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Abstract 

We propose a nonparametric minimum entropy method for estimating an optimal velocity from position time 

series which may contain unknown noise, data gaps, loading effects, transients, outliers and step 

discontinuities. Although nonparametric, the proposed method is based on elementary statistical concepts 

familiar to least-squares and maximum-likelihood users. It seeks a constant velocity with a best possible 

(realistic) variance rather than a best variable velocity fit to the closest position data. We show based on 

information theory, synthetic and real data that minimum-entropy velocity estimation: (1) Accounts for 

colored noise without assumptions about its distribution or the extent of its temporal correlations; (2) Is 

unaffected by the series deterministic content such as an initial position and the heights of step 

discontinuities and insensitive to small-amplitude periodic variations and transients; (3) Is robust against 

outliers and, for long time series, against step discontinuities and even slight non-stationarity of the noise; 

(4) Does not involve covariance matrices or eigen/singular value analysis, thus can be implemented by a 

short and efficient software; (5) Under no circumstances results in a velocity variance that decays as 1 𝑁⁄ , 

where 𝑁 is the number of observations. The proposed method is verified based on synthetic data and then 

applied to a few hundred NGL (Nevada Geodetic Lab) position time series of different characteristics, and 

the results are compared to those of the MIDAS (Median Interannual Difference Adjusted for Skewness) 

algorithm. The compared time series include continuous and linear ones used to test the agreement 

between the two methods in the presence of unknown noise, data gaps and loading effects, discontinuous 

but linear series selected to include the effect of a few (1 to 4) discontinuities, and nonlinear but continuous 

time series selected for including the effects of transients. Both the minimum-entropy and MIDAS methods 

are nonparametric in the sense that they only extract the velocity from a position time series with hardly 

any explicit assumptions about its noise distribution or correlation structure. Otherwise, the two methods 

differ in every single possible technical sense. Other than pointing to a close agreement between the 

derived velocities, the comparisons consistently revealed that minimum-entropy velocity uncertainties 

suggest a smaller degree of temporal correlations in the NGL time series than the MIDAS does.   
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1. Introduction 

Consider a position time series of the form: 

  𝑃𝑖  =  𝑃0  + 𝑉 ∙ (𝑡𝑖 − 𝑡0) +  𝜖𝑖 ≡ 𝑃0  +  𝑉 ∙ 𝛿𝑡𝑖 + 𝜖𝑖          (1) 
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where 𝑖 = 1, 2, ⋯ , 𝑁, 𝑡0 is a reference time, 𝛿𝑡𝑖 = 𝑡𝑖  − 𝑡0 is a timing variable defined over the range [0, T] 

years at intervals of ∆𝑡, where (𝑁 − 1) ∙ ∆𝑡 = 𝑇, 𝑃𝑖 and 𝑃0  are positions at times 𝑡𝑖 and 𝑡0 and V is a constant 

velocity. If the noise, 𝜖𝑖, is an independent and identically distributed (iid) random variable (RV) of zero 

mean and a variance of 𝜎2 mm2, linear regression leads to a velocity variance given by (e.g., Rice 1988): 

   𝜎𝑉
2 = 𝜎2 {∑ (𝑁

𝑖=1 𝛿𝑡𝑖 − 𝑡̅)2}⁄ ≡ {𝜎2 (𝑁 − 1)}/⁄ {∑ (𝑁
𝑖=1 𝛿𝑡𝑖 − 𝑡̅)2/(𝑁 − 1)}   (mm/year)2  (2) 

where 𝑡̅ is the mean of 𝛿𝑡𝑖 and the denominator on the right-hand side of (2) describes its variations in 

years2. In the absence of data gaps, the timing variable could be viewed as a uniformly distributed RV (i.e., 

an RV of independent and equally probable values) on the range [0, T], which by definition has a variance 

of 𝑇2 12⁄  years2, and (2) reduces to (see also Zhang et al. (1997)): 

  𝜎𝑉
2 = {𝜎2 (𝑁 − 1)}/⁄ (𝑇2 12⁄ ) = 12𝜎2 {(𝑁 − 1)𝑇2}⁄         (3) 

In position time series, however, the noise is not iid due to temporal correlations and the timing variable is 

not uniform due to randomly occurring data gaps. Thus, (3) leads to biased, optimistic values (Agnew 1992; 

Langbein and Johnson 1997; Zhang et al. 1997; Mao et al. 1999; Williams 2003; Williams et al. 2004; 

Santamaría-Gómez et al. 2011). The power of the temporally correlated noise is concentrated in its low 

frequencies, biasing those of the position and inevitably biasing the estimated velocity relative to what (3) 

suggests. The only way for avoiding this bias is by understanding the colored noise, all its possible sources 

and origins and its interaction with other contents of the position time series (Agnew 1992; van Dam et al. 

2001; Dong et al. 2002; Blewitt and Lavallée 2002; Dong et al. 2006; Ray et al. 2008; Ji and Herring 2011; 

Klos et al. 2018; Santamaría-Gómez and Ray 2021; Gobron et al. 2023; Souza and Monico 2004; Chen et 

al. 2013; Wu et al. 2015; Gualandi et al. 2016; Alevizakou et al. 2018; Bevis et al. 2020; Wang et al. 2021; 

Gao et al. 2022) and attempting to eliminate it. This task, however, is not very easily achievable, and we 

concentrated instead on optimal velocity estimation under these complex circumstances, which get even 

more complex in the presence of loading effects, transients, outliers and discontinuities.  

 Two different approaches to velocity estimation from geodetic position time series have been 

prevalent. The first seeks a secular trend with emphasis on achieving a best possible realistic variance 

(Langbein and Johnson 1997; Zhang et al. 1997; Mao et al. 1999; Williams 2003; Williams et al. 2004; 

Amiri-Simkooei et al. 2007; Williams 2008; Bos et al. 2008; Amiri-Simkooei 2009; Hackl et al. 2010; Blewitt 

et al. 2016; Floyd and Herring 2020, Cucci et al 2023). This is suitable for studying slowly changing 

phenomena such as tectonic motion away from plate boundaries and GIA (Glacial Isostatic Adjustment), 

and is especially suited for reference frame research where longstanding professional wisdom excludes 

reference stations in volatile regions (unless a small minority of them is absolutely necessary). The second 

approach puts the emphasis on estimating a best variable velocity fit to the closest position data (e.g., 

Dmitrieva et al. 2015; Didova et al. 2016; Olivares-Pulido et al. 2020; Engels 2020) rather than on achieving 

a best velocity variance. Such methods, usually based on "short memory", “Markov-type” assumptions, are 

more suited for studying rapidly changing phenomena such as deformations of plate boundaries and other 

volatile regions. Most methods within both approaches involve computationally intensive and time-



consuming investigations for guessing the noise types, and assume certain noise distributions (e.g., 

Gaussian) and correlation characteristics (e.g., power-law, Markov chains).  

 As mapping infrastructure practitioners, our proposed method classifies within the first approach. 

Although nonparametric, it is based on the same elementary statistical concepts familiar to least-squares 

and maximum-likelihood analysts (Montillet and Bos 2020), but differs from most existing methods in 

several respects: (1) It minimizes the entropy (Shannon 1948; Cover and Thomas 2006) of residual 

positions, which is based on their probabilities rather than values, and therefore reflects their “true 

uncertainty” (see section 2). Thus, a minimum-entropy solution is optimal in the sense of minimum true 

uncertainty; (2) Being nonparametric, the proposed method avoids assumptions about the noise distribution 

and its temporal correlations, sparing the user from lengthy investigations for guessing the noise types; (3) 

Because entropy (and hence our method) is based on the probabilities rather than values of the residual 

positions, it is unaffected by deterministic quantities contained in the position time series, such as a bias 

(e.g., a reference position), a constant (e.g., annual) sinusoid, a transient or the heights of step 

discontinuities. Thus, the proposed method ignores their presence rather than investigate and estimate 

them; (4) Entropy is based on the (empirical) probability density function (pdf) of the position time series, 

thus contains a complete description of its stochastic properties including any correlations between its 

elements; (5) It is robust against outliers because their probability is low; (6) The (not necessarily accurate) 

locations of discontinuities are assumed known based on a pre-analysis, but the method is oblivious to their 

heights; (7) It involves no heuristic thoughts or algorithms and neither matrices nor singular/eigen value 

decompositions (see section S4), thus can be implemented by a short and efficient software.   

 Briefly, the proposed method minimizes the entropy of residual positions for estimating an optimal 

velocity, then uses the minimum entropy value for decorrelating the time series before computing velocity 

variance. First, we verify the method based on synthetic data. Then we apply it to a few hundreds of NGL 

daily position time series (Blewitt et al. 2018) of different characteristics, and the resulting velocities and 

their uncertainties are compared to those derived by the MIDAS method (Blewitt et al. 2016).  

 Entropy-based methods, collectively called “information theory”, have been useful for several decades 

(Shannon 1948; Cover and Thomas 2006). Section 2 introduces entropy (also called “Shannon’s entropy”, 

“information entropy” or “Shannon’s measure of information (SMI)” to distinguish it from thermodynamic 

entropy) and lists some of its basic properties which we have exploited for formulating the proposed method. 

The mechanics of minimum-entropy velocity estimation and noise decorrelation are described in section 3. 

Section 4 describes tests of the method on synthetic data, done for understanding: (1) The performance of 

the method in the presence of an unknown but stationary mix of white and colored noises, simulated to 

mimic (but exceed in magnitude) the noise of vertical positions of a typical IGS station; (2) Theoretically, 

entropy (and hence the proposed method) is unaffected by constant sinusoids, but this insensitivity has 

limitations in reality. We try to understand these limitations; (3) The effect of step discontinuities on 

minimum-entropy velocity; (4) The effect of a smooth transient; (5) The effect of non-stationary noise. 

Section 5 describes tests of the proposed method on real data, using 276 NGL medium- to long-duration 



GPS position time series of different characteristics, collected at stations distributed in and around the US. 

Section 6 presents a brief summary.  

More technical aspects are left to the Supplementary Material. Section S1 compares two 

nonparametric entropy computation methods: (1) Replacing pdfs by histograms (Wallis 2006; Stone 2015) 

created using GMT (Wessel and Smith 1998); (2) M-Spacings based on the variability within the time series 

(Vasicek 1976, Beirlant et al. 1997). Section S2 lists more details of entropy properties, some of which are 

based on “Mutual Information”, the second most important information-theoretic quantity. Section S3 lists 

equations used for building covariance matrices of known mixtures of noises (Williams 2003). Section S4 

presents a justification for approximating the entropy rate by the Vasicek (1976) nonparametric M-Spacings 

method. Section S5 lists the IDs of the 276 NGL stations used to test the proposed method and a map of 

their geographic distribution. A short software for minimum-entropy velocity estimation which calls some 

Numerical Recipes routines (sort, medfit, locate, rofunc and select) (Press et al. 2007), is also included. 

 

2. Entropy 

The entropy of a random experiment is a measure of its irreducible true uncertainty. The term “uncertainty” 

is used in this paper in two different contexts. The first and more common measures the spread of values 

of an RV around their mean and is expressed by the variance. The second is based on the probabilities 

rather than values of the RV, and is therefore called “true uncertainty” hereafter. It expresses the “surprise” 

or “new information” brought about by the occurrence of a random event. If the probability of occurrence of 

an event in a random experiment is 𝑝, the surprise experienced when this event occurs or equivalently, the 

true uncertainty about its occurrence just before it occurs, can be quantified as 1 𝑝⁄ . For example, if a biased 

coin lands heads up 90% of the time, the surprise/true-uncertainty of observing a head when this coin is 

tossed can be quantified as 1/0.9 = 1.1 while that of observing a tail is 1/0.1 = 10.0, much larger as it should 

be. Shannon (1948), for reasons explained below, suggested using 𝑙𝑜𝑔 (1/𝑝) instead (called “the Shannon 

information”), and defined entropy, 𝐻, as the average surprise/true-uncertainty: 

  𝐻 =̇ 𝐸{𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 𝑜𝑟 𝑡𝑟𝑢𝑒 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦} = 𝐸{log(1 𝑝⁄ )} =  ∑ 𝑝𝑖
𝑛
𝑖=1 ∙ 𝑙𝑜𝑔(1 𝑝𝑖⁄ )    (4) 

where 𝐸 is the expectation and 𝑛 is the number of all possible independent outcomes of the experiment. 

The logarithm, base 2 in our calculations, was introduced by Shannon (1948) to make entropy additive 

(𝐸{log( 1 𝑝⁄ ∙ 1 𝑞⁄ )} = 𝐸{log(1 𝑝⁄ )} + 𝐸{log(1 𝑞⁄ )}) and to zero it out if there is no surprise/uncertainty, i.e., 

when the probability of one outcome is 1 and of all others is 0 (because according to ĽHôpital’s rule, 

𝑙𝑖𝑚{ 𝑝 ∙ 𝑙𝑜𝑔(1 𝑝)⁄ } → 0 as 𝑝 → 0). When the logarithm is base 2, the unit of entropy is the “bit” and when the 

natural logarithm is used, the unit is the “nat”. The entropy (4) is always positive, equals zero only if there 

is no uncertainty, and increases gently with increasing uncertainty. The entropy of the biased coin example, 

where 𝑛 = 2 (heads and tails), is 0.469 bits (0.1 ∙ 𝑙𝑜𝑔2(10.0)  +  0.9 ∙ 𝑙𝑜𝑔2(1.1)). Had the coin been fair, its 

entropy would have been 1.0 bit (0.5 ∙ 𝑙𝑜𝑔2(2.0) + 0.5 ∙ 𝑙𝑜𝑔2(2.0)), larger because the average uncertainty 

would have been larger. When extended to a continuous RV 𝑥 with pdf 𝑓(𝑥), (4) is replaced by (Cover and 

Thomas 2006, chapter 8): 



  𝐻 = ∫ 𝑓(𝑥) ∙ log (1 𝑓(𝑥)⁄
∞

−∞
) ∙ 𝑑𝑥.            (5)  

 Equations (4) and (5) are useful for explaining the meaning of entropy, but they can only be used in 

the simplest of cases, when the RV is iid, i.e., uncorrelated. In the more realistic cases where the values 

are correlated, e.g., the elements of a residual GPS position time series, they must be “compressed” into a 

sequence of independent values before (4) or (5) can be used. This “compression” is done by introducing 

the “entropy rate”. When each new element of the time series depends to some extent on the previous 

ones, the added uncertainty when we observe a new element decreases as more elements are observed. 

The “entropy rate” is an average entropy which accounts for this decreasing rate of uncertainty.  

 A time series, 𝑋𝑖 , 𝑖 = 1,2, ⋯ , 𝑁 of residual positions can be viewed as the outcome of a continuous 

stochastic process which generates the random vector 𝑋 = [𝑋1, 𝑋2, ⋯ , 𝑋𝑁] with a joint pdf 𝑓(𝑋)  =  𝑓(𝑋1,

𝑋2, ⋯ , 𝑋𝑁) and a joint entropy, 𝐻(𝑋1, 𝑋2, ⋯ , 𝑋𝑁), given by (Cover and Thomas 2006, eq. (8.31)): 

  𝐻(𝑋1, 𝑋2, ⋯ , 𝑋𝑁) = ∫ ⋯
∞

−∞
∫ 𝑓(𝑋1, ⋯ , 𝑋𝑁) ∙ log (1 𝑓(𝑋1, ⋯ , 𝑋𝑁)⁄

∞

−∞
) ∙ 𝑑𝑋1 ⋯ 𝑑𝑋𝑁.   (6) 

The entropy rate of the process is formally defined as (Cover and Thomas 2006, eq. (4.10)): 

  𝐻(𝒳)  =  lim
𝑁→∞

  
1

𝑁
∙ 𝐻(𝑋1, 𝑋2, ⋯ , 𝑋𝑁)           (7) 

where 𝒳 is the “compressed” (uncorrelated) series. Equation (6) states that the residual time series is not 

considered iid. Rather, its correlated elements are assumed drawn from different marginal distributions and 

the joint pdf, 𝑓(𝑋), describes the statistical relations, including correlations, between all these non-iid 

elements, which gives rise to the joint entropy 𝐻(𝑋1, 𝑋2, ⋯ , 𝑋𝑁). Equation (7) states that the “entropy rate” 

is the irreducible average entropy of the correlated series as it grows very long, and to approximate it, one 

must know the joint entropy first. Equations (6) and (7) are formal definitions, difficult to use in practice 

without further assumptions. Common practice follows by making assumptions about the joint distribution 

(e.g., multivariate Gaussian, see section S4) and about the depth of the correlations within the series (e.g., 

Markov chains). We chose a different approach with less explicit assumptions and much smaller 

computational burdens, which we deduced empirically based on synthetic and real residual GPS position 

time series (see also section S4). Notice first that - thanks to the additivity property (i.e., the log in (6)) - had 

the elements of the series been iid, their joint entropy would have been the sum of their identical marginal 

entropies, i.e., 𝑁 ∙ 𝐻, where 𝐻 is the marginal entropy of an element. Assuming that the series is sufficiently 

long to satisfy the limit in (7), e.g., 𝑁 ≫ 30, and substituting this joint entropy in (7) results in an “entropy 

rate” equal to 𝐻. Thus, for an iid time series, entropy and entropy rate are equal. The residuals, however, 

are not iid but temporally correlated and there is no such thing as the identical marginal entropy, 𝐻. We 

empirically found that 𝐻 can be accurately and efficiently replaced by an average entropy, ℍ, computed 

from the variations within the time series, ignoring the possibility that it might not be iid. In other words, we 

approximate the joint entropy, (6), by: 

  𝐻(𝑋1, 𝑋2, ⋯ , 𝑋𝑁) ≅  𝑁 ∙ ℍ             (8) 

where ℍ is an average entropy, computed from the variations within the residual positions, by a 

nonparametric entropy computation method (Beirlant et al. 1997). We considered two of several existing 



such methods (see section S1): (1) Replacing the pdf by a histogram; (2) M-Spacings (Vasicek 1976). We 

chose to proceed using the M-Spacings method of Vasicek (1976) for its simplicity, computational efficiency 

and better accuracy. Vasicek showed, relying on the empirical cumulative distribution function (see 

derivations in section S1.2), that the nonparametric entropy of an iid sample (approximated by a residual 

position time series in our case) can be computed from the variations within its elements by: 

  ℍ =  
1

𝑁
 ∑ log {

𝑁

2𝑀
(𝑥(𝑖+𝑀) − 𝑥(𝑖−𝑀))}𝑁

𝑖=1            (9) 

where 𝑥1, 𝑥2, ⋯ , 𝑥𝑁 are the sample’s elements, 𝑁 is its size, 𝑥(1), 𝑥(2), ⋯ , 𝑥(𝑁) are its order statistics, i.e., its 

elements sorted in an ascending order, 𝑥(1) < 𝑥(2)  ⋯ < 𝑥(𝑁), and 𝑀 is a positive integer < 𝑁 2⁄ . Vasicek 

(1976) obtained optimal results using small values of 𝑀, e.g., 2 and 4. We used M=1, mainly to effectively 

remove the effects of smooth, long periodic content such as annual loading effects and transients. Notice 

that, because entropy is a function of probabilities rather than values, ℍ is a function of differences, i.e., 

variations, rather than the values of the elements of the time series. This is a key to much of what follows, 

and is the reason why entropy is unaffected by additive constants in the series, such as a reference position, 

𝑃0, or an annual sinusoid, 𝐴 ∙ sin(𝜃 + 𝛷), of constant parameters.  

 Let 𝛿𝑡 be a timing RV with entropy 𝐻(𝛿𝑡), 𝛿𝑉 a “velocity” with absolute value |𝛿𝑉|, and 𝜖 a stationary 

noise uncorrelated with other phenomena, then: (Cover and Thomas 2006, Theorems 8.6.3 and 8.6.4): 

 𝐻(𝑃0 + 𝛿𝑉 ∙ 𝛿𝑡 + 𝜖) = 𝐻(𝛿𝑉 ∙ 𝛿𝑡 + 𝜖) = 𝐻(𝛿𝑉 ∙ 𝛿𝑡) +  𝐻(𝜖) = 𝐻(𝛿𝑡) + 𝑙𝑜𝑔2 |𝛿𝑉| +  𝐻(𝜖)  (10) 

Notice that the minimal value of the entropy (10) for general RVs 𝛿𝑡 and 𝜖 is obtained as |𝛿𝑉| → 0.  

 The sinusoids discussed in geodetic time series analysis are modeled as: 𝑔(𝛿𝑡) = 𝐴 ∙ sin(𝜔 ∙ 𝛿𝑡 + 𝛷) 

where the parameters 𝐴, 𝜔 and Φ are usually assumed constants. The presence of the timing RV, 𝛿𝑡, in 

the sinusoid, 𝑔(𝛿𝑡), makes it stochastic which gives rise to a certain nonzero entropy. However, it can be 

shown that 𝛿𝑡 and 𝑔(𝛿𝑡) are stochastically identical (see proof in section S2), i.e., no additional uncertainty 

beyond that of 𝛿𝑡 (already accounted for in (10)) is introduced by the stochastic sinusoid. Thus: 

  𝐻(𝑃0 + 𝛿𝑉 ∙ 𝛿𝑡 + 𝐴 ∙ sin (𝜔 ∙ 𝛿𝑡 + Φ) +  𝜖) = 𝐻(𝛿𝑡)  + 𝑙𝑜𝑔2|𝛿𝑉| + 𝐻(𝜖).     (11) 

This theoretical insensitivity of the entropy of a time series to its periodic content (assuming of course that 

the time series knows the periodic content well, i.e., is long enough to contain several cycles of it (Blewitt 

and Lavallée (2002)) has two limitations. First, theory is based on continuous and infinite RVs while geodetic 

time series are discrete and finite. Second, the parameters of “periodic” loading effects are not exactly 

constants. Nonetheless, these limitations depend on the series length and amplitudes of “periodic” effects, 

and we demonstrate in section 4.2 that, for small amplitudes and long series, (11) is a good approximation.  

 Entropy is robust against outliers because their probabilities are very small (see (5)). If it is still desired 

to protect against huge outliers, the order statistics in (9) could be slightly trimmed on both sides before 

computing their differences. When d step discontinuities are present in the position time series, their 

locations are assumed known based on a pre-analysis. The time series can then be broken into d+1 partial 

series, one between every two consecutive discontinuities. Each partial series is assigned a probability, 𝑝𝑖, 

equal to the ratio of its length to the total length of the entire series. The entropy of each partial series, 

ℍ𝑖  , 𝑖 = 1,2, ⋯ , 𝑑 + 1, is computed by (9) and the total entropy of the entire series by:  



 ℍ =  ∑ 𝑝𝑖 ∙ ℍ𝑖
𝑑+1
𝑖=1 .               (12)  

Because differences rather than values of the elements are used in (9), equation (12) is oblivious to the 

heights of step discontinuities. A slight misidentification of locations of discontinuities in the pre-analysis 

has no effect on the results because entropy is robust to outliers. Unfortunately, however, discontinuities 

still degrade minimum-entropy velocity because as their number increases, the length of partial series 

decreases violating convergence requirements underlying the nonparametric entropy (9) (see section S1.2) 

and weakening its convergence (see also Santamaría-Gómez and Ray 2021 and Gobron et al. 2022).  

 Finally, a residual time series can be decorrelated by relating its entropy (9) (or (12) if discontinuities 

exist) to the variance, 𝜎𝛿𝑃
2 , of an “effective”, uncorrelated, Gaussian RV which has that same entropy (and 

hence the same true uncertainty). This is achieved by substituting the expression for a univariate Gaussian 

pdf in (5) (see full derivation in section S2) and leads to: 

 ℍ =
1

2
𝑙𝑜𝑔2(2𝜋𝑒𝜎𝛿𝑃

2 ) = 2.0471 +  𝑙𝑜𝑔2(𝜎𝛿𝑃)     bits         (13) 

⟹    𝜎𝛿𝑃  = 2ℍ √2𝜋𝑒⁄  ≡ 2(ℍ – 2.0471)                   mm .        (14) 

The notation 𝜎𝛿𝑝 is used because it is the SD of a position change relative to 𝑃0 and not an absolute position. 

 

3. The mechanics of nonparametric minimum-entropy velocity estimation 

A velocity search range of width 𝑑𝑉 mm/year is chosen such that it contains the true velocity. It can be 

designed by fitting a robust line to the longest partial series and bounding its slope, 𝑉0, in a confidence 

interval [𝑉0 − 𝑑𝑉 2⁄ , 𝑉0 + 𝑑𝑉 2⁄ ]. This range is then divided into small equal increments. After experimenting 

with increment sizes from 0.001 to 0.1 mm/year and verifying their insignificant effect on the results, we 

used increments of 0.01 mm/year. Thus, the search range contains 100 ∙ 𝑑𝑉 + 1 equally spaced values, 

one of which is the true velocity. For each value 𝑉𝑟 in this range, a residual time series is defined by: 

 𝑒(𝑡𝑖) =  𝑃(𝑡𝑖) − 𝑃𝑟(𝑡𝑖) ≡ [𝑃0 + 𝑉 ∙ (𝑡𝑖 −  𝑡0) + 𝜖(𝑡)] − [𝑃0𝑟 + 𝑉𝑟  ∙ (𝑡𝑖 − 𝑡0)] 

                    = (𝑃0 − 𝑃0𝑟) + (𝑉 −  𝑉𝑟) ∙ (𝑡𝑖 − 𝑡0) + 𝜖(𝑡𝑖) ≡ 𝛿𝑃0 + 𝛿𝑉 ∙ 𝛿𝑡𝑖 +  𝜖(𝑡𝑖)     (15) 

where 𝑖 = 1,2, ⋯ , 𝑁, 𝑉 is the true, constant (i.e., mean) velocity implicit in the position time series, 𝑃0𝑟 is an 

a priori value of the reference position, 𝑃0, and 𝜖(𝑡) contains the rest of the position time series including 

unknown noise, “periodic” and transient signals and outliers. There is no need for a search range for the 

initial position, 𝑃0𝑟 , because entropy is unaffected by constants. If step discontinuities exist, the series is 

divided into partial series as explained in section 2. The entropy of the residual series is computed using 

(9) (then (12) if necessary) resulting in a sequence of 100 ∙ 𝑑𝑉 + 1 entropies, one per searched velocity 

value. According to (11), the smallest of these entropies, 𝐻𝑚𝑖𝑛, corresponds to the optimal velocity. Equation 

(14) is used to convert this minimal entropy to the SD, 𝜎𝛿𝑃, of an “effective” Gaussian iid position which has 

that same entropy, ℍ = 𝐻𝑚𝑖𝑛, hence reflects the true uncertainty within the position time series. The 

corresponding velocity SD, 𝜎𝑉, is finally computed based on the laws of white noise propagation, by:  

 𝜎𝑉  =  𝜎𝛿𝑃 𝑇⁄        mm/year              (16) 

where T is the total length of the time series in years, during which the position change 𝛿𝑃 occurred. 



4. Tests of minimum-entropy velocity estimation on synthetic data 

4.1 The performance of minimum-entropy velocity estimation with colored and white noise 

The first test on synthetic data considered colored noise. We simulated 100 independent stationary noise 

series of 𝑁 = 10,000 days (or 27.4 years) (see, e.g., Fig S1 (top)), consisting of a combination of 2.7 mm 

Gaussian white noise (WN) and 5.0 mm of power-law (PL) noise of spectral index 𝜅 = −0.9 (Agnew 1992). 

Synthetic position time series were then created by adding each of the noise series to the positions 𝑃𝑖 =

𝑃0 + 𝑉 ∙ (𝑡𝑖 − 𝑡0) at time (day) 𝑡𝑖, 𝑖 = 1,2, ⋯ , 𝑁, where 𝑃0 = 10.0 mm is the true initial position, 𝑉 = −18.0 

mm/year is the true velocity and 𝑡0 is the first epoch of 𝑡𝑖. A velocity search range, [−30.0, −8.0] and 

increment of 0.01 mm/year were used, thus d𝑉 = 22.0 mm/year and the search range contained 100 ∙ 𝑑𝑉 +

1 = 2201 velocity values. Figure 1 shows a typical behavior, a gradual smooth descent, of the 

corresponding 2201 entropies as a function of searched velocity values, converging to a distinct minimum 

(𝐻𝑚𝑖𝑛 = 4.9786 bits, at 𝑉 = −17.80 mm/year in this example), very close to the true velocity. This minimum 

entropy is a measure of the true uncertainty of the position time series at that optimal velocity. Thus, it 

contains a complete description of its stochastic properties including any correlations that may exist within 

it. Equations (14) and (16) are then used to estimate the velocity SD (0.278 mm/year in this example). 

 

 

Fig 1: All 2201 values of the entropy in one of 100 minimum-entropy velocity solutions. The minimum 

entropy value is reached at the minimum-entropy velocity, very close to the true velocity and its value is 

then used to decorrelated the position time series using eq (14). 

 

 For each of the 100 synthetic position time series, we estimated the minimum-entropy-derived velocity, 

its bias (i.e., estimated minus true velocity) and the “effective” velocity SD as obtained from (14) and (16). 



To sum up the results of the 100 solutions, we computed the RMS of the 100 velocity biases and that of 

the 100 velocity SDs. These computations were first done for a time series of length of 10,000 days (or 

27.4 years) and then repeated for time series of 23, 20, 17, 13.7, 10, 7, 5 and 3 years of synthetic data. 

Figure 2 presents the RMS values of the 100 minimum-entropy velocity biases and SDs as a function of 

time series length. It also presents corresponding quantities obtained from linear regressions with properly 

computed covariance matrices of the known noise, based on the equations of section S3 (Williams 2003). 

Notice that the SDs in Fig 2 are realistic, i.e., the velocity SDs of both methods are practically equal to the 

velocity biases. Notice also that, in the presence of a stationary mixture of white and colored (close to 

flicker) noise, the efficient minimum-entropy velocity estimation, while entirely blind to the structure and 

characteristics of the noise, results in velocity estimates (value and uncertainty) which are practically equal 

to those obtained by the (computationally expensive) linear regression with a priori knowledge of the noise.  

 

 

Fig 2: The velocity bias (estimated minus true) and SD from two different methods: (1) Minimum-entropy, 

which is blind to the noise structure and (2) Regression with a priori knowledge of the noise structure. 

 

 When this experiment is repeated using purely white noise of comparable variance ((2.7 𝑚𝑚)2 +

(5 𝑚𝑚)2 = 32.29 𝑚𝑚2), a slightly different patterns emerge. While the velocity bias (i.e., estimated minus 

true velocity) became very small (0.05 mm/year) for N=10,000 days, the estimated velocity SD stays larger 

than the velocity bias, about twice its size (0.1 mm/year), or ~2𝜎, where 𝜎 is the velocity SD derived by 

linear regression. This is due to the fact that variances of minimum-entropy velocity estimation under no 

circumstances decrease proportional to 1 𝑁⁄ . Rather, they are evaluated based on the true uncertainty 

(variability) within the time series. 



4.2 On the insensitivity of entropy to small-amplitude periodic signal 

Because the entropy of residual positions is based on probabilities (i.e., variations within its elements rather 

than their absolute values are used in (9)), any smoothly and slowly (compared to ∆𝑡) varying signal 

contained in the time series, such as annual and a semiannual periodic effects and transients, nearly cancel 

out by the differencing (see also theoretical arguments to this effect in sections 2 and S2). To numerically 

examine the remaining effects (after the differencing) on minimum-entropy velocity estimation, we used a 

13.7-years (or 5000 days) portion of one of the simulated noise series. To this noise, an annual sinusoid 

with amplitude of 7 mm is added. The upper row of Fig 3 shows the pdfs (or smoothed histograms, i.e., 

probability versus bin value in mm) of the noise (right) and the combination of noise plus sinusoid (left). The 

addition of the sinusoid clearly flattens the pdf decreasing its peak by ~25% and increasing its variance by 

~36%, from 53.828 mm2 for the noise alone to 73.616 mm2 after adding the sinusoid. In contrast, the 

lower row in Fig 3 presents smoothed histograms of the corresponding weighted “Shannon information”, 

i.e., 𝑝 ∙ 𝑙𝑜𝑔2(1 𝑝⁄ ), of the noise (right) and combination of noise and sinusoid (left), clearly showing that it 

(and hence the entropy) dilutes the effect of the sinusoid. While the entropy of the noise alone based on (9) 

 

 
Fig 3: (Top right) Smoothed histogram (i.e., probability versus binned value in mm) of 10 years of simulated 

position noise (2.7 mm WN plus 5.0 mm power-law noise with spectral index k=-0.9); (Top left) The 

smoothed histogram of the above noise plus an annual sinusoid of amplitude 7 mm; (Bottom right) The 

weighted Shannon information (𝑝 ∙ 𝑙𝑜𝑔2(1 𝑝⁄ )) of the same noise; (Bottom left) The weighted Shannon 

information of the same noise and annual sinusoid 

 



is 4.50 bits, that of the combination of noise and sinusoid is 4.72 bits, only 5% larger, increasing the velocity 

uncertainty (see (14) and (16)) by 0.06 mm/year and practically causing no change in the estimated velocity 

value. In addition, the effect of the added sinusoid on velocity uncertainty decreases with increasing series 

length, reaching 0.04 mm/year for a series 27.4 years long. However, the effect of an added sinusoid 

increases with increasing amplitude. For a 27.4-years long daily time series, although the addition of a 

sinusoid of amplitude 20 mm quadruples the variance of the time series, it increases its entropy by only 

20%. This has a negligible effect on minimum-entropy velocity, but doubles the minimum-entropy velocity 

SD, from 0.2 mm/year to 0.4 mm/year. For a series 13.7-years long, this effect is similar except that the 

velocity SD goes from 0.4 to 0.8 mm/year. 

 

4.3 The effects of transients, discontinuities and non-stationary noise 

To understand the effect of smoothly varying nonlinearities on minimum-entropy velocity estimation, we 

created 100 synthetic position time series of the form 𝑃𝑖  =  𝑃0 + 𝑉 ∙ (𝑡𝑖 −  𝑡0) +
1

2
∙ 𝑎 ∙ (𝑡𝑖  − 𝑡𝑁 2⁄ )

2
+  𝜖(𝑡𝑖), 

where a=0.3 mm/year2, 𝑡𝑁 2⁄  is the timing variable at the middle of the series and 𝜖(𝑡) is the simulated 

mixture of white and power-law noise described in section 4.1. The nonlinear part of the synthetic positions 

(i.e., 
1

2
∙ 𝑎 ∙ (𝑡𝑖 − 𝑡𝑁 2⁄ )

2
) is shown in the top of Fig S2. The green curve in the middle of Fig S2 presents this 

part immersed in the colored noise of one of the 100 previously mentioned simulated noise series and the 

red curve is its smoothed value. The latter, added only to bring out the colored character of the noise, is 

computed using an edge detecting filter known as “the weak elastic string” (Saleh 1996). Figure 4 presents 

the RMS values of velocity biases and SDs resulting from the 100 nonlinear, synthetic position time series. 

It also shows corresponding results when the underlying motion model is linear (i.e., 𝑃𝑖  =  𝑃0 + 𝑉 ∙

(𝑡𝑖 − 𝑡0) + 𝜖(𝑡𝑖)), which was previously verified and presented in Fig 2. As in the case of small-amplitude 

“long-periodic” signals, the fact that entropy is based on probabilities (i.e., differences in (9)) dilutes the 

effect of the a nonlinear transient. In addition, the smaller the value of M parameter is (we used the minimal 

possible value of M=1), the more effective is the removal of transient effects. Therefore, the difference 

between the estimated velocity values in both cases is small, reaching 0.15 mm/year for 3-year long time 

series and decreasing with series length (Fig 4). As expected, however, the effect of the nonlinearity inflates 

minimum-entropy velocity uncertainty for very long time series. The velocity uncertainty reaches 0.35 

mm/year for a 27.4 years long series when the transient is present but reaches only 0.2 mm/year when the 

series is linear. In summary, transient motion could slightly inflate the estimated velocity uncertainty for very 

long time series and slightly bias estimated velocities for short time series. 

 Discontinuous time series are not stationary but increment-stationary (i.e., their differences are 

stationary). Thus, the question arises whether (9), which is based on differences, can still be used to give 

a good approximation of the entropy rate of such series. Unfortunately, unless the heights of the step 

discontinuities are much larger than the combined effect of the noise and slope, the answer is negative. 

This is because when the series is sorted in preparation for applying (9), some noise, step functions and 

change due to the slope get scrambled, inflating the resulting entropy value (see also Santamaría Gómez 



 

Fig 4: RMS of velocity bias and velocity standard deviation (SD) based on 100 independent simulated noise 

sequences, both derived by minimal-entropy velocity estimation, for linear and nonlinear position time 

series. The 100 linear position time series are constructed by  𝑃𝑡  =  𝑃0 + 𝑉 ∙ (𝑡 −  𝑡0) + 𝜀(𝑡) using 100 

independent noise series, 𝜀(𝑡), consisting of combinations of white and power-law noise. The nonlinear 

series are similar except that 𝑃𝑡  =  𝑃0 + 𝑉 ∙ (𝑡 −  𝑡0) +
1

2
∙ 𝑎 ∙ (𝑡 − 𝑡𝑁 2⁄ )

2
+  𝜀(𝑡), where a=0.3 mm/year2 

 

and Ray (2021) and Gobron et al. (2022)). A simple way for preventing this scrambling is by dividing the 

series into partial series, one between each pair of consecutive discontinuities. The entropies of the partial 

series are computed by (9), the entropy of the entire time series is computed by (12), and velocity estimation 

continues as done for a continuous time series. Figure 5 presents the RMS values of velocity biases and 

SDs based on the 100 synthetic linear position series used in section 4.1. It presents solutions for 2 cases, 

both computed by the minimum-entropy method: (1) Continuous position time series, which were previously 

verified and presented in Fig 2; (2) Same position time series except with one discontinuity (of irrelevant 

height) at the middle of the series. Fig 6 is very similar except that it considers the effect of 2 discontinuities 

at the middle and three quarters of the series. These tests reveal that the presence of discontinuities hardly 

affects minimum-entropy velocity uncertainties because, even when discontinuities exist, it is still computed 

based on the variability within the entire time series. Unfortunately, the effect of discontinuities on the 

estimated velocity value is more complex. Discontinuities divide the series to shorter pieces than the 

complete series, which violates the convergence requirements of (9) and weakens its convergence to the 

true entropy, slightly biasing the location of the minimum value of (11), and slightly increasing the velocity 

bias with every additional discontinuity. As expected, these additional biases decrease with increasing 

series length. 



 

Fig 5: RMS values of velocity bias (i.e., minimum-entropy-derived minus true velocity) and standard 

deviations (SDs) based on 100 simulated noise series, for 2 cases, both computed using the proposed 

minimum-entropy method: (1) Continuous position time series and (2) Position time series with one 

discontinuity (of irrelevant height) in the middle of the time series   

 

 

Fig 6: RMS values of velocity bias (i.e., minimum-entropy-derived minus true velocity) and standard 

deviations (SDs) based on 100 simulated noise series, for 2 cases, both computed using the proposed 

minimum-entropy method: (1) Continuous position time series and (2) Position time series with two 

discontinuities (of irrelevant heights), at the middle and at three quarters of the time series 



 We finally examine the performance of minimum-entropy velocity estimation in the presence of non-

stationary noise. To this end, we simulated three noise types: (see also Fig. S1 and section S3): (1) A 

slightly non-stationary noise with 2.7 mm WN and 5 mm PL noise of spectral index 𝑘 = −1.1 ; (2) A slightly 

non-stationary noise similar to that described in section 4.1, namely consists of 2.7 mm WN and 5 mm PL 

noise of 𝑘 = −0.9, but with the addition of random walk (RW) (i.e., 𝑘 = −2.0) of step size 𝑠 = 0.1 𝑚𝑚; (3) A 

significantly non-stationary noise similar to that of (2) except that the RW step size is 𝑠 = 0.5 𝑚𝑚. For each 

noise type and for each of the lifespans of 3, 5, 7, 10, 13.7, 17, 20, 23 and 27.4 years, 100 daily noise time 

series were simulated independently and used to create synthetic position time series based on known true 

reference position and velocity. The velocity estimation from each synthetic series was first computed for 

noise type 1 (Fig 7 (top)), then repeated for noise type 2 (Fig 7 (middle)) and 3 (Fig. 7 (bottom)). For each 

lifespan, an RMS of the 100 velocity biases (estimated minus true velocity) and that of the 100 velocity SDs 

were computed, first using minimum-entropy, which is unaware of the noise characteristics, and then using 

regression with proper covariance matrices computed as described in section S3 (Williams 2003).  

 We know that information theory guarantees the existence of the limit in (7) only for a stationary 

stochastic processes (Cover and Thomas 2006, Theorem 4.2.1). So, we already know based on theory that 

minimum-entropy velocity estimation is likely in error when the noise is non-stationary. What we did not 

know before these simulations is the size and characteristics of that error. The results, presented in Fig 7, 

provide some estimates and insights. Note first that as usual, the regression solution in Fig 7 is included to 

provide a best-known estimate, a standard for measuring the performance of the minimum-entropy 

solutions. The results of these simulations suggest that as the noise of the position time series gradually 

becomes less stationary, from type 1 to 2 to 3, the minimum-entropy derived velocity slowly and slightly 

diverges away from the truth. For noise types 1 and 2, which are only slightly non-stationary, the minimum-

entropy velocity estimation bias reaches 0.2 mm/year for short (< 8 years) time series and decreases slowly 

as the series length increases until it almost disappears for very long (> 20 years) series. For significantly 

non-stationary noise such as that of type 3, although the minimum-entropy velocity bias also decreases 

with time series length, it still reaches 0.4 mm/year even for very long series. Unfortunately, the minimum-

entropy derived velocity uncertainties are under estimated by a factor of ~2 for noise types 1 and 2, and a 

factor of 3 to 5 for a noise of type 3. This is because minimum-entropy estimation is based on the 

assumption of stationarity. Although the underestimation of velocity uncertainty does improve slowly with 

increasing time series length, the improvement is slower if random walk is present in the noise. 

 

 



 

Fig 7: Minimum-entropy and regression estimated velocity bias and its standard deviation in mm/year in the 

presence of 3 different nonstationary noise types: (top) Noise type 1; (middle) Noise type 2; (bottom) Noise 

type 3 (see descriptions of noise types in section 4.3) 

 

5. Application of minimum-entropy estimation to real data and comparison to the MIDAS algorithm 

We selected 276 daily NGL position time series (Blewitt et al. 2018) from stations distributed mainly over 

the US (see section S5 for a station list). We initially chose these stations because of their geographic 

locations and because they had only one GPS antenna throughout their history, which was chosen to be 

longer than 3 years. However, we found that the time series can be divided into 3 groups. The first includes 

171 stations with continuous and linear time series (Fig S3 and S4), the second includes 55 stations with 

nonlinear transients but no discontinuities and the third includes 50 stations which had experience one to 

four discontinuities in their history (although they had only one antenna). These time series were processed 

by the MIDAS algorithm (Blewitt et al. 2016) and the minimum-entropy method and velocities and their 

uncertainties were compared. It is worth mentioning that both methods, the minimum-entropy and MIDAS, 

are nonparametric velocity estimators in the sense that they extract only the velocity from a position time 



series with hardly any explicit assumptions about its noise distribution or correlation structure, thus both are 

efficient. Otherwise, however, the two methods differ in every single possible technical sense.  

 Figure 8 presents the differences between the estimated velocities (minimum-entropy minus MIDAS) 

versus time series lifespan in years showing that, in the great majority of cases, they are smaller than the 

minimum-entropy velocity uncertainty. Figure 9 presents histograms of the velocity differences (mean: -

0.002, 0.009 and 0.002; RMS: 0.118, 0.136 and 0.322 mm/year for the East, North and Up components, 

respectively). Figure 10 presents velocity uncertainties versus time series lifespan for both methods on a 

log-log plot (log base 2) showing that, as expected, the uncertainties cluster linearly in time. In addition, the 

uncertainties derived by both methods are similar for short time series (< ~5 years). However, the minimum-

entropy linear clusters, in all components, exhibit larger slopes than the MIDAS ones. Assuming that the 

noise is dominated by power-law characteristics (Agnew 1992), these larger slopes imply that the minimum-

entropy method senses smaller/shorter temporal correlations (i.e., more “whiteness”) within the noise than 

the MIDAS does (see, e.g., Fig 1 in Williams (2003)). In other words, while both methods lead to similar 

velocity uncertainty for short time series, their uncertainties for long time series differ significantly, almost 

by a factor of 2. It is also worth noting that, based on the simulations with non-stationary noise of section 

4.3, the fact that both methods result in similar uncertainties for short time series most likely suggests that 

random walk is absent in the examined NGL time series. Had even the smallest random walk behavior 

been present, minimum-entropy velocity uncertainties would have been significantly underestimated.  

 The second group of analyzed NGL time series includes 55 stations with visible nonlinearities but no 

discontinuities. Although simulations in section 4.3 showed that transients inflate minimum-entropy velocity 

uncertainty for long time series, comparisons to MIDAS uncertainties (Fig S5) still revealed similar patterns 

to those of Fig 10, namely, the minimum-entropy method senses whiter noise than the MIDAS. Since most 

of the nonlinear behavior occurred in the vertical component, the histogram of its velocity differences is 

multimodal (Fig S6), with a mean (-0.164) and RMS (0.353 mm/year), slightly larger than those of the linear 

time series of Fig 9. This might be because both methods define velocity differently. While minimum-entropy 

estimates a constant (i.e., mean) velocity, the MIDAS estimates a median velocity.  

 The third compared group consists of 50 stations with clear discontinuities but no visible nonlinearities, 

chosen in order to examine the effect of discontinuities while avoiding ambiguities related to the definition 

of the velocity of nonlinear time series. Of the 50 stations, 26 had experienced one to four discontinuities in  

the East, 37 in the North and 44 in the Up components. Before applying the minimum-entropy method, we 

detected the locations (dates in decimal years) of their discontinuities, using an edge detection filter called 

“the weak elastic string” (Saleh 1996) followed by a manual removal of false negatives. As mentioned in 

sections 2, 4.3 and S2, discontinuous time series are not strictly stationary but increment-stationary. To 

convert them to stationary, we divide them to partial series. The entropy of each partial series is computed 

using (9) and that of the entire series using (12), and velocity estimation proceeded as usual (as described 

in sections 3 and 4.1). This method is oblivious to the heights of step discontinuities because the entropies 

of the partial series are oblivious to their biases. 



 
Fig 8: Velocity differences (minimum-entropy minus MIDAS) derived from 171 linear and continuous NGL 

position time series   

 

 
Fig 9: Histograms of velocity differences (Top: East, Middle: North, Bottom: Up) in mm/year for the 171 

continuous and linear NGL series. The means of the 171 differences are -0.002, 0.009 and 0.002 mm/year 

and their RMS are 0.118, 0.136 and 0.322 mm/year in the East, North and Up components, respectively 



 

Fig 10: (Left) Minimum-entropy-derived velocity standard deviations (SDs); (Right) MIDAS-derived velocity 

SDs, for 171 continuous and linear NGL time series 

 
Inaccuracy in identifying the locations of discontinuities in the pre-analysis does not affect the results 

because entropy is robust to outliers. However, as the number of discontinuities increases, the length of 

the partial series decreases and the convergence of (9) to the true entropy rates become weaker. As a 

consequence, the velocity bias gets worse with every added discontinuity. On the other hand, this has a 

negligible effect on the velocity uncertainty for sufficiently long series, as mentioned in section 4.3. Figure 

S7 presents histograms of velocity differences (minimum-entropy minus MIDAS) for the 50 discontinuous 

time series, showing a slightly wider spread (RMS of 0.187, 0.196 and 0.315 mm/year for the E, N and U 

components, respectively) than in the linear continuous group of Fig 9. Figure S8 presents the velocity 

uncertainties as a function of lifespan confirming that, also in discontinuous time series, minimum-entropy 

reveals a smaller degree of temporal correlations within the NGL time series than the MIDAS method does. 

Figures S7 and S8 present only the components of the time series which were affected by the disturbance 

that caused the discontinuities (26 in the East, 37 in the North and 44 in the Up series).  



6. Summary 

Information theory has been instrumental in the development of digital communications, data compression, 

genome mapping and econometrics. In this work, we apply it for simplifying one aspect of geodetic time 

series analysis, namely, optimal velocity estimation. For an iid time series, entropy, the most important 

information-theoretic quantity, is a unique measure of the series irreducible true uncertainty, beyond which 

there is no simplification or “compression”. For correlated time series, entropy is replaced by the “entropy 

rate”, the average entropy of the series when “compressed” to become iid. The distinction between entropy 

and “entropy rate” is often dropped for conciseness, including in our paper. For sufficiently long (e.g., N ≫ 

30), near-stationary time series, entropy can be computed efficiently and nonparametrically based on the 

probabilities, i.e., the true variability, within the series rather than on norms of its elements. Therefore, while 

the entropy of a position time series senses all its stochastic properties, it is theoretically unaffected by its 

additive deterministic content, such as its reference position, the heights of its step discontinuities, constant 

periodic and transient content. In reality however, these insensitivities to “constant” contents of the time 

series have limitations. Nevertheless, because entropy is based on the probabilities (or differences) rather 

than on the value of the residual positions, it significantly dilutes the effects of smooth, long periodic and 

slowly varying (relative to ∆𝑡) content of the series. These properties make entropy a good candidate tool 

for velocity estimation from position time series, especially in the presence of colored near-stationary noise.  

We proposed a nonparametric minimum-entropy velocity estimation method from geodetic position 

time series, verified its viability and efficiency based on synthetic data, applied it to hundreds of NGL position 

time series and compared the results to those of the MIDAS algorithm. We demonstrated based on 

synthetic and real data that: (1) Minimum-entropy leads to an accurate velocity and its best realistic variance 

in the presence of an unknown noise; (2) Is insensitive to additive “constant” content of the time series such 

as a reference position, constant sinusoids and transients. While the addition of a sinusoid of a typical 

amplitude (~7 mm) to a geodetic position time series increases its variance by as much as 35%, it increases 

its entropy by only 5%, has no effect on the estimated velocity and only an insignificant effect on velocity 

uncertainty; (3) For sufficiently long time series, a transient does not affect the estimated velocity except by 

slightly inflating the velocity uncertainty, but this increase gets worse with increasing series length; (4) Step 

discontinuities do not affect minimum-entropy velocity uncertainty, but do degrade its estimated velocity 

value, and the degradation decreases with increasing length; (5) Minimum-entropy leads to accurate 

velocity when the noise is stationary. However, the presence of slightly non-stationary noise, although 

hardly affects the derived velocity, leads to significant underestimation of velocity uncertainty; (6) Under no 

circumstances does the proposed method lead to variances that decay as 1/N; (7) Minimum-entropy is 

efficient (a non-optimized, non-parallelized short and straightforward software takes ~1.5 CPU to process 

16 years of daily data) because it avoids, on the one hand, covariance matrices, determinants and eigen 

value analysis and on the other hand the modeling and estimation of deterministic time series contents; (8) 

Comparisons to the MIDAS algorithm revealed that minimum-entropy and MIDAS derived velocity 

uncertainties are similar for short time series (< ~5 years) but differ by a factor of 2 for long time series. 
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