
Supplementary Material 
S1) Nonparametric entropy computation 
We considered and compared two computation methods of nonparametric entropy. The first relies on 

replacing the pdf of equation (5) by a histogram (Beirlant 1997; Wallis 2006, Stone 2015), which we compute 

using GMT (Wessel and Smith 1998). The second is based on the method of M-Spacings, i.e., estimating 

the variability (i.e., probabilities) within the series from differences between its elements rather than bins of 

their values, which was pioneered by Vasicek (1976). This method was later modified and improved by 

multiple researchers, who improved its convergence properties for samples of small size (Beirlant 1997), 

e.g., smaller than N=100. We ignore these modifications because our series are long containing hundreds 

to thousands of elements. Both the histograms and M-spacings methods have one tricky detail, which we 

needed to understand before we could use it in our analysis and compare it to others. For binning, this 

detail is the effect of the bin size of the histogram and its relation to the entropy, as explained in section 

S1.1. Another aspect of histograms we needed to understand is the fact that calculating entropy based on 

histograms (or, equivalently, probability based on relative frequency) underestimates its value. In the M-

Spacings method, we needed to understand the role of the depth of the differencing (i.e., the parameter M 

in equation (9) and (S6) in section S1.2 below), which does slightly affect the computed entropy value.       

 

S1.1) Entropy from histograms 
One way for computing entropy of a continuous random variable is by discrete approximations. The 

approximate entropy, denoted by 𝐻𝐻(∆), is obtained by replacing the integral in (5) by a sum and replacing 

the pdf by a histogram, where the sum goes over all bins. In that case, however, equation (5) does not 
reduce to: 

 𝐻𝐻(∆) =  ∑ 𝑃𝑃𝑖𝑖 ∙ log � 1
𝑃𝑃𝑖𝑖
�𝑖𝑖                  (S1) 

This is because while equation (5) depends on the value of the variable through the increment 𝑑𝑑𝑑𝑑, equation 

(S1) does not. In fact, if the entropy is computed by equation (S1), its numerical value would greatly depend 

on the bin size, ∆𝑑𝑑, and not only on the sample’s probabilities as it should. It can be shown (Cover and 

Thomas 2006, Theorem 8.3.1; Stone 2015; Beirlant 1997; Wallis 2006) that the correct discretization of the 

integral in (5) leads to the following expression for the nonparametric discretized entropy: 

 𝐻𝐻(∆) =  ∑ [𝑃𝑃𝑖𝑖 ∙ log � 1
𝑃𝑃𝑖𝑖
�)𝑖𝑖 ] − log ( 1

∆𝑥𝑥
)               (S2) 

and that the discretized entropy value resulting from equation (S2) is practically independent of the bin size.  

 Finally, it can be shown (Fig S9) that when probability is estimated from relative frequency, entropy is 

underestimated (Stone 2015). Fig S9 presents entropy values computed from a sample of synthetic colored 

noise described in section 4.1 based on a histogram and on the M-Spacings method using (9) with different 

values of M. Clearly, entropy computed by a histogram is underestimated especially for short time series. 

 

 



S1.2) Entropy based on M-spacings 
Another method for computing nonparametric entropy is the so-called “M-Spacings” (Beirlant et al. 1997), 

which is based on the variability within a sample of the RV. One of the first variations of M-Spacings was 

developed by Vasicek (1976), who used the cumulative distribution function (cdf), 𝐹𝐹(𝑋𝑋), and the fact that: 

 1
𝑓𝑓(𝑋𝑋)

≡ 1
𝑓𝑓�𝐹𝐹−1(𝑝𝑝)�

= 𝑑𝑑
𝑑𝑑𝑝𝑝
𝐹𝐹−1(𝑝𝑝)                 (S3) 

where 𝑝𝑝 is the probability, to reformulate the integral of differential entropy, (5), as follows: 

 𝐻𝐻 = ∫ 𝑓𝑓(𝑑𝑑) ∙ log ( 1
𝑓𝑓(𝑥𝑥)

∞
−∞ ) ∙ 𝑑𝑑𝑑𝑑 ≡  ∫ log � 𝑑𝑑

𝑑𝑑𝑝𝑝
𝐹𝐹−1(𝑝𝑝)�1

𝑝𝑝=0 𝑑𝑑𝑝𝑝.          (S4) 

replacing time domain averaging (i.e., weighting the Shannon information by 𝑓𝑓(𝑑𝑑) and integrating from 

minus to plus infinity) by probability-space averaging over all possible probabilities from zero to one. The 

derivative on the right-hand side of (S4) is then replaced by numerical differencing while the cdf is replaced 

by the empirical cumulative distribution function (ecdf), 𝐹𝐹𝑁𝑁(𝑋𝑋), defined as: 

 𝐹𝐹𝑁𝑁(𝑡𝑡) = (𝑡𝑡ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 𝑜𝑜𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒 𝑖𝑖𝑛𝑛 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑠𝑠𝑛𝑛𝑝𝑝𝑒𝑒𝑒𝑒 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑠𝑠𝑛𝑛𝑒𝑒 ≤   𝑡𝑡) 𝑁𝑁⁄       (S5) 

where 𝑁𝑁 is the sample size. For example, if 𝑑𝑑1, 𝑑𝑑2,⋯ , 𝑑𝑑𝑁𝑁 are the sample’s elements (or residual time series 

in our case) and 𝑑𝑑(1), 𝑑𝑑(2),⋯ , 𝑑𝑑(𝑁𝑁) are its order statistics, i.e., the elements of the sample after they are sorted 

in an ascending order, 𝑑𝑑(1) < 𝑑𝑑(2)  ⋯ < 𝑑𝑑(𝑁𝑁), then according to definition (S5), 𝐹𝐹𝑁𝑁(𝑋𝑋(𝑖𝑖−𝑀𝑀)) =  𝑖𝑖−𝑀𝑀
𝑁𝑁

 and 

𝐹𝐹𝑁𝑁(𝑋𝑋(𝑖𝑖+𝑀𝑀)) =  𝑖𝑖+𝑀𝑀
𝑁𝑁

. Thus, equation (S4) can be discretized as: 

 𝐻𝐻𝑀𝑀𝑁𝑁 =  1
𝑁𝑁
∑ log 𝑁𝑁
𝑖𝑖=1 {

𝑋𝑋(𝑖𝑖+𝑀𝑀)−𝑋𝑋(𝑖𝑖−𝑀𝑀) 
𝑖𝑖+𝑀𝑀
𝑁𝑁 − 𝑖𝑖−𝑀𝑀𝑁𝑁

} =  1
𝑁𝑁

 ∑ log � 𝑁𝑁
2𝑀𝑀
�𝑑𝑑(𝑖𝑖+𝑀𝑀) − 𝑑𝑑(𝑖𝑖−𝑀𝑀)��𝑁𝑁

𝑖𝑖=1        (S6) 

where 𝑀𝑀 is a positive integer smaller than 𝑁𝑁 2⁄ . In equation (S6), we used 𝑑𝑑(𝑗𝑗) =  𝑑𝑑(1)  when  𝑗𝑗 < 1 and  

𝑑𝑑(𝑗𝑗) =  𝑑𝑑(𝑁𝑁) when 𝑗𝑗 > 𝑁𝑁. Vasicek (1976) proved the convergence of 𝐻𝐻𝑀𝑀𝑁𝑁 to the true entropy, 𝐻𝐻, for 𝑁𝑁 → ∞,

𝑀𝑀 → ∞ and 𝑀𝑀 𝑁𝑁⁄ → 0. He used equation (S6) to design a statistical test for normality considering that the 

normal distribution has the maximal entropy among all distributions of the same variance. He concluded 

that values of 𝑀𝑀 between 2 and 4 lead to tests of maximal power when using small sample sizes (< 50).  

 If one thinks of the given sample as the discrete function values {�𝐹𝐹𝑁𝑁�𝑋𝑋(𝑖𝑖)�,𝑋𝑋(𝑖𝑖)�;  𝑖𝑖 = 1, 2, 3,⋯ ,𝑁𝑁}, the 

fraction of the middle term in equation (S6) is the slope of this function based on two points only, 

(𝐹𝐹𝑁𝑁(𝑋𝑋(𝑖𝑖+𝑀𝑀),𝑋𝑋(𝑖𝑖+𝑀𝑀)) and (𝐹𝐹𝑁𝑁(𝑋𝑋(𝑖𝑖−𝑀𝑀),𝑋𝑋(𝑖𝑖−𝑀𝑀)), although there are 2𝑀𝑀 + 1 elements of this function between 𝑖𝑖 +

𝑀𝑀 and 𝑖𝑖 − 𝑀𝑀. Several attempts to improve the expression of the slope of the original Vasicek estimator were 

made over the years (Beirlant et al. 1997), which improved of the estimator for small sample size, e.g., 𝑁𝑁 <

100. We ignored these improvements since the sizes of our time series are much larger.  

 Figure S9 presents typical entropy values computed based on one of the 100 simulated noise series 

used in section 4.1, using both the histogram and Vasicek’s M-Spacings methods for several values of 𝑀𝑀. 

The lowest curve (in light blue) is computed from a histogram with a bin size of 0.01 mm. Using bin sizes 

of 0.02 to 0.10 mm changes this curve only very slightly. The other four curves in Fig S9 are computed 

using M-spacings (equation (9) or S6) with 𝑀𝑀 = 1, 2, 4 and 10. The underestimation of the value of entropy 

based on histograms, especially from short time series, is clear and decreases as the length of the time 



series increases. In contrast, the M-spacings’ entropy values are fairly stable as a function of time series 

length, increasing only very slightly with longer time series, but also increase with increasing 𝑀𝑀 value. 

However, the rate of entropy increase as a function of M slows down rapidly as M increases. We found that 

the entropy increase with increasing M value does not affect the estimated minimum-entropy velocity. 

However, it does slightly increase the velocity SD based on equations (14) and (16).  

 Theoretically, Vasicek’s estimator requires a large 𝑁𝑁 and 𝑀𝑀 to converge to the true entropy. On the 

other hand, we found that the smaller M is, the less sensitive is the computed entropy value to deterministic, 

smooth and slowly varying content of the position time series, such as annual and semiannual periodic 

signals and transients. The smaller M is the more efficiently these signals are removed by the differencing. 

We therefore proceeded using Vasicek’s M-spacings methods with 𝑀𝑀 = 1 throughout this paper. 

 

 
Fig S9: Nonparametric entropy values for a typical simulated noise series (2.7 mm white noise and 5 mm 

power-law noise of spectral index -0.9). The lowest (light blue) curve is computed from a histogram with a 

bin size of 0.01 mm. The other four are computed using the M-spacings method with 𝑀𝑀 = 1, 2, 4 and 10. 
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S2) Relevant properties of entropy used in formulating the proposed method 
This section lists and discusses some additional details which complement section 2:   

1) An important information-theoretic measure, related to entropy, is the “Mutual Information” (MI) 

between two random variables (Cover and Thomas 2006, chapter 2). MI is a measure of the statistical 

dependence of one RV on the other. The MI, 𝐼𝐼(𝑋𝑋;𝑌𝑌), of RVs X and Y is related to their entropies by: 

  𝐼𝐼(𝑋𝑋;𝑌𝑌) = 𝐻𝐻(𝑋𝑋) + 𝐻𝐻(𝑌𝑌) − 𝐻𝐻(𝑋𝑋,𝑌𝑌)             (S7) 

where 𝐻𝐻(𝑋𝑋,𝑌𝑌) is the joint entropy of X and Y. If X and Y are independent, their joint entropy is the sum 

of their marginal entropies (see equation (6)) and the MI vanishes. If the two RVs are completely 

dependent to become identical, their entropies become identical and their joint entropy is equal to either 

of their entropies (because if one is given, there is no additional uncertainty introduced by the other), 

thus the MI is equal to the entropy of either variable. Like entropy, MI is measured in bits and can be 

computed nonparametrically from reasonably long data samples of both random variables.  

2) If 𝑋𝑋′ = 𝑔𝑔(𝑋𝑋) and 𝑌𝑌′ = ℎ(𝑌𝑌) are invertible functions of X and Y, then (Stone 2015): 

 𝐼𝐼(𝑋𝑋′;𝑌𝑌′) = 𝐼𝐼(𝑋𝑋;𝑌𝑌)                (S8) 

This equation implies that regardless of how complex is the (linear or nonlinear) relation between two 

RVs, their MI reflects the precise measure of dependence of one on the other. In other words, unlike 

(linear) correlation coefficients, the MI is sensitive to nonlinear dependencies between variables, which 

do not necessarily manifest as covariances. 

3) If a sinusoid with small (several mm) constant amplitude, constant period (e.g., annual) and constant 

phase angle is added to the signal, it does not affect its entropy. This is because entropy is a measure 

of uncertainty (rather than the spread of values), and a constant sinusoid is deterministic and hence 

adds no uncertainty. However, the sinusoids we deal with in geodetic time series are usually modeled 

as: 𝑔𝑔(𝛿𝛿𝑡𝑡) = 𝐴𝐴 ∙ sin(𝜔𝜔 ∙ 𝛿𝛿𝑡𝑡 + 𝛷𝛷) assuming 𝐴𝐴,𝜔𝜔 and Φ are a constant amplitude (mm), angular frequency 

and phase angle, respectively, but 𝛿𝛿𝑡𝑡 is a random timing variable. This latter form of sinusoids is then 

stochastic and hence has a certain nonzero entropy. However, according to (S8): 

 𝐼𝐼(𝛿𝛿𝑡𝑡;𝑔𝑔(𝛿𝛿𝑡𝑡))  =  𝐼𝐼(𝛿𝛿𝑡𝑡; 𝛿𝛿𝑡𝑡)  =  𝐻𝐻(𝛿𝛿𝑡𝑡)            (S9) 

which means that 𝛿𝛿𝑡𝑡 and 𝑔𝑔(𝛿𝛿𝑡𝑡) are stochastically identical, i.e., no additional uncertainty beyond that 

of 𝛿𝛿𝑡𝑡 is introduced by the stochastic sinusoid.   

4) Adding a step discontinuity to the signal increases its entropy and (because entropy is insensitive to a 

bias) the closer the step is to the middle of the series the larger is the added entropy. We assume that 

the locations (but not the heights) of step discontinuities are known based on a pre-analysis. Thus, the 

residual time series can be broken into multiple partial series, one between every two consecutive 

discontinuities. Each partial time series is assigned a probability, 𝑃𝑃𝑖𝑖: 

  𝑃𝑃𝑖𝑖 = 𝑇𝑇𝑖𝑖 𝑇𝑇⁄                   (S10) 

where 𝑇𝑇𝑖𝑖 is the length to the partial series and 𝑇𝑇 is the total length in years. For example, two 

discontinuities at quarter and middle the series divide it to three partial series, two are of length 𝑇𝑇 4⁄  

and the third is of length 𝑇𝑇 2⁄ . Thus, we assign probability 𝑃𝑃𝑖𝑖  =  (𝑇𝑇/4) 𝑇𝑇⁄ = 0.25 to the first two and 𝑃𝑃𝑖𝑖  =



 (𝑇𝑇/2) 𝑇𝑇⁄ = 0.5 to the third. The entropy of each partial series, ℍ𝑖𝑖  , 𝑖𝑖 = 1,2,⋯ ,𝑑𝑑 + 1, where d is the 

number of discontinuities, is computed by (9) and the total entropy of the entire series is computed by:  

 ℍ =  ∑ 𝑃𝑃𝑖𝑖 ∙ ℍ𝑖𝑖
𝑑𝑑+1
𝑖𝑖=1                 (S11)  

5) Entropy can be used for decorrelating colored noise in two steps. First, a nonparametric average 

entropy, ℍ, is computed from the residuals using (9) (and (12) if necessary) as an approximation of the 

entropy rate. This entropy rate accounts for all noises and all correlations within the series. Now, an 

“effective”, uncorrelated (iid) Gaussian RV which has that same entropy is sought. This is achieved by 

substituting its Gaussian pdf, 𝑓𝑓(𝑑𝑑) =  1
𝜎𝜎√2𝜋𝜋

∙ 𝑒𝑒−
(𝑥𝑥−𝜇𝜇)2

2𝜎𝜎2 , in (5) and replacing the base 2 by natural logarithm: 

𝐻𝐻 =  � 𝑓𝑓(𝑑𝑑) ∙ ln (
1

𝑓𝑓(𝑑𝑑)

∞

−∞
) ∙ 𝑑𝑑𝑑𝑑 = −� 𝑓𝑓(𝑑𝑑) ∙ ln (𝑓𝑓(𝑑𝑑)

∞

−∞
) ∙ 𝑑𝑑𝑑𝑑 = −�𝑓𝑓(𝑑𝑑) ∙ {𝑒𝑒𝑛𝑛

1
√2𝜋𝜋𝜎𝜎2

−  
(𝑑𝑑 − 𝜇𝜇)2

2𝜎𝜎2
}  ∙ 𝑑𝑑𝑑𝑑 

         =  1
2

ln(2𝜋𝜋𝜎𝜎2) + 1
2𝜎𝜎2 ∫(𝑑𝑑 − 𝜇𝜇)2 ∙ 𝑓𝑓(𝑑𝑑) ∙ 𝑑𝑑𝑑𝑑 = 1

2
ln(2𝜋𝜋𝜎𝜎2) + 𝜎𝜎2

2𝜎𝜎2
= 1

2
ln(2𝜋𝜋𝑒𝑒𝜎𝜎2)   nats  (S12) 

 To obtain the entropy in bits, the natural logarithm in (S12) is replaced by a base 2 logarithm. Thus, 

 the average entropy, ℍ, can be converted to the SD, 𝜎𝜎𝛿𝛿𝑝𝑝, of an iid Gaussian position noise by: 

  ℍ = 1
2
𝑒𝑒𝑜𝑜𝑔𝑔2(2𝜋𝜋𝑒𝑒𝜎𝜎𝛿𝛿𝑃𝑃2 ) = 2.0471 +  𝑒𝑒𝑜𝑜𝑔𝑔2(𝜎𝜎𝛿𝛿𝑃𝑃)     bits          (S13) 

⟹    𝜎𝜎𝛿𝛿𝑃𝑃  = 1
√2𝜋𝜋𝜋𝜋

2ℍ  ≡ 2(ℍ – 2.0471)                    mm          (S14) 

where the notation 𝜎𝜎𝛿𝛿𝑝𝑝 is used to emphasize that this SD is that of a position change relative to 𝑃𝑃0 and 

not of an absolute position. Computing the SD of a representative residual position by (S14) is 

equivalent to decorrelating the residual position time series. 

 

S3) Velocity estimation by regression with a priori error covariance matrix 
We use four types of simulated noise in this study: (1) A stationary mixture of noise with 2.7 mm white 

(Gaussian) noise (WN) and 5 mm power-law (PL) noise of spectral index 𝑘𝑘 = −0.9; (2) A slightly non-

stationary noise with 2.7 mm WN and 5 mm PL noise of 𝑘𝑘 = −1.1; (3) A slightly non-stationary, similar to 

type (1) but with the addition of random walk (RW) (i.e., 𝑘𝑘 = −2.0) of step size of s=0.1 mm; (4) A 

significantly non-stationary similar to type (3) except that the step size of RW is s=0.5 mm.  

 The a priori covariance matrix for any of these four noise types can be described as (Williams 2003): 

  𝐶𝐶𝑥𝑥 = (2.7 𝑛𝑛𝑛𝑛)2 ∙ 𝐼𝐼𝑁𝑁 + (5.0 𝑛𝑛𝑛𝑛)2 ∙ 𝑅𝑅 ∙ 𝑅𝑅𝑇𝑇 +  𝑒𝑒2 ∙ 𝑆𝑆 ∙ 𝑆𝑆𝑇𝑇         (S15) 

where 𝐼𝐼𝑁𝑁 is the identity matrix of size N (the total number of observations), and: 

  𝑅𝑅 =  

⎣
⎢
⎢
⎢
⎢
⎡
𝜓𝜓0         0           0          0    ⋯    0

  𝜓𝜓1        𝜓𝜓0         0          0    ⋯    0  
𝜓𝜓2        𝜓𝜓1        𝜓𝜓0        0   ⋯     0
𝜓𝜓3        𝜓𝜓2        𝜓𝜓1        𝜓𝜓0   ⋯    0

⋮
𝜓𝜓𝑁𝑁         𝜓𝜓𝑁𝑁−1    𝜓𝜓𝑁𝑁−2      ⋯      𝜓𝜓0 ⎦

⎥
⎥
⎥
⎥
⎤

            (S16) 

where: 

  𝜓𝜓𝑛𝑛 =  Γ(𝑛𝑛− 𝜅𝜅 2⁄ )
𝑛𝑛!  Γ(−𝜅𝜅 2)⁄

               𝑛𝑛 = 0,1,2,⋯ ,𝑁𝑁            (S17) 



and where 𝜅𝜅 is the spectral index of the power-law noise (𝜅𝜅 = −0.9 for type 1, 3 and 4 and 𝜅𝜅 = −1.1 for type 

2) and Γ is the gamma function. For large N (>100), equation (S17) reduces to: 

  𝜓𝜓𝑛𝑛 ≅  𝑛𝑛
(−𝜅𝜅 2⁄  – 1)

Γ(−𝜅𝜅 2)⁄
 .                 (S18) 

The random walk step size, 𝑒𝑒, in equation S10 is zero for type 1 and 2, 0.1 𝑛𝑛𝑛𝑛  for type 3 and 0.5 𝑛𝑛𝑛𝑛 for 

type 4, and 𝑆𝑆 is the square-root of the covariance matrix of the random walk, computed very similarly to 𝑅𝑅 

of equation (S16) except that 𝜅𝜅 = −2.0. 

 Williams (2003) reported that the triangular square-root matrices 𝑅𝑅 and 𝑆𝑆 should be scaled by Δ𝑡𝑡(−𝜅𝜅 4⁄ ) 

before computing the covariance matrix in (S15), where Δ𝑡𝑡 is the sampling interval (1 day in our 

simulations). This scaling, however, distorted the estimated value of the variance of unit weight (i.e., the 

𝜎𝜎�2 = 𝑒𝑒𝑇𝑇𝑃𝑃𝑒𝑒 (𝑛𝑛 − 2)⁄  where 𝑒𝑒 is the regression residual vector). While without the scaling, the variance of unit 

weight in all 100 simulations was very close to a unit as it should be when the noise covariance is accurately 

known, it was significantly different than a unit when the scaling (using Δ𝑡𝑡 = 1 365⁄  years) was done. We 

therefore ignored the scaling (i.e., considered Δ𝑡𝑡 as 1.0 (day) and not as 1 365⁄  (years)).  

 

S4) Why is the M-Spacings entropy a good approximation for the “entropy rate”?  
The results of section 4.1 suggest that the approximation (8) and the choice of (9) lead to the correct results. 

In other words, replacing the entropy rate by a nonparametric, M-Spacings, average entropy, computed 

from the variations within the residual time series, is a good approximation. In this section, we explain how 

we arrived at that approximation and further clarify its numerical advantages.  

 The classical way to proceed using the formal definitions (6) and (7) is by assuming that the stochastic 

process which generates the residual time series is a multivariate normal with a joint pdf: 

  𝑓𝑓(𝑋𝑋) = 1

�√2𝜋𝜋�
𝑁𝑁|𝐶𝐶𝑋𝑋|1 2⁄

𝑒𝑒−
1
2(𝑋𝑋−𝜇𝜇)𝑇𝑇𝐶𝐶𝑋𝑋

−1(𝑋𝑋−𝜇𝜇)             (S19) 

where 𝑋𝑋 = [𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑁𝑁] is the series, 𝜇𝜇 is the mean, 𝐶𝐶𝑋𝑋 is the covariance matrix of the series, and |𝐶𝐶𝑋𝑋| is 

its determinant. This is a commonly used assumption and a reasonable one thanks to the central limit 

theorem. By substituting (S19) in (6), it could be shown that the joint entropy of this multivariate Gaussian 

process is given by (Cover and Thomas 2006, Theorem 8.4.1): 

  𝐻𝐻(𝑋𝑋) = 1
2
𝑒𝑒𝑜𝑜𝑔𝑔|2𝜋𝜋𝑒𝑒𝐶𝐶𝑋𝑋| = 𝑒𝑒𝑜𝑜𝑔𝑔{|2𝜋𝜋𝑒𝑒𝐶𝐶𝑋𝑋|1 2⁄ }    bits           (S20) 

where |2𝜋𝜋𝑒𝑒𝐶𝐶𝑋𝑋| is the determinant of the matrix 2𝜋𝜋𝑒𝑒𝐶𝐶𝑋𝑋.  

 For daily noise series with N=1095, 1825, 2555, 3650, 5000, 6205, 7300, 8395 and 10000 days, and 

given the simulated noise as described in section 4.1, we formed the covariance matrices, 𝐶𝐶𝑋𝑋, of the noise 

according to equations (S15-S18) of section S3 (Williams 2003). For every N, we scaled this covariance 

matrix by the constant 2𝜋𝜋𝑒𝑒 and computed a singular value decomposition of the result, which lead to a 

vector of all its N singular (or eigen) values, Λ = (𝜆𝜆1, 𝜆𝜆2,⋯ , 𝜆𝜆𝑁𝑁). Needless to say, this operation is 

computationally expensive. The determinant of this scaled covariance matrix is then computed by 

multiplying its eigen values, but to avoid numerical issues, the joint entropy is computed by:  



  𝐻𝐻(𝑋𝑋) = ∑ 𝑒𝑒𝑜𝑜𝑔𝑔2�𝜆𝜆𝑖𝑖𝑁𝑁
𝑖𝑖=1                 (S21) 

and the results are shown in Fig S10. Notice the linear relation between the joint entropy, 𝐻𝐻(𝑋𝑋), and the 

number of observations, 𝑁𝑁. This functional relation, as estimated by an Excel spreadsheet, is:   

  𝐻𝐻(𝑋𝑋) = 4.5841𝑁𝑁 − 0.1489               (S22) 

 

Fig S10: Joint entropy for the noise type described in section 4.1, based on the assumption that the 

stochastic process which generates the position time series is multivariate normal. 

 

Table S1: A comparison of entropy rate and the corresponding velocity uncertainty: nonparametric M-

Spacings versus a multivariate normal assumption   

N T 

(years) 

Vasicek (Eq. 8, 9 and 16) Multivariate Normal (Eq. S19, S20, 14 and 16) 

Entropy rate 𝜎𝜎𝑉𝑉 (mm/yr) Entropy rate 𝜎𝜎𝑉𝑉 (mm/yr) 

1095 3 4.3914 1.693 4.5841 1.934 

1825 5 4.4356 1.047 4.5841 1.161 

2555 7 4.4664 0.764 4.5841 0.829 

3650 10 4.4894 0.544 4.5841 0.580 

5000 13.7 4.5200 0.405 4.5841 0.424 

6205 17 4.5486 0.333 4.5841 0.341 

7300 20 4.5623 0.286 4.5841 0.290 

8395 23 4.5755 0.251 4.5841 0.252 

10000 27.4 4.5927 0.213 4.5841 0.212 

H = 4.5841 N - 0.1489
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Substituting the expression (S22) of the joint entropy in (7) results in an entropy rate of 4.5841 bits. Table 

S1 lists the entropy rate values computed based on this expensive, determinant-based, multivariate normal 

assumption and its corresponding velocity uncertainty based on (14) and (16). It also lists the entropy rate 

based on the much more efficient M-Spacing approximation (8) and (9), and its corresponding velocity 

uncertainty. The differences in velocity uncertainty between the two are clearly negligible except perhaps 

for the very short time series, justifying the approximation we made by using (8) and (9). 

 

S5) NGL time series used 
We downloaded the position time series from http://geodesy.unr.edu/gps_timeseries/tenv/IGS14 (Blewitt et 

al, 2018). 

 

The 171 linear and continuous NGL time series (Blewitt et al, 2018) are those of stations: 

AB09  AB25  AB28  AB33  AB41  AB44  AB45  AB46  AC71  AL81  ALCA  ALEB  ALRE  ARDQ  AST1  

AST2  ATQK  AZUP  AZWA  BJAB  BJKA  BJNA  BJNI  BJPA  BJSA  BRFT  BRW1  CBRG  CCGN  CCGS  

CCMK  CHES  CHL1  CHME  CHR1  CN14  CN19  COBK  COFC  CONO  CTI4  DCSO  FLMK  FLWE  

FTS1  GAAY  GOGA  HILO  HNLC  HTCC  IACE  IDNL  IDSS  INSY  ISBS  JCT1  JTNT  KA14  KAR8  

KWJ1  LANM  LOLO  LS01  LS08  LTHM  LUMT  MACM  MAMI  MAUI  MC01  MC04  MDAI  MDSI  MEBA  

MERO  MIDI  MIPR  MOMF  MOWS  MRC1  MTCB  MTCU  MTGW  MTHM  MTLG  MTLO  MTMI  MTOP  

MTPJ  MTZM  NCKI  NCRB  NCSO  NCSQ  NCZO  NDAS  NDDI  NDEL  NDSK  NDST  NEGO  NEOR  

NJBR  NOMT  NYHM  NYIL  NYMC  OHRS ORS1  ORS2  OSPA  P020  P025  P089  P100  P372  P739  

P804  P805  P817  PAFM  PAJP  PATT  PSC1  RIC1  SAV2  SCEB  SCGT  SCHA  SCJR  SCLC  SDSF 

SDWE  SE01  SIDC  SMRT  STB2  STBT  SUP1  SUR1  TLDO  TN23  TN25  TN31  TN35  TN36  TN44  

TN49  TNCU  TXBW  TXMT  TXRP  UTMN  VALY  VARI  VAST  VAWI  VDOT  VITH  VTBE  VTEB  VTHA  

VTSA  VTUV  WASR  WIFH  WLAX  WMEL  WSMN  WVMO  WVS6 

 

The 55 NGL visibly nonlinear but continuous time series are: 

AC37  AC72  ALDS  ALFA  ALLA  ARGS  AZCO  BRI2  CHT1  CIC1  ECSD  EFAY  FLE5  FLE6  GDAC  

GODN  INAS  INAX  INBR  INES  INLN  INMD  INMO  INPD  INRN  INTC  INVI  INWB  INWL  INWN   INWR  

KYDH  KYTC  KYTD  MOAL  MOBE  MOBF  MOBO  MOHS  MOPL  MOSG  OHCB  P049  RG09  TCUN  

TN31  TXL1  VODG  WHP1  WICH  WICR  WIHU  WIKR  WISU  WLNC 

 
The 50 discontinuous but linear NGL time series are: 

ABQ6  ACU5  ALHC  ANP5  ARP7  BAY5  BIL5  CACC  CAE1  CARM  CCV5  CHA1  COF1  COSG  DET6  

DRV6  ENG5  FAI1  FMTS  GAAE  GACU  GWN5  HAC6  HAG6  HDF6  HRN6  HTV5  ILUC  KAR4  KEW6  

KOK5  KYTF  KYW5  MC05  MCD5  MCD6  MCN5  MLF5  MNDT  NCG5  NEB2  OMH5  PAAP  PNB5  

POR8  PPT5  RED5  SAV5  TN1B  TND6 

 

http://geodesy.unr.edu/gps_timeseries/tenv/IGS14

