EEA Waterbase has large 
gaps in Normandy (Garnier et al., 2023), an important agriculture hot
spot in France, Hungary, Croatia and Greece, resulting in artificial pre
dictions for these regions due to the lack of ground-truths to train/test 

the model. We were able to ascertain that the model is likely over
estimated in Southern Croatia and showed mixed results in Northeastern 
Europe, correctly identifying two hotspots (Ondrasek et al., 2021; Brkić 
et al., 2021) but also overestimated groundwater NO3- concentrations 
by about 10–15 mg L-1 near the border with Hungary (Brkić et al., 
2019). Concentrations may have been underestimated in the UK, as 
European Commission (2021) reported several monitoring stations with 
concentrations above 50 mg L− 1, while less than 1% of the training data 
here (n = 18,000) exceeded this threshold. This emphasizes that the data 
available from the monitoring stations is itself a major source of un
certainty in the predictions and their ability to reflect reality. In addi
tion, it is difficult to ensure quality control due to measurement 
errors/instrumentation issues and sampling biases. Our findings un
derscore the need for an open access to all sampling points in the EEA 
Waterbase dataset, despite confidentiality restrictions, to improve the 
accuracy and reliability of future predictions (see Section 4 of the Sup
plementary Text). 

Our trend analysis revealed contrasting trajectories of NO3
− concen

trations in groundwater across different regions over three time periods 
(Fig. 4). We found that statistically significant trends, either increasing 
or decreasing, covered an area of 1877,000 km2 (52% of total land area) 
across Europe during 1992–2019. The decreasing trends accounted for 
1698,000 km2 (47%), with reductions below 0.5 mg L− 1 yr− 1 in about 
1600,000 km2. Conversely, we identified increasing trends in 179,000 
km2, 68% of which showed an increase below 0.3 mg L− 1 yr− 1. How
ever, a substantial shift occurred between 1992-2003 and 2004–2019. 
The area with decreasing trends was reduced from 932,000 to 340,000 
km2, while the area with increasing trends expanded 30-fold, from 
28,000 to 839,000 km2, respectively for the two periods. 

We examined the spatial variation in the trends (Fig. 4) and identi
fied an aggravation of NO3

− contamination in the coastal regions around 
the Mediterranean Sea (Spain, France, Italy and Greece) and Eastern 
Europe. In Greece, we found a considerable expansion of areas with high 

Fig. 2. The area of annual hotspots for three periods (1992–2019, 1992–2003 and 2004–2019) and respective Sen’s slopes (±95% CI) are displayed in a) and b), 
respectively. The different lines in a) represent the linear regression with (continuous) and without (dashed) the year 2015. Outliers represent the number of 
countries were outliers were detected in the timeseries of hotspot area. 
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Fig. 3. Groundwater nitrate concentration predicted for snapshot years in Europe at 0.04◦x0.04◦. Hotspots, defined as concentrations above 50 mg L− 1, according to 
the Nitrates Directive, are highlighted in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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Fig. 4. a) Variability distribution of trends in nitrate concentration in groundwater, per the Sen slope, inside and outside NVZs across three different periods: 
1992–2003, 2004–2019 and 1992–2019 using a pseudo logarithmic scale. The spatial distributions (also including all cells) are displayed in b). Non-statistically 
significant trends are displayed with more transparency. 
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rates of increase (>1.5 mg L− 1 yr− 1) of 30,000 km2 (4000 to 34,000) 
between 1992-2003 and 2004–2019, the largest in Europe. We also 
identified a large shift in the trend in Spain where 93,000 km2 attained a 
moderately high increase in NO3

− concentrations (0.3–1.5 mg L− 1 yr− 1) 
during 2004–2019, from 13,000 km2 during 1992–2003. Similar trends, 
although less pronounced, were identified throughout the United 
Kingdom, France and Germany in both periods. 

The Netherlands and Denmark, two key agricultural producers in 

Europe (Van Grinsven et al., 2012), showed an overall reduction in the 
predicted groundwater NO3

− concentrations since the implementation of 
the ND until 2003, followed by an increase in the subsequent years. 
These trends align with previous findings by for the Netherlands (Van 
Grinsven et al., 2016) (e.g., NO3

− concentrations are higher in the sandy 
soils) (Fig. 2) and for Denmark (Hansen et al., 2012). In Belgium, 
Flanders and Wallonia, there were moderate increasing and decreasing 
trends, respectively. 

Fig. 5. a) Spatial variation of total accumulated hotspots over Europe during the period 1992–2019. b) and c) showcase the total accumulated hotspots at the 
European and national levels, respectively. Three spatial units were used: inside the NVZs, outside the NVZs and whole territory approach. The numbers refer to the 
sum of years where a given cell attained concentrations >50 mg L− 1, thus representing unique hotspots. 
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The shift in the trends of the predicted groundwater NO3
− concen

tration, from decreasing after the implementation of the ND until 2003, 
to an increase in the following years, appears to be in line with the trends 
simulated in the hotspots in Europe. Our findings thus raise the question 
of whether similar patterns can also be found inside and outside NVZs 
and whether the NVZs have been successfully covering hotspots in 
groundwater. 

3.3. Are the Nitrate Vulnerable Zones being successful in targeting nitrate 
pollution in groundwater? 

Our trend analysis for the NVZs for two distinct periods (1992–2003, 
2004–2019) and the whole monitoring period of 1992–2019 is displayed 
in Fig. 4. Here we show a limited, and often contrasting, effectiveness 
across all NVZs in Europe. We found significant increasing trends in 
21,000 of the 24,000 km2 of hotspots that attained an increasing trend 
(>0.1 mg L− 1 yr− 1). The largest statistically significant declining and 
increasing trends were also located in the regions inside rather than 
outside the NVZs. The area with increasing trends over 0.3 mg L− 1 yr− 1 

increased almost five times, from 26,000 to 127,000 km2, between 
1992-2003 and 2004–2019. In parallel, areas with reductions higher 
than 0.3 mg L− 1 yr− 1 decreased by more than a factor of five (102,000 to 
16,000 km2). We also found an aggravation of the general trends outside 
the NVZs between these periods. Increasing trends expanded in almost 
145,000 km2 while decreasing trends contracted in almost the same 

proportion (130,000 km2). The trend reversal occurred in a number of 
NVZs across Europe, particularly in NW and Southern Europe. 

The trends varied strongly per country, significantly decreasing over 
the whole period in Portugal, Denmark and the Netherlands and 
increasing in Greece, Croatia and Germany (Table S2). Our results are in 
agreement with the general magnitude and trends identified in NVZs in 
Portugal (Cameira et al., 2021; Serra et al., 2023a,b), Italy (Ducci et al., 
2020; Frollini et al., 2021; Musacchio et al., 2020) and Spain (Arauzo 
and Martínez-Bastida, 2015; Orellana-Macías et al., 2020; Urresti-Estala 
et al., 2016). Nonetheless, assessing the NVZs only based on their trend 
is insufficient given the objective is to reduce the magnitude of hotspots 
to a level below the threshold of 50 mg L− 1. That is, decreasing trends 
are necessary but may be insufficient for NO3

− concentrations in 
groundwater to decline to the point where water quality targets are met. 

We analysed the distribution of hotspots across Europe (Fig. 5). We 
identified 401,000 km2 of unique hotspots in Europe (cells that attained 
a NO3

− concentration of more than 50 mg L− 1 in at least one year). Our 
model revealed that 47% of the hotspots, or 188,000 km2, were outside 
of the designated NVZs in Europe after the implementation of the ND, 
mainly in Spain (54%), Italy (21%) and Greece (11%). The most 
persistent hotspots (>15 years) were often in the vicinities of the 
designated NVZs around the Mediterranean Sea. We highlight Spain (e. 
g., Guadlquivir, Extremadura and Ebro basin), the Italian islands in the 
Mediterranean Sea (e.g., Sicily, Sardinia) and Central/Western Greece. 
Our results agree with the latest ND report for the period 2016–2019 

Fig. 6. Hotspot area inside and outside NVZs, and total per country during the period 1992–2019 in (a) Central Europe, (b) Eastern Europe, (c) Northwestern Europe 
and (d) Southern Europe. The black points represent years where outliers were detected. 
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(European Commission, 2021) that some NVZs appear to be insufficient 
to adequately cover the whole extent of NO3

− hotspots, particularly in 
Hungary, Italy and Spain. 

We computed the area of annual hotspots for each country (Fig. 6). 
Our results show that the Netherlands and Portugal were successful in 
reducing hotspot area by 50% during the period 1992–2019. This is 
indicated by a declining rate of 25 (p = 0.001) and 67 km2 yr− 1 (p =
0.02) for Portugal and the Netherlands, respectively. However, the NVZs 
in Portugal failed to capture 43% of the hotspots. Hotspot area also 
significantly declined in Denmark (p = 0.001) and Belgium (p = 0.01) by 
17 and 12 km2 yr− 1, respectively. 

Spain was the European country with the largest hotspot area 
(48,000 ± 20,000 km2 yr− 1). We estimated a decline in hotspots of 19 
km2 yr− 1 for the entire period but with an increase after 2004 of 1262 
km2 yr− 1 (p = 0.001). We predicted a hotspot area of 12,000 ± 6000 
km2 yr− 1 for Italy, which did not exhibit any significant trend for 
1992–2019. The NVZs in both Spain and Italy, which cover 24 and 15% 
of the country, respectively, contained only 47 and 39% of the hotspots, 
respectively (Fig. 7; Table S3). Our findings suggest that these countries 
could potentially improve their NVZ designations, as recommended by 
European Commission (2021). Conversely, France achieved a hotspot 
coverage of 92% despite no significant trend being detected for the 
entire period. 

Germany obtained a declining trend of 7500 km2 yr− 1 during 
1992–2019 (p = 0.003), suggesting a successful adoption of a whole- 
territory approach. We compared the average hotspot size in Germany 
with Knoll et al. (2020) for the period 2009–2018. Knoll et al. (2020) 
estimated a hotspot size of about 35,000 km2, which is larger more than 
three times higher than our estimate (11,000 km2). The main difference 
can be attributed to a hotspot cluster predicted in the Bavaria region 
(Southeastern Germany) by Knoll et al. (2020), while our predictions 
suggest that these clusters have concentrations in the range 25–40 mg 
L− 1. This may be explained by the improved spatial resolution from 
Knoll et al. (2020) of 1 km × 1 km, which enhances hotspot identifi
cation relative to our predictions of roughly 3 km × 3 km. Nonetheless, 
our model obtained a better performance for Germany (R2 of 0.92, 
RMSE of 8 mg L− 1) than Knoll et al. (2020) (R2 of 0.51, RMSE of 21 mg 
L− 1). Other countries in Central and Eastern Europe, such as Poland, 
Czech Republic, Bulgaria, and Greece, also showed statistically signifi
cant increasing trends. These countries generally achieved a higher 
hotspot coverage than countries in Western Europe (e.g., Portugal, 
Spain). We note, however, the growth in hotspot area simulated in 
Greece, which has increased from 2 to 19,000 km2 between 2008 and 
2019. 

We also highlight some annual outliers that occurred at the grid level 
and have overestimated the hotspot areas at the European and national 

Fig. 7. Hotspot coverage at the national level for MS without a Whole Territory Approach (WTA) implementation for the period 1992–2019. We provide a more 
detailed analysis for selected countries in Mediterranean Europe with relatively low hotspot coverage and/or large NO3

− hotspots: Croatia, Portugal, Spain, Italy and 
Greece. For each country we also provide the averaged NO3

− concentration in groundwater for 1992–2019. 
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levels. These occurred in different specific regions in different years 
(Fig. 6; Figs. S9–10), noted by a large increase in the average ground
water NO3

− concentration followed by a sharp decline in the following 
year (e.g., Croatia and Spain in 2015, Bulgaria in 1994). This was re
flected in the national hotspot area, which sometimes increased more 
than five times (e.g., 750 km2 in 2014–5000 km2 in 2015 in Croatia). 
However, it is unclear whether the outliers are artefacts from a combi
nation of the lack of predictive power of the random forest and/or un
certainty in data inputs and the biases induced by the marked 
differences in the availability of monitoring stations. It is also possible 
that some of these regions contain overlapped semi-confined and 
confined aquifers, for which the data does not specify, further biasing 
the predictions. 

3.4. Exploring the heterogeneous effectiveness of the Nitrate Vulnerable 
Zones 

Here we show that groundwater NO3
− concentrations are not 

declining uniformly across Europe, if at all. We explored the potential 
impact of the ND in N management by conducting scenario and uncer
tainty analyses targeting the N predictors. Our scenario simulations 
using N predictors from the historical (1961–1990) and present 
(2000–2019) conditions did not show any statistically significant dif
ferences (p = 0.73) relative to the baseline in Europe (Tables S4–5). We 
nonetheless found statistically significant differences at the national 
level (Tables S6–7 and Fig. S13). For instance, hotspot area would be 
30% and 15% lower in France and Austria, respectively, if the N pre
dictors stayed the same as during the historical scenario. Contrastingly, 
Portugal and the Netherlands demonstrated the impact of reducing N 
predictors over time as the hotspot area in the historical scenario were 
65% and 45% lower than the baseline, respectively. 

Our uncertainty analysis targeting the N predictors showed similar 
results, with an average uncertainty of − 6%–8% in Europe (Fig. S14), 
but with an unequal spatial distribution as well as differences among N 
predictors (Fig. S15). The combined effect in uncertainty of N predictors 
ranged from negligible (− 2%–2%) to substantial (− 20%–40%. For 
instance, while the N surplus showed a large uncertainty in the 
Netherlands (average ranging between − 15% and 32%), its importance 
was considerably lower in France (− 1%–1%) or Portugal (− 3%–3%). 
This shows the complexity of tackling N contamination through agri
cultural management and supports the conclusion of Klages et al. (2020) 
that there is no unified indicator for N management and water quality, 
requiring a careful examination of local factors. 

The results from the scenario and uncertainty analyses point to a 
mixed effectiveness of the ND in reducing groundwater NO3

− hotspots at 
the European level. There is an untapped potential to further reduce 
hotspot area through N predictors in some countries, while others show 
a much slower response of hotspots to changes in N predictors. We are 
unable to specify the underlying cause for the trends or specifically 
benchmark the implications of the ND in most regions due to current 
data constraints such as of the development of the NVZs over time. 
Doing so would require detailed spatial information about designation 
and expansion dates for the different NVZs and the employment of 
hydrogeochemistry and isotopic characterizations across Europe (Bid
dau et al., 2019). However, the trends in hotspot area across Europe are 
likely to be a combination of factors such as the degree of enforcement 
and ambition of agro-environmental strategies, the impact of the agri
cultural transition into EU markets, time lags of NO3

− pollution 
responding to the implementation of regulations (Vero et al., 2018) and 
even the intensification-extensification dynamics in agriculture (Basu 
et al., 2022). The national implementation of the ND for EU15 only 
occurred in 1998, so the trends showed in Fig. 6 are unlikely to be an 
effect of the ND. Instead, the ND may have resulted in an increased 
awareness of farmers and other stakeholders about the value of N and 
the environmental and economic implications of N overapplication (Van 
Grinsven et al., 2016). This, together with higher N fertiliser prices may 

have translated into the large decline of N fertilisers and N surplus across 
Europe (Van Grinsven et al., 2012) and in the general declining trend of 
the predicted NO3

− concentrations during 1992–2003 (Fig. 6). 
The marked variation in NO3

− concentration trends in Europe is likely 
affected by the different timelines of environmental policies, regulations 
and awareness, institutional factors that constraint groundwater man
agement, in combination with regional geohydrological characteristics. 
In some countries, such as Denmark, these reflect the spillover effects of 
earlier national policies implemented in the 1980s (Dalgaard et al., 
2014). In other countries, particularly those in Eastern and Central 
Europe, the EU accession led to stricter environmental regulations, with 
a time-lag relative to older EU members. Conversely, we show the 
inability of the ND and other environmental policies to reduce NO3

−

pollution in France (Fig. 7), among other countries, where long-term 
declining trends are still insufficient to meet water quality targets. 

Groundwater vulnerability affects the effectiveness of policies and 
management practices in reducing NO3

− contamination (Hansen et al., 
2017). The regions in Europe identified as having high groundwater 
vulnerability (Nistor, 2019) are consistent with those experiencing 
either increasing trends (e.g., France) or unable to significantly decrease 
NO3

− hotspots such as in Spain or Italy. The hydrologic time-lag of 
aquifers could explain why the NO3

− and N surplus hotspots (Batool 
et al., 2022) may not be synchronized across Europe, together with 
systematic errors in the predictors (e.g., geometric distortions, uncer
tainty in key statistical data used to constrain the N predictors and other 
biases implied from model assumptions), and differences in fertiliser 
type and gaseous losses. 

Despite the overall decrease in N surpluses (Batool et al., 2022) and 
increase of the N use efficiency of many cropping systems (Lassaletta 
et al., 2014; Einarsson et al., 2021), we show these were insufficient to a 
widespread decrease of NO3

− contamination. Some regions are still 
experiencing the consequences of unrestrained N application in the 
1960s–1980s as NO3

− accumulates in the vadose zone until reaching the 
water table (Ascott et al., 2017). This can take decades or even centuries 
in deep groundwater (Keuskamp et al., 2012). Long residence times also 
impacts the time-lag until improvements in agricultural practices are 
reflect in groundwater quality (Romero et al., 2016). Conversely, in 
regions with lower time-lags, reaching satisfatory reductions in 
groundwater quality can be achieved through N surpluses below his
torical levels to meet water quality goals established by the ND. 

3.5. Path forward to meet nitrate water quality targets 

Our findings point to an inadequate expansion of the designated 
NVZs in Europe, particularly after 2000. We illustrate how this expan
sion was insufficient to meet the NO3

− water quality objective of 50 mg 
L− 1 in many regions. Although the ND does not establish any deadline 
for water quality objetives, good ecological and chemical status must be 
reached by 2027 per the Water Framework Directive. We show that only 
16% of the 17,000 km2 of hotspots in 2019 that attained a declining 
trend during 2004–2019 are likely to meet water quality standards in 
2027 (Fig. 8a). We estimate that it would take 38 years until 50% of all 
hotspots of 2019 decrease until acceptable levels (<50 mg L− 1). 

Reaching NO3
− quality targets in groundwater by 2027 is likely un

attainable for most regions as it would require an average decrease of 
− 2.4 ± 2.9 mg L− 1 yr− 1 in all hotspots of 2019 (Fig. 8b), rather distant 
from the current increasing rate of 2.6 ± 2.2 mg L− 1 yr− 1. This means 
that 59% (71,000 km2) and 15% (18,000 km2) of current hotspots 
require an annual reduction larger than 1 and 5 mg L− 1 to meet the 
target by 2027, respectively. For 2040, the average annual reduction 
required (− 0.9 ± 1.1 mg L− 1 yr− 1) would be closer to the current situ
ation for hotspots with declining trend (− 0.6 ± 0.8 mg L− 1 yr− 1). 

Here we aim to demonstrate the urgency to implement mitigation 
measures to minimize and maximize the expansion and reduction of 
hotspot areas, respectively. Even if mitigation measures are quickly 
implemented, we show the challenges imposed by the time-lag effect. 
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However, suggesting policy and mitigation measures is outside the scope 
of this study. This requires a detailed examination of the main drivers of 
groundwater N contamination to implement site- and spatially explicit 
mitigation measures (Hashemi et al., 2018) as well as the collaboration 
between stakeholders, which can be challenging to achieve (Iversen 
et al., 2024). 

3.6. Strengths and limitations of this approach 

The predictive modelling approach here developed showed a good 
predictive performance (Fig. 1). Here we demonstrated the usefulness of 
large spatial scale modelling that allows the detection of NO3

− - hotspots 
and respective trends across Europe at different spatial scales, while also 
providing a complete temporal series for each grid cell of groundwater 
NO3

− concentration. The output data here generated can be coupled with 
the predictors to detail the drivers behind groundwater NO3

− concen
trations at the grid level. We acknowledge it is challenging to disen
tangle the drivers of NO3

− hotspots with the level of detail of local studies 
(e.g., Richard et al., 2018; Orellana-Macías et al., 2020) using this 
integrative large-scale approach. However, we argue its usefulness lies 
providing a harmonized overview at the continental scale in unifying 
hotspot detection and the designation of NVZs within the scope of the 
ND, overcoming the lack of standardization among MS. Our model also 
facilitates the assessment of the impact of different climatic and man
agement exercises in terms of groundwater NO3

− - concentration across 
Europe. 

Although useful, this approach also has some limitations that still 
need to be overcome. We highlight the inherent uncertainty and quality 
of input data such as predictors and monitoring networks. Large spatial 
scale datasets seldom quantify and propagate uncertainty (e.g., Puy 
et al., 2023). We consider the data quality from monitoring networks 
collated from Waterbase to be a major limitation as sampling depths are 
often not distinguished and some regions were not adequately covered 

by monitoring stations. Not being able to aggregate concentrations per 
depth can lead to inaccurate predictions, particularly in regions with 
overlaid aquifers (e.g., Brkić et al., 2021). 

Data quality here refers to the spatial and temporal coverage across 
Europe and in a given monitoring site, respectively. Here we show the 
biases introduced by the annual variation in the annual stations avail
able to train and evaluate the model. We demonstrate how the pre
dictions are highly sensitive to the spatial coverage of national 
monitoring networks. In such regions (e.g., Croatia), the predictions 
may be unable to reflect the reality as per the national monitoring 
networks, especially if these differ markedly from the Waterbase data 
(Ondrasek et al., 2021). The extent to which the biases may have 
impacted the spatial predictions depends on several factors, of which we 
highlight the time-lag. Furthermore, it is also yet unclear of the under
lying reasons for the outliers (i.e., overestimations) of groundwater NO3

−

concentrations, but we speculate it is due to a combination of biases in 
the monitoring stations, uncertainty in data inputs and inability to 
properly include overlaid aquifers. 

4. Conclusion 

Here we explored the annual NO3
− concentration in groundwater 

across Europe for the period 1992–2019 using the random forests model. 
Our study reveals widespread hotspots in European groundwater, with 
statistically significant increasing trends in several regions. More 
importantly, our results indicate that only about half of the hotspots 
occur within the NVZs. This strongly suggests a need for additional ef
forts in monitoring and data analysis, and that NVZs may have to be 
substantially expanded in several MS. We highlight Southern Europe as a 
region with persistent hotspots over time, often in the vicinities of the 
currently designated NVZs. 

While the implementation of the Nitrates Directive may have 
contributed to some reductions in hotspots, we demonstrate that 

Fig. 8. a) Distribution of the time required until hotspots with declining trends in 2019 can comply with the water quality goal of 50 mg L− 1. The red dotted line 
represents the years until 2027. b) We explored the distribution of necessary changes that all hotspots in 2019 require to meet the water quality goal by 2027 and 
2040. We also included the distribution of recent declining (grey) and all trends (black) for the period 2004–2019. Both a) and b) use a pseudo logarithmic scale in 
the x axis. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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achieving significant reductions will often be impossible within a short 
time, due to the time-lags of NO3

− contamination. Our predictive 
modelling approach Europe enables a site-specific multi-scaled exami
nation of key regions that may need additional targeted strategies ac
cording to local conditions. This approach can enhance the monitoring 
and mitigation strategies of current MSbut also lead towards a more 
effective implementation of the Nitrates Directive of new MS by 
providing a cost-effective initial assessment of NVZ designation, prior
ities in the establishment of monitoring networks and the tailoring of 
good agricultural practices. 
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