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A B S T R A C T

The linear instability and weakly nonlinear dynamics of eastward-propagating, steady-state Larichev–Reznik
vortex dipoles are explored in terms of two-dimensional normal-mode analysis. To extract the fastest growing
normal modes, we apply both breeding methodology based on solving the initial-value problem, as well as
a direct-solution approach through the full-spectrum eigenproblem involving large matrices. We find that the
amplification rate of dipole instability decreases with respect to increase in dipole intensity. In our study, both
approaches yield consistent results and are systematically compared to provide guidance for further studies of
vortex structures.

We consider nonlinear self-interaction of the fastest growing mode, along with the induced eddy fluxes,
their divergence and mechanical energy balance. Through this analysis, we find that the unstable mode leads
to weakening of the dipole by extracting its energy and exchanging potential vorticity content in the down-
gradient sense, thus, providing a nonlinear physical mechanism for the dipole destruction. In particular, we
highlight the fundamental importance of the west-east asymmetry of the normal mode for destruction to be
realized. In summary, we consider this work to be a foundational demonstration of useful methodology for
future studies of dynamics and stability of isolated vortices without simplifying spatial symmetries, such as
ubiquitous vortices in geophysical fluids.
1. Introduction

Dynamics of isolated coherent vortices has been a subject exten-
sively studied with applications to oceanic [1–3] and atmospheric
[4–6] settings. These vortices transport and redistribute important fluid
properties, such as heat, momentum and material tracers, and therefore
largely shape up general circulations. Taxonomy, generation, dynamics,
life cycles and impacts of the vortices remain only partially understood
despite many decades of research.

A common vortex representation is the class of vortex dipoles, those
being eddy pairs of opposite vorticity sign. An example of which is the
Lamb–Chaplygin dipole (LCD) [7,8], which is a steady-state solution to
the two-dimensional (2D) Euler equations. In the absence of viscosity,
the LCD exhibits slow evolution towards a smoother vorticity profile
with elliptical deviation in the initially circular separatrix [9]. The
LCD is not an exact solution to the 2D Euler equations in the addition
of viscosity, and it is also unstable when exposed to small perturba-
tions [10]. Different dipoles are found in other systems, including the
classical quasigeostrophic (QG) equivalent-barotropic model on the 𝛽-
plane (describing fluids on rotating spheres). In particular, a stationary
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solution derived by Stern [11] was found to be unstable [12], while
another solution with steady zonal (along latitudes) propagation was
found analytically, as the so-called Larichev–Reznik dipole or LRD [13].

The LRD solutions can propagate in either eastward or westward
directions, provided the Rossby deformation radius is finite. The prop-
agation speed is unbounded for eastward dipoles, but for the westward
ones it must exceed the maximum Rossby wave phase speed [14].
Westward propagating LRDs were suggested as a model for atmospheric
blocking [15,16], however, because of their intrinsic instability [17]
and rapid disintegration, this idea was later abandoned. Various studies
suggested that eastward LRDs may be stable, when exposed to weak
frictional effects [18], short-wave disturbances [19] and topographic
perturbations [20], but rigorous proof of either stability or instability
of eastward dipoles remains to be found [17,21,22].

Recently, high-resolution numerical modelling of the eastward LRD
evolution demonstrated that over some time the dipole experiences
the phenomenon of spontaneous symmetry breaking, which triggers
exponentially growing oscillation and leads to the eventual break-up
of the structure into two monopolar vortices. As these drift apart, they
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start propagating (in the opposite direction) to the west and eventually
disintegrate into the background flow [23]. The main focus of our study
is in understanding the involved dynamical mechanism that results in
the inevitable dipole destruction. Note that the instability scenario is
further supported by [24], which considered evolution of LRDs initially
tilted away from their zonal alignment. A conclusion of these studies
was that the development of a critical instability mode (a so-called A-
mode or D-mode) introduced asymmetry that played into the inevitable
destruction of the eddy pair.

Another useful part of the background is to remind readers that
we will solve a large eigenproblem by a direct brute-force approach,
yielding the D-mode. For vortices with azimuthal symmetry, the eigen-
problem can be formulated separately for each angular mode and
solved with small computational cost [25]; however, we do not con-
sider this setup in this study, and such a framework is not representative
of more general vortices. Large eigenproblems for QG dynamics and
stability analysis have been considered in the past [26].

The main motivations of our study are to extract the growing
instability in terms of the D-mode and to understand the mechanisms
by which this mode destroys the dipole. We introduce the model
assumptions and set up the problem in §2. Continuing from this, in
§3, we carry out linear instability analyses for various parameters and
LRD intensities, thus, extracting critical normal modes. In §4 we explore
the nonlinear mechanism that involves nonlinear self-interaction of
the critical mode and explains the inevitable dipole destruction. We
show that the critical unstable mode extracts energy from the LRD
and irreversibly stirs its potential vorticity (PV) content, thus, reducing
dipole intensity. Next we demonstrate that the above mechanisms are a
consequence of the east–west asymmetry of the critical mode structure.
Finally, we conclude the study in §5 and discuss further routes of
progression.

2. Model assumptions

2.1. QG dynamics

In the studies [23,24], which are prequels to this work, an
equivalent-barotropic quasigeostrophic (QG) model on the planetary
𝛽-plane was utilized to study the dynamics of eastward propagating
LRDs. The governing equation nondimensionalized with the length and
velocity scales, 𝐿 and 𝑈 , respectively, is [27,28]:

𝑡𝛱 = 1
𝑅𝑒

∇4𝜓 ,

𝛱 = 𝑞 + 𝛽𝑌 ,
(1)

where (𝑋, 𝑌 ) denote conventional horizontal coordinates, 𝑡 denotes
ime, 𝛽 is the meridional gradient of the Coriolis parameter, 𝑅𝑒 is the

Reynolds number; the potential vorticity anomaly (PVA) is defined as

𝑞(𝑋, 𝑌 , 𝑡) = ∇2𝜓 − 𝛾2𝜓 , (2)

where 𝜓(𝑋, 𝑌 , 𝑡) is the velocity streamfunction, 𝛾 describes the ratio
of the arbitrary length scale to the Rossby deformation radius, and
𝛱(𝑋, 𝑌 , 𝑡) is the full PV field. In our notation, we use the following
differential operators:

D𝑡 ∶= 𝜕𝑡 − 𝜕𝑌 𝜓𝜕𝑋 + 𝜕𝑋𝜓𝜕𝑌 ,
2 ∶= 𝜕𝑋𝑋 + 𝜕𝑌 𝑌 ,

(3)

where 𝜕𝑧 is the derivative with respect to the variable 𝑧. We impose an
isolated vortex centred at (𝑥𝑐 , 𝑦𝑐 ) and introduce the change of variables

𝑥 = 𝑋 − 𝑥𝑐 (𝑡) ,

𝑦 = 𝑌 − 𝑦𝑐 (𝑡) ,
(4)

which centres our reference frame with the vortex. This yields the
governance

𝜕 𝑞 + J (𝜓 + 𝜕 𝑥 𝑦 − 𝜕 𝑦 𝑥, 𝑞 + 𝛽𝑦) = 1 𝛥2𝜓 , (5)
2

𝑡 𝑡 𝑐 𝑡 𝑐 𝑅𝑒
where we define the Jacobian operator of functions 𝑎(𝑥, 𝑦) and 𝑏(𝑥, 𝑦)
as

J (𝑎, 𝑏) = 𝜕𝑥𝑎𝜕𝑦𝑏 − 𝜕𝑦𝑎𝜕𝑥𝑏 , (6)

and

𝛥 ∶= 𝜕𝑥𝑥 + 𝜕𝑦𝑦 . (7)

2.2. Symmetry decomposition

Due to the base flow symmetry, the streamfunction field in the
domain can be uniquely divided into two components, following [23]:

𝜓𝐴 =
𝜓(𝑥, 𝑦, 𝑡) + 𝜓(𝑥,−𝑦, 𝑡)

2
,

𝜓𝑆 =
𝜓(𝑥, 𝑦, 𝑡) − 𝜓(𝑥,−𝑦, 𝑡)

2
,

(8)

where 𝜓𝐴 is A-component, which has even symmetry relative to the
zonal axis, and 𝜓𝑆 is S-component, which has odd symmetry relative to
the zonal axis. The interpretation of these components is the following:
the S-component perturbation leads to symmetric deformation of the
vortices around the zonal axis, whereas, the A-component perturbation
leads to the antisymmetric deformation of the vortices.

The quadratic invariants of energy and enstrophy for each compo-
nent are obtained by means of integration:

𝐸𝐴,𝑆 = 1
2 ∫𝛴

[

(∇𝜓𝐴,𝑆 )2 + 𝛾2𝜓2
𝐴,𝑆

]

d𝛴 ,

𝐴,𝑆 = 1
2 ∫𝛴

𝑞2𝐴,𝑆 d𝛴 ,
(9)

where 𝛴 denotes a domain of integration and d𝛴 = d𝑥 d𝑦, the A- and
-component of the PVA field are given by

𝐴,𝑆 = 𝛥𝜓𝐴,𝑆 − 𝛾2𝜓𝐴,𝑆 , (10)

nd the summations 𝐸𝐴+𝐸𝑆 and 𝑍𝐴+𝑍𝑆 are conserved for the inviscid
ase (i.e., 𝑅𝑒 → ∞).

Hereafter, we assume the inviscid limit since we are interested in
solutions to the inviscid fluid governance (i.e., see in Appendix A1
with RHS equal to zero). This is justified by the sensitivity analysis
carried out in [23], however, the linear instability methodology below
is applicable even if we consider finite Reynolds number.

2.3. LRD steady states

To explore the dynamics of steady-state dipole solutions, we set
𝜕𝑡𝑞 = 0, so that the QG system becomes

J (𝜓 + 𝑐𝑥𝑦 − 𝑐𝑦𝑥, 𝑞 + 𝛽𝑦) = 0 , (11)

where 𝑐𝑥,𝑦 denote constant drifts of the dipole in the zonal and merid-
ional directions, respectively. The class of LRDs are steady-state solu-
tions to (5) in the inviscid limit with 𝑐𝑦 = 0, over an infinite domain.
More specifically, these are derived from the relative-vorticity relation,

𝛥𝜓 =

{

−𝑘2𝜓 − 𝑐(𝑘2 + 𝑝2)𝑟 sin 𝜗, 𝑟 ≤ 1 ,
𝑝2𝜓, 𝑟 > 1 ,

(12)

where 𝑐 = 𝑐𝑥; (𝑟, 𝜗) are standard polar coordinates; 𝑟 = 1 is circular
separatrix (here, 𝐿 is chosen to be the horizontal vortex scale); 𝑝2 =
𝛽∕𝑐 + 𝛾 > 0. Here, 𝑘 is some positive constant satisfying the nonlinear
equation:

𝑘𝐽1(𝑘)𝐾2(𝑝) + 𝑝𝐾1(𝑝)𝐽2(𝑘) = 0 , (13)

where 𝐽𝜇 and 𝐾𝜇 are the order-𝜇 Bessel and modified Bessel functions
of the first kind, respectively. This equation has an infinite number of

solutions for 𝑘, but we considered only dipoles with the lowest 𝑘, being
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motivated by [29], where the higher-order modes (in a surface-QG
model) were found unstable.

We assume that the dipole is spatially localized, i.e., 𝜓 → 0
decays exponentially as 𝑟 → ∞, and the solution is continuous and
continuously differentiable across the separatrix 𝑟 = 1. With this in
mind, the streamfunction field can be extracted as a profile with odd
symmetry about the dipole axis:

𝜓(𝑟, 𝜗) = 𝑐𝑓 (𝑟) sin 𝜗 , (14)

where

𝑓 (𝑟) =

{

(𝑝∕𝑘)2(𝐽1(𝑘𝑟)∕𝐽1(𝑘) − 𝑟) − 𝑟, 𝑟 ≤ 1 ,
−𝐾1(𝑝𝑟)∕𝐾1(𝑝), 𝑟 > 1 .

(15)

2.4. D-mode instability

The stability of eastward LRDs has been a subject of discussion
in many studies [18–20], but most recently [23] employed a breeding
method [30] in a high-resolution numerical model (equipped with the
CABARET advection scheme), which resulted in the extraction of a
growing A-component (a so-called critical D-mode) that was associated
with the spontaneous symmetry breaking of the LRD. The breeding
methodology involves the following steps:

• simulate the LRD evolution (slightly perturbed on the first itera-
tion);

• extract the A-component field for an intermediate stage of the
unstable growth;

• use this pattern to perturb the original LRD and solve dynamically
for its evolution and growth;

• iterate this process several times until an accurate critical D-mode
is distilled out of the growing instability.

The main benefit of this approach is the simplicity it offers, where
we are required to solve an initial-value problem rather than a global
problem. Furthermore, breeding efficiently makes use of a high-
resolution grid, since it only yields the fastest-growing mode rather
than the full normal-mode spectrum.

We can associate the D-mode with a linear instability mode of the
dipole by seeking 𝜓𝐴 of the following form:

𝜓𝐴 = (𝐴𝑐1 − 𝐵𝑠1)𝑒𝜎𝑡 , (16)

where 𝐴(𝑥, 𝑦) and 𝐵(𝑥, 𝑦) are the real and imaginary parts of the mode,
respectively; 𝜔 = 2𝜋∕𝜏 is the oscillation frequency (with period of
oscillation 𝜏), 𝜎 is the linear growth rate, and

𝑐𝑛(𝑡) = cos(𝑛𝜔𝑡) ,

𝑠𝑛(𝑡) = sin(𝑛𝜔𝑡) ,
(17)

for 𝑛 ∈ Z+. Using (16), we can derive the corresponding average over
the period, say in the interval [𝑡1, 𝑡1+𝜏] (where 𝑡1 is some instant during
the linear instability growth) for the 𝐴-perturbation field:

𝜓𝐴 = 1
𝜏 ∫

𝑡1+𝜏

𝑡1
𝜓𝐴 d𝑡

= 𝛬
[

(𝐴𝜎 + 𝐵𝜔)𝑐1(𝑡1) + (𝐴𝜔 − 𝐵𝜎)𝑠1(𝑡1)
]

𝑒𝜎𝑡1 ,
(18)

where

𝛬 = 1
𝜏

(

𝑒𝜎𝜏 − 1
𝜎2 + 𝜔2

)

. (19)

Furthermore, using periodicity, we can obtain 𝐴 and 𝐵:

𝐴 =
[

𝜓1𝑐1(𝑡1) − 𝜓2𝑠1(𝑡1)𝑒−𝜎𝜏∕4
]

𝑒−𝜎𝑡1 ,

𝐵 = −
[

𝜓1𝑠1(𝑡1) + 𝜓2𝑐1(𝑡1)𝑒−𝜎𝜏∕4
]

𝑒−𝜎𝑡1 ,
(20)
3

Fig. 1. Period-averaged D-mode in terms of PVA fields (multiplied by 𝑒−𝜎𝑡1 ), corre-
sponding to 𝛽 = 4𝑐: (𝑎) is obtained by averaging bred-out model solution over the
period of oscillation; (𝑏) is obtained by using (21) with 𝜎 ≈ 0.035 and 𝜏 ≈ 16. Similarity
between panels (𝑎) and (𝑏) (spatial correlation of 0.8) motivates the direct linear-
stability analysis, and also benchmarks it against the breeding method; the former
is preferable but resolution-limited relative to the breeding, therefore, cross-validation
of the methods is fully justified and shown to be successful.

where 𝜓1 = 𝜓𝐴(𝑥, 𝑦, 𝑡1) and 𝜓2 = 𝜓𝐴(𝑥, 𝑦, 𝑡1 + 𝜏∕4). Therefore, we can
rewrite (18) so that:

𝜓𝐴 = 𝛬(𝜎𝜓1 − 𝜔𝜓2𝑒
−𝜎𝜏∕4) . (21)

Due to the flow symmetry of the LRD, if the average profile of the D-
mode is non-zero, when computed over a period of oscillation during
an intermediate stage of growth, this corresponds to instability of the
eastward dipole.

We fitted the normal mode form using 𝑞𝐴 solutions with 𝜎 ≈ 0.035
and 𝜏 ≈ 16 (as approximated in [23]), which enabled us to compare
the analytical period-averaged field with the numerical equivalent. This
comparison found reasonable similarity between these profiles (Fig. 1),
with the corresponding spatial correlation coefficient 𝜌 = 0.8. We
checked that further refinement of the numerical grid yielded similar
outcomes, hence, allowing us to conclude the adequacy of the spatial
resolution of the numerical grid.

The results of Fig. 1 motivate the linear instability analysis of the
LRD, which is computationally expensive and even prohibitively so for
grids with a greater number of nodes. Such analysis allows for accurate
extraction of 𝜎 and 𝜏, as well as provides us with the full eigenspectra,
as opposed to only obtaining the fastest growing normal mode. The
latter may be important in situations when there are near-critical D-
modes with similar to the critical growth rates and for non-orthogonal
modes that can interact with each other [31].

In the following section, we carry out the linear instability analysis.

3. Direct linear-stability analysis

3.1. Constructing the eigenproblem

Firstly, we consider the linear perturbation equation

𝜕𝑡𝑞𝐴 + J (𝜓 + 𝑐𝑦, 𝑞𝐴) + J (𝜓𝐴, 𝑞 + 𝛽𝑦) = 0 , (22)

where the A-components represent growing perturbations (or in this
case, correspond to the growing D-mode on the LRD). We seek complex
solutions of the form
𝜓𝐴(𝑥, 𝑦, 𝑡) = 𝛹 (𝑥, 𝑦)𝑒(𝜎+𝑖𝜔)𝑡 ,

𝑞𝐴(𝑥, 𝑦, 𝑡) = 𝑄(𝑥, 𝑦)𝑒(𝜎+𝑖𝜔)𝑡 ,
(23)

where 𝛹 is the complex amplitude of the growing perturbation stream-
function, and the perturbation PV is given by

𝑄 = 𝛥𝛹 − 𝛾2𝛹 . (24)
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Then, the perturbation equation becomes

J (𝜓 + 𝑐𝑦,𝑄) + J (𝛹, 𝑞 + 𝛽𝑦) = 𝑖𝜔𝑄 . (25)

We discretize (25) using second-order central finite differences, to
obtain a system of difference equations on an (𝑖, 𝑗)-grid, where 𝑖 and 𝑗
are the zonal and meridional nodal indices, respectively. In the prequel
works [23,24], a double-periodic (60, 15)-domain was employed with
(8192, 2048) grid points. The zonally large domain size was motivated
by avoiding late-time (periodic) interaction with the trailing wake,
however, this is not an issue for the linear-instability analysis. There-
fore, we consider a square domain with 𝑁 ∈ Z+ grid points in each
horizontal direction. Thus, the eigenproblem can be expressed in the
matrix form

𝑖𝐌𝜳 = 𝜔𝐍𝜳 , (26)

where

𝜳 = (𝛹1,1, 𝛹1,2,… , 𝛹𝑁,1, 𝛹2,1,… , 𝛹𝑁,𝑁 )𝑇 ∈ C𝑁2
, (27)

and the matrices 𝐍 ∈ R𝑁2×𝑁2 and 𝐌 ∈ R𝑁2×𝑁2 have entries detailed in
Appendix A.1. Moreover, the system is equipped with doubly-periodic
boundary conditions:

𝛹𝑁+1,𝑗 = 𝛹1,𝑗 ,

𝛹0,𝑗 = 𝛹𝑁,𝑗 ,

𝛹𝑖,𝑁+1 = 𝛹𝑖,1 ,

𝛹𝑖,0 = 𝛹𝑁,𝑗 .

(28)

Since the coefficient matrices in (26) quadruple in size with respect
to increasing 𝑁 , it is not computationally feasible to use 𝑁 = 2048
(i.e., using the same numerical accuracy as in [23,24]). Instead, we
used 𝑁 = 512 (the extreme value we could afford given the resources)
and considered a (7.5, 7.5) domain (half the size of the domain employed
in the model, if it were square). This resolution is achievable despite
the large computational expense since we make use of D-mode antisym-
metry to consider only half of the domain, where we match boundary
conditions at the middle latitude. This is equivalent to imposing the
additional boundary conditions:

𝛹𝑖,𝑁∕2+1 = 𝛹𝑖,𝑁∕2 ,

𝛹𝑖,𝑁∕2+2 = 𝛹𝑖,𝑁∕2−1 ,

⋮

𝛹𝑖,𝑁 = 𝛹𝑖,1 .

(29)

Since we halved the domain size, this is equivalent to doubling grid
resolution over the smaller domain and thus provides higher accuracy.

To evaluate the merit of this approach, we carried out a solution
analysis, in which we considered different domain sizes and resolutions,
and deduced that 𝑁 = 512 for a (15, 15)-domain is the lower-bound
requirement for approximating the critical D-mode (see the supple-
mentary material). When comparing this with solutions obtained for
the same value of 𝑁 but in a halved (7.5, 7.5) domain, the critical D-
mode retained its characteristics. Hence, we proceed by presenting the
smaller domain solutions.

3.2. Linear stability results

For illustration, we consider an LRD with 𝛽 = 4𝑐 and show the
real and imaginary components of the D-mode in Fig. 2. These fields
are similar to those in [23], which confirms that the dipole exhibits
essentially an inviscid instability, since our linear-stability formulation
is inviscid (note, this is fundamentally different from the LCD viscous
instability mechanism [10]).

Temporal behaviour of the D-mode is described by the pair (𝜎, 𝜏),
which embodies the rate of growth and the period of oscillation of
the D-mode, respectively. In [23], this information was approximated
using a finite number of snapshots. More specifically, during 𝑡 ≤ 𝑡 ≤
4

1

Fig. 2. Real (panels 𝑎 and 𝑐) and imaginary (panels 𝑏 and 𝑑) D-mode components,
with the top row showing streamfunctions and the bottom row showing PVAs. Here,
𝛽 = 4𝑐, and our linear analysis associates this LRD with (𝜎, 𝜏) = (0.027, 17).

Fig. 3. Period-averaged PVA of the D-mode (multiplied by 𝑒−𝜎𝑡1 ) with 𝛽 = 4𝑐: (𝑎) is
obtained using (18), with 𝐴 and 𝐵 as shown in Fig. 2, and with (𝜎, 𝜏) = (0.027, 17);
(𝑏) is obtained from a series of QG model solution snapshots approximately over the
D-mode period.

𝑡1 + 𝜏, when there was an intermediate stage of growth, finite snapshot
comparison obtained from the high resolution numerical simulations
deduced a value of 𝜏num ≈ 16 (the subscript num here refers to
values associated with numerical simulations) and the growth between
approximately periodic panels was calculated to be

𝜎num = 1
𝜏num

ln
[

max(𝑞𝐴(𝑡1 + 𝜏))
max(𝑞𝐴(𝑡1))

]

≈ 0.035 . (30)

The critical D-mode that develops on an LRD characterized by 𝛽 =
4𝑐 is described by our linear-stability analysis with (𝜎, 𝜏) ≈ (0.027, 17).
Since this is similar to the previous breeding estimates, as well as to
the D-mode spatial pattern (Fig. 3), this acts to support our results.
Alternatively, differences in these values could be a consequence of
differing resolutions assumed, and the value of 𝜎 might approach 𝜎num
if the number of grid points were consistent between approaches.

An interesting characteristic feature of the D-mode is the trailing
wake behind the LRD (Fig. 1). A similarly looking wake characterizes
the viscous LCD, and it was hypothesized that it amplifies the dipole
instability through the dipole-wake interaction [10]. On the contrary,
we argue that the D-mode trailing wake is distinctly different, because
of its inviscid nature. Further below, we argue that the presence of
this wake is fundamentally important for the nonlinear mechanism that
allows the D-mode to inevitably destroy the LRD.
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Fig. 4. Real (panels 𝑎 and 𝑐) and imaginary (panels 𝑏 and 𝑑) parts of the D-mode,
with the top/bottom row showing streamfunction/PVA fields. Here, 𝛽 = 1.5𝑐 and
(𝜎, 𝜏) = (0.007, 20).

Additionally, with respect to increased dipole intensity, breeding
results demonstrated decreasing linear growth rates (i.e., 𝜎𝑛 ∼ 0.027
and 𝜎𝑛 ∼ 0.02 for 𝛽 = 3𝑐, 2𝑐, respectively), while the period of oscillation
remained approximately uniform. In comparison, our linear instability
solver extracted (𝜎, 𝜏) ∼ (0.015, 18) when 𝛽 = 3𝑐, and (𝜎, 𝜏) ∼ (0.009, 19)
when 𝛽 = 2𝑐. This is consistent with decreasing linear growth, but also
highlights a subtle increase in the oscillation period (see supplementary
material for the streamfunction and PVA fields).

The numerical dipole studies [23,24] suggested a transition in dy-
namics for different values of 𝛽. In particular, when 𝛽 = (4, 3)𝑐 the LRD
maintained steady propagation for awhile (longer in the more intense
case) before succumbing to instability and destruction, whereas, when
𝛽 = 2𝑐, the LRD remained largely intact over the same time domain, but
still noticeably decelerated. However, the 𝛽 = 𝑐 dipole persists as an
almost steadily drifting solution, thus, suggesting a bifurcation value,
𝛽𝑇 , in the range 1 < 𝛽𝑇 ∕𝑐 < 2.

We considered a dipole intensity centred in this interval, 𝛽∕𝑐 = 1.5,
and obtained (𝜎, 𝜏) ≈ (0.007, 20) (see Fig. 4). Since this LRD still derives
an unstable linear growth rate, this suggests that if a critical value for
beta exists, it would be that 𝛽𝑇 ∕𝑐 < 1.5. When 𝛽 = 𝑐, we obtained
(𝜎, 𝜏) ≈ (0.004, 21), however, the solution PVA field became notice-
ably noisy (see supplementary material), suggesting inadequate grid
resolution. Nevertheless, this result is consistent with the hypothesis
that progressively intensified LRDs are still linearly unstable, although
instability growth rates continue to decay. To explore this further, the
breeding may be the only affordable method, but it will require long-
time integrations, and, therefore, even higher resolution to beat down
numerical-viscosity effects.

4. Nonlinear analysis

4.1. Weakly nonlinear effects

To understand the key roles played by nonlinearity in the eastward
dipole destruction, we considered eddy PV fluxes induced by the D-
mode, as well as the energy transfer rate between the background
dipole and the D-mode. This was done under the assumption that the
nonlinear self-interaction of the D-mode is relatively weak, hence, the
background dipole can be viewed as unchanged over one period of the
growing D-mode. Mathematically, the zonal and meridional eddy PV
flux components can be written as

𝐹𝑥 = −𝜕𝑦𝜓𝐴(𝑞𝐴 + 𝛽𝑦) , (31)

𝐹𝑦 = 𝜕𝑥𝜓𝐴(𝑞𝐴 + 𝛽𝑦) , (32)
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respectively, and related to the self-interaction of the D-mode described
in terms of the eddy PV flux convergence (i.e., eddy forcing):

𝐼 = −J (𝜓𝐴, 𝑞𝐴 + 𝛽𝑦) = −div(𝑭 ) , (33)

where 𝑭 = (𝐹𝑥, 𝐹𝑦)𝑇 . Note, that the above field contains small 𝛽-term,
which would be averaged out over the oscillation period if 𝜓𝐴 were not
growing in time. Despite the fact that this field does grow over time, we
found that the nonzero outcome of this is very small and insignificant,
therefore, we omitted this contribution from further discussion. The
field for 𝐼 illustrates how the contents of dipole PV are redistributed
by the action of the D-mode, while the flux components inform us of
the corresponding PV pathways.

To understand the dipole destruction mechanism, we averaged the
nonlinear self-interaction over a period of the D-mode oscillation and
used this as a reference point for our discussion of the PV redistribution.
In this case, it follows that

𝐼 = J (𝑞𝐴, 𝜓𝐴) − 𝛽𝜕𝑥𝜓𝐴 , (34)

where, using the normal-mode representation (16), we can write (see
Appendix A.2 for a more detailed derivation):

𝜕𝑥𝜓𝐴 = 𝛬𝜕𝑥

[

𝜎(𝐴𝑐1 − 𝐵𝑠1) + 𝜔(𝐴𝑠1 − 𝐵𝑐1)
]

𝑒𝜎𝑡1 , (35)

and

J (𝑞𝐴, 𝜓𝐴) =
𝛤
𝜏

[

(𝜎2 + 𝜔2)(J𝐶,𝐴 + J𝐷,𝐵)
]

+ 𝜎
[

𝛿1(J𝐶,𝐴 − J𝐷,𝐵) + 𝛿2(J𝐴,𝐷 + J𝐵,𝐶 )
]

,
(36)

with J𝑎,𝑏 = J (𝑎, 𝑏) and

𝐶 = 𝛥𝐴 − 𝛾2𝐴 ,

𝐷 = 𝛥𝐵 − 𝛾2𝐵 .
(37)

Further, we introduced

𝛿1 = 𝜎𝑐2(𝑡1) + 𝜔𝑠2(𝑡1) ,

𝛿2 = 𝜎𝑠2(𝑡1) − 𝜔𝑐2(𝑡1) ,
(38)

and

𝛤 = 𝑒2𝜎𝜏 − 1
4𝜎(𝜎2 + 𝜔2)

, (39)

for the sake of compactness.
We found that the 𝛽-contribution was at least an order of magnitude

smaller than the Jacobian term. Hence, we neglect it in the eddy forcing
and flux components, hereafter. From Fig. 5, it is clear that each of
these fields are odd with respect to the zonal axis. Moreover, Fig. 5𝑎
shows us how the PV content moves from left (negative blue regions) to
right (positive red regions), while Fig. 5𝑏 conveys how PV is transferred
up (positive red regions) and down (negative blue regions).

The eddy forcing (Fig. 5𝑐) has a complicated structure that needs
interpretation. Perhaps, a more informative way to appreciate it is
through Fig. 6, where the integral values of 𝐼 are presented for eight
separate regions in the domain. From the distribution of values, it is
clear that the upper (lower) region is negative (positive) dominant.
In summary, this can be interpreted as the D-mode reducing the PV
contrast in the dipole (we refer to this as PV decontrasting, which
we use to mean that PV from one partner invades the other). To
investigate this, we added a small perturbation of this structure to the
LRD and showed that its intensity directly influences and shortens the
dipole lifetime. Such a result is consistent with our PV decontrasting
hypothesis.

The arrows in Fig. 6 correspond to the net eddy PV flux along each
of the zonal and meridional central lines; the size of the arrows is not
to scale, but does represent the magnitude of flux in a particular direc-
tion. Hence, the main transfer route contributing to PV decontrasting
through meridional PV rearrangement occurs near the trailing saddle
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Fig. 5. Nonlinear properties of the D-mode: (𝑎) zonal eddy PV flux 𝐹𝑥, (𝑏) meridional
eddy PV flux 𝐹𝑦, (𝑐) eddy forcing 𝐼 .

Fig. 6. Integral-value diagram corresponding to 𝐼 , describing how the overall PV
content is rearranged due to a growing D-mode, and as a result of its nonlinear self-
interaction (i.e., eddy forcing). The size of arrows is not to scale, but describes the
net eddy PV flux in the horizontal and meridional directions across the zonal and
meridional segments. The circular boundary has unit radius corresponding to the initial
separatrix of the dipole.

point at 𝑥 = −1 along the zonal axis and is described by negative eddy
PV flux. Part of the corresponding PV gets recycled by returning back
through the net cyclonic (counter-clockwise) circulation of PV inside
the dipole, informing us that the D-mode also zonally rearranges PV.
This dynamical behaviour can explain the zonal elongations observed
in [23,24], since this rearrangement of PV content in the dipole can
cause deformations along the dipole axis.

The 8 values corresponding to the 8 subdomains in Fig. 6 correspond
to the net area-integrated eddy PV flux convergences induced by the
D-mode. This is a compact description of the D-mode rearrangement of
the dipole PV content. Fig. 6 summarizes a PV decontrasting effect, that
is, the PV contrast in the dipole becomes reduced; thus, irreversible PV
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stirring induced by the D-mode acts to destroy the dipole. Now that we
understand how the D-mode alters the dipole, we proceed to explain
the corresponding amplification process by using energy arguments in
the following subsection.

4.2. D-mode energetics

We derived equations for the energy balance by considering the
background LRD and the perturbation D-mode evolving on it. For this
purpose, we use the method of multiple scales to separate the fast time
scale of D-mode oscillation, 𝑇𝑓 , from the slow time scale associated
with deviations in the LRD, 𝑇𝑠. Hence, this suggests the following
Reynolds decomposition of the streamfunction:

𝜓 = 𝜓(𝑥, 𝑦, 𝑇𝑠) + 𝜓𝐴(𝑥, 𝑦, 𝑇𝑠, 𝑇𝑓 ) , (40)

where the first term is approximately the LRD field. Substituting into
the perturbation governance (22), we obtained

𝜕𝑇𝑠𝑞 + 𝜕𝑇𝑠𝑞𝐴 + 𝜕𝑇𝑓 𝑞𝐴 + J (𝜓, 𝛥𝜓) + J (𝜓, 𝛥𝜓𝐴)

+ J (𝜓𝐴, 𝛥𝜓) + J (𝜓𝐴, 𝛥𝜓𝐴) + 𝛽𝜕𝑥(𝜓 + 𝜓𝐴) = 0 ,
(41)

which can be multiplied by 𝜓 and integrated over 𝑡1 ≤ 𝑡 ≤ 𝑡1 + 𝜏, to
derive:

𝜓𝜕𝑇𝑠𝑞 + 𝜓J (𝜓, 𝛥𝜓) + 𝜓J (𝜓𝐴, 𝛥𝜓𝐴) + 𝛽𝜓𝜕𝑥𝜓 = 0 . (42)

Here, we note that 𝜓𝐴, 𝑞𝐴 are very small relative to 𝜓 , meaning that
linear combinations with respect to average A-components can be
neglected when considering terms of order 𝜓 (however, the scale of
nonlinear combinations is unclear and cannot be neglected). Thus,
further manipulation yields the energy balance,

𝜕𝑇𝑠𝐸𝑆 = div(𝐐𝑆 ) + L , (43)

where 𝐐𝑆 is the mean energy flux, and

L = 𝜕𝑥𝑦𝜓
[

(𝜕𝑥𝜓𝐴)2 − (𝜕𝑦𝜓𝐴)2
]

+ 𝜕𝑥𝜓𝐴𝜕𝑦𝜓𝐴(𝜕𝑦𝑦𝜓 − 𝜕𝑥𝑥𝜓) , (44)

is the LRD/D-mode energy exchange (or transfer) term. Similarly, we
multiplied (41) by 𝜓𝐴 and averaged over the period of oscillation to
obtain the perturbation energy equation,

𝜕𝑇𝑠𝐸𝐴 = div(𝐐𝐴) − L , (45)

where 𝐐𝐴 is the perturbation energy flux. Since the exchange term L

appears in both (43) and (45) with opposite sign value, this describes an
exchange of energy between the background flow and the perturbation
field.

We can recast the energy exchange using the normal mode repre-
sentation for 𝜓𝐴 to obtain

L = 𝛤
4𝜏

{

4(𝜎2 + 𝜔2)(𝛷1𝐹1 +𝛷2𝐹3)

+ 𝜎
[

𝛿1(𝛷1𝐹2 +𝛷2𝐹4) + 𝛿2(𝛷2𝐹6 − 2𝛷1𝐹5)
]

}

𝑒2𝜎𝑡1 ,

(46)

where
𝐹1 = (𝜕𝑥𝐴)2 − (𝜕𝑦𝐴)2 + (𝜕𝑥𝐵)2 − (𝜕𝑦𝐵)2 ,

𝐹2 = (𝜕𝑥𝐴)2 − (𝜕𝑦𝐴)2 − (𝜕𝑥𝐵)2 + (𝜕𝑦𝐵)2 ,

𝐹3 = 𝜕𝑥𝐴𝜕𝑦𝐴 + 𝜕𝑥𝐵𝜕𝑦𝐵 ,

𝐹4 = 𝜕𝑥𝐴𝜕𝑦𝐴 − 𝜕𝑥𝐵𝜕𝑦𝐵 ,

𝐹5 = 𝜕𝑥𝐴𝜕𝑥𝐵 − 𝜕𝑦𝐴𝜕𝑦𝐵 ,

𝐹6 = 𝜕𝑥𝐴𝜕𝑦𝐵 + 𝜕𝑦𝐴𝜕𝑥𝐵 ,

(47)

and
𝛷1 = 𝜕𝑥𝑦𝜓 , (48)

𝛷2 = 𝜕𝑦𝑦𝛹 − 𝜕𝑥𝑥𝜓 .
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Fig. 7. Energy transfer between the background dipole and the D-mode, averaged over
a time period of the latter. Negative regions correspond to energy extracted from the
dipole by the D-mode, while positive regions correspond to energy transferred back to
the dipole. Domain-integrated energy transfer is negative, which is consistent with the
growing instability.

Fig. 8. Components of the energy exchange in Fig. 7, in terms of M- and N-components:
(𝑎) (𝑀𝑁)𝑥; (𝑏) (𝑀𝑁)𝑦; (𝑐) (𝑁𝑀)𝑥; (𝑑) (𝑁𝑀)𝑦.

Using (46), we plot the energy exchange contribution in Fig. 7. This
clearly shows an antisymmetric pattern with respect to the meridional
axis, where positive regions correspond to background flow energy
being returned to the dipole, whereas, negative regions refer to energy
extraction from the background flow by the perturbation field. The
latter of these prevails and can be interpreted as energy extracted by the
D-mode as part of the nonlinear destruction of the dipole. An important
note is that the D-mode extracts energy near the rear saddle point
(while the dipole gains energy at the frontal lobe), which is consistent
with the majority of flux exchange contributing to the PV decontrasting
of the dipole by eddy PV flux being local to this saddle point.

4.3. Asymmetry analysis of nonlinear effects

By construction, the critical D-mode has even symmetry about the
zonal axis, however, no assumption is made about the symmetry across
the meridional axis. Since there is meridional asymmetry in the aver-
age nonlinear self-interaction and the energy exchange fields, we are
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motivated to check whether it is essential for the nonlinear destruction
of the dipole. We analyse this by introducing M- and N-components,
such that:

𝜓𝑀 =
𝜓𝐴(𝑥, 𝑦, 𝑡) + 𝜓𝐴(−𝑥, 𝑦, 𝑡)

2
, (49)

𝜓𝑁 =
𝜓𝐴(𝑥, 𝑦, 𝑡) − 𝜓𝐴(−𝑥, 𝑦, 𝑡)

2
, (50)

where the M- and N-component are field with even and odd symmetry,
respectively, about the meridional axis. We define 𝑞𝑀,𝑁 in a similar
way, then the term describing energy exchange is expanded as

L = 𝜕𝑥𝜓𝑀J (𝜓𝑀 , 𝜕𝑥𝜓) + 𝜕𝑥𝜓𝑀J (𝜓𝑁 , 𝜕𝑥𝜓)

+ 𝜕𝑥𝜓𝑁J (𝜓𝑀 , 𝜕𝑥𝜓) + 𝜕𝑥𝜓𝑁J (𝜓𝑁 , 𝜕𝑥𝜓)

+ 𝜕𝑦𝜓𝑀J (𝜓𝑀 , 𝜕𝑦𝜓) + 𝜕𝑦𝜓𝑀J (𝜓𝑁 , 𝜕𝑦𝜓)

+ 𝜕𝑦𝜓𝑁J (𝜓𝑀 , 𝜕𝑦𝜓) + 𝜕𝑦𝜓𝑁J (𝜓𝑁 , 𝜕𝑦𝜓) .

(51)

Each of the eight contributions in (51) is either symmetric in both
horizontal directions, or contains antisymmetry in one of the directions.
A consequence of antisymmetry is that the net spatial integral is zero,
which eliminates half of the contributions in (51).

In summary, the surviving integral contributors are given by (see
Fig. 8):

(𝑀𝑁)𝑥 = 𝜕𝑥𝜓𝑀J (𝜓𝑁 , 𝜕𝑥𝜓) ,

(𝑀𝑁)𝑦 = 𝜕𝑦𝜓𝑀J (𝜓𝑁 , 𝜕𝑦𝜓) ,

(𝑁𝑀)𝑥 = 𝜕𝑥𝜓𝑁J (𝜓𝑀 , 𝜕𝑥𝜓) ,

(𝑁𝑀)𝑦 = 𝜕𝑦𝜓𝑁J (𝜓𝑀 , 𝜕𝑦𝜓) .

(52)

Each of these fields have negative net integrals over the spatial domain,
which corresponds to the D-mode gaining energy and becoming desta-
bilized. Hence, the nonlinear destruction mechanism fundamentally
involves west-east asymmetry of the D-mode, that is most vividly
expressed by the trailing wake behind the dipole.

We can interpret this wake as a set of coherently radiating Rossby
waves, which are themselves a consequence of the broken west-east
symmetry by the 𝛽-effect. Without this asymmetry the D-mode is not
capable of the down-gradient PV stirring that ‘‘cools down’’ the dipole
and extracts its energy for this work.

5. Summary and discussion

This work is demonstration of methodology for future studies of
stability and dynamics of isolated coherent vortices without simpli-
fying spatial symmetries, such as ubiquitous vortices in geophysical
fluids (i.e., in oceans and atmospheres). These vortices transport and
redistribute important fluid properties, such as heat, momentum and
material tracers, and, therefore, largely shape up general circulations.
Taxonomy, generation, dynamics, life cycles and impacts of the vortices
remain only partially understood despite many decades of research.

We pose the problem in terms of oceanic mesoscale vortices and
consider shallow-water upper-ocean intensified vortices at midlatitudes
of a rotating planet and far away from continental boundaries. All to-
gether, this amounts to considering classical QG, equivalent-barotropic
dynamics in a 2D double-periodic domain, which is taken to be a lot
larger than the isolated coherent vortex dipole being considered. The
main motivations are to extract the growing instability in terms of the
critical normal mode and to understand the mechanisms by which this
mode destroys the dipole.

With the above motivations and formulation in mind, we focused
on the linear instability and weakly nonlinear dynamics of coher-
ent, eastward-propagating, steady-state Larichev–Reznik vortex dipole
(LRD), which is a classical asymptotic QG solution of rotating shallow-
water model, and explored it in terms of linear critical normal-mode
analysis. Absence of azimuthal symmetry in the LRD makes such anal-
ysis problematic, even computationally, therefore, it has remained
undone until now.
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To extract the critical mode, we applied both breeding methodology
based on solving initial-value problem and brute-force, direct full-
spectrum eigenproblem formulation involving large-size matrices. The
latter approach made use of the second-order central finite-difference
discretization, allowed us to solve for the entire eigenspectrum, and
yielded results consistent with those obtained in [23]. The dipoles were
found to be linearly unstable, with characteristic decrease (increase)
in growth rate (oscillation period) with respect to increase in dipole
intensity.

Next, we considered nonlinear self-interaction and energetics of
the growing critical D-mode and its induced eddy PV fluxes and their
convergence, that is, eddy forcing, as well as we also considered the me-
chanical energy balance involving energy transfer between the dipole
and D-mode. These analyses revealed that the critical mode destroys
the dipole by extracting its energy and stirring its PV content in the
down-gradient sense, thus, reducing the PV contrast in the dipole and
providing physical mechanisms of the dipole destruction. Details of
this process were uncovered and the fundamental importance of the
west-east zonal asymmetry of the D-mode was demonstrated.

The key aspect of our approach is the use of linear, critical normal
modes to solve accurately for all relevant physical fields that illuminate
the involved mechanisms. Based on the insight we gained by employing
our linear and nonlinear analyses, we anticipate the use of similar
linear instability solvers and normal mode representations to extract
critical modes for other kinds of dipoles and coherent vortices. This
includes those in the presence of topographic features, those obtained
in a full rather than asymptotic shallow-water model, those exposed to
background flow effects and more realistic stratification.

A drawback of our linear-stability analysis is the limited spatial reso-
lution we are constrained by to solve the discretized eigenproblem. This
is a consequence of our method solving for the entire eigenspectrum,
rather than only solving for the critical mode and its neighbours in
terms of the growth rates. In the future, we envision the application
of eigenproblem methods that only extract a few leading eigenmodes
(e.g., Arnoldi iterations in Krylov subspaces). The benefit of such
approaches is that finer resolution can be employed, leading to greater
accuracy when discussing the top modes.

On the other hand, as shown, the breeding method can work with
decent accuracy for the critical mode only. Finally, our analysis showed
that the rear (and to the lesser degree frontal) saddle point along the
separatrix of the LRD seems to be the gateway for important meridional
PV eddy flux. Despite this, we did not expand on why these points
play these particular roles and left the issue for future studies. The
methodology for gaining further insight into this is tracking Lagrangian
particles and contours, as in the theory of lobe dynamics [32], which
works well for analysis of material transport around saddle points in
time-dependent flows.
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Appendix A

A.1. Matrix formulation

Here, we present some technical details pertaining to the derivation
of the eigenproblem (26). We make use of the second-order central
finite-difference discretizations of the derivatives:

𝜕𝑥𝛹𝑖,𝑗 ≈
𝛹𝑖+1,𝑗 − 𝛹𝑖−1,𝑗

2ℎ
,

𝜕𝑦𝛹𝑖,𝑗 ≈
𝛹𝑖,𝑗+1 − 𝛹𝑖,𝑗−1

2ℎ
,

𝛥𝛹𝑖,𝑗 ≈
𝛹𝑖+1,𝑗 + 𝛹𝑖−1,𝑗 + 𝛹𝑖,𝑗+1 + 𝛹𝑖,𝑗−1 − 4𝛹𝑖,𝑗

ℎ2
,

𝜕𝑥𝛥𝛹𝑖,𝑗 ≈
1
ℎ3

[

2(𝛹𝑖−1,𝑗 − 𝛹𝑖+1,𝑗 ) +
1
2
(𝛹𝑖+2,𝑗 − 𝛹𝑖−2,𝑗

+ 𝛹𝑖+1,𝑗−1 − 𝛹𝑖−1,𝑗−1 + 𝛹𝑖+1,𝑗+1 − 𝛹𝑖−1,𝑗+1)
]

,

𝜕𝑦𝛥𝛹𝑖,𝑗 ≈
1
ℎ3

[

2(𝛹𝑖,𝑗−1 − 𝛹𝑖,𝑗+1) +
1
2
(𝛹𝑖,𝑗+2 − 𝛹𝑖,𝑗−2

+ 𝛹𝑖+1,𝑗+1 − 𝛹𝑖+1,𝑗−1 + 𝛹𝑖−1,𝑗+1 − 𝛹𝑖−1,𝑗−1)
]

,

here ℎ = 𝐿𝑥∕𝑁 . Substituting these stencils into (25), the non-zero
lements of 𝐌 are:

𝑖+1,𝑗+1 ∶
−𝜕𝑥𝜓 + 𝜕𝑦𝜓 + 𝑐

2ℎ3
,

𝑖+1,𝑗−1 ∶
𝜕𝑥𝜓 + 𝜕𝑦𝜓 + 𝑐

2ℎ3
,

𝛹𝑖−1,𝑗+1 ∶
−𝜕𝑥𝜓 − 𝜕𝑦𝜓 − 𝑐

2ℎ3
,

𝑖−1,𝑗−1 ∶
𝜕𝑥𝜓 − 𝜕𝑦𝜓 − 𝑐

2ℎ3
,

𝛹𝑖+2,𝑗 ∶
𝜕𝑦𝜓 + 𝑐

2ℎ3
,

𝑖−2,𝑗 ∶
−𝜕𝑦𝜓 − 𝑐

2ℎ3
,

𝛹𝑖,𝑗+2 ∶ −
𝜕𝑥𝜓
2ℎ3

,

𝑖,𝑗−2 ∶
𝜕𝑥𝜓
2ℎ3

,

𝛹𝑖+1,𝑗 ∶ − 𝜎
ℎ2

−
𝛾2(𝜕𝑦𝜓 + 𝑐)

2ℎ
−

(𝜕𝑦𝑞 + 𝛽)
2ℎ

−
2(𝜕𝑦𝜓 + 𝑐)

ℎ3
,

𝛹𝑖−1,𝑗 ∶ − 𝜎
ℎ2

+
𝛾2(𝜕𝑦𝜓 + 𝑐)

2ℎ
+

(𝜕𝑦𝑞 + 𝛽)
2ℎ

+
2(𝜕𝑦𝜓 + 𝑐)

ℎ3
,

𝛹𝑖,𝑗+1 ∶ − 𝜎
ℎ2

+
2𝜕𝑥𝜓
ℎ3

+
𝛾2𝜕𝑥𝜓
2ℎ

+
𝜕𝑥𝑞
2ℎ

,

𝛹𝑖,𝑗+1 ∶ − 𝜎
ℎ2

−
2𝜕𝑥𝜓
ℎ3

−
𝛾2𝜕𝑥𝜓
2ℎ

−
𝜕𝑥𝑞
2ℎ

,

and the non-zero elements of 𝐍 are:

𝛹𝑚,𝑗 ∶
𝜔
ℎ2
, for 𝑚 = 𝑖 ± 1 ,

𝛹𝑖,𝑛 ∶
𝜔
ℎ2
, for 𝑛 = 𝑗 ± 1 .
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This system is solved using doubly-periodic boundary conditions. In
practice, since we hunted for the critical D-mode, which is asymmet-
ric around the zonal axis, the eigenproblem has been solved in the
lower half of the domain with the asymmetry built into the boundary
condition at the zonal axis.

A.2. Normal mode equations

Here, we derive equations for the nonlinear interaction of the D-
mode. First, we note that terms due to 𝛽 are relatively small, so we
consider:

J (𝜓𝐴, 𝑞𝐴) = 𝜕𝑥𝐹𝑥 + 𝜕𝑦𝐹𝑦 .

The flux components are rewritten as

𝐹𝑥 =
[

−𝜕𝑦𝐴𝐶𝑐21 + (𝜕𝑦𝐴𝐷 + 𝜕𝑦𝐵𝐶)𝑐1𝑠1 − 𝜕𝑦𝐵𝐷𝑠21

]

𝑒2𝜎𝑡 ,

𝐹𝑦 =
[

𝜕𝑥𝐴𝐶𝑐
2
1 − (𝜕𝑥𝐴𝐷 + 𝜕𝑥𝐵𝐶)𝑐1𝑠1 + 𝜕𝑥𝐵𝐷𝑠21

]

𝑒2𝜎𝑡 ,

hich means that

𝜕𝑥𝐹𝑥 =
[

−(𝜕𝑥𝑦𝐴𝐶 + 𝜕𝑦𝐴𝜕𝑥𝐶)𝑐21 + (𝜕𝑥𝑦𝐴𝐷 + 𝜕𝑦𝐴𝜕𝑥𝐷

+ 𝜕𝑥𝑦𝐵𝐶𝜕𝑦𝐵𝜕𝑥𝐶)𝑐1𝑠1 − (𝜕𝑥𝑦𝐵𝐷 + 𝜕𝑦𝐵𝜕𝑥𝐷)𝑠21

]

𝑒2𝜎𝑡 ,

𝜕𝑦𝐹𝑦 =
[

(𝜕𝑥𝑦𝐴𝐶 + 𝜕𝑥𝐴𝜕𝑦𝐶)𝑐21 − (𝜕𝑥𝑦𝐴𝐷 + 𝜕𝑥𝐴𝜕𝑦𝐷

+ 𝜕𝑥𝑦𝐵𝐶𝜕𝑥𝐵𝜕𝑦𝐶)𝑐1𝑠1 + (𝜕𝑥𝑦𝐵𝐷 + 𝜕𝑥𝐵𝜕𝑦𝐷)𝑠21

]

𝑒2𝜎𝑡 ,

J (𝜓𝐴, 𝑞𝐴) =
[

J𝐴,𝐶𝑐
2
1 + (J𝐷,𝐴 + J𝐶,𝐵)𝑐1𝑠1 + J𝐵,𝐷𝑠

2
1

]

𝑒2𝜎𝑡 .

To integrate over a period of oscillation, we make use of the following
integrals,

∫

𝑡1+𝜏

𝑡1
𝑐21𝑒

2𝜎𝑡 d𝑡 = 𝛤 (𝜎2 + 𝜔2 + 𝜎𝛿1)𝑒2𝜎𝑡1 ,

∫

𝑡1+𝜏

𝑡1
𝑠21𝑒

2𝜎𝑡 d𝑡 = 𝛤 (𝜎2 + 𝜔2 − 𝜎𝛿1)𝑒2𝜎𝑡1 ,

∫

𝑡1+𝜏

𝑡1
𝑐1𝑠1𝑒

2𝜎𝑡 d𝑡 = 𝜎𝛿2𝛤𝑒
2𝜎𝑡1 ,

and derive the equations:

𝜕𝑥𝐹𝑥 = 𝛤
𝜏

{

−(𝜎2 + 𝜔2)(𝜕𝑥𝑦𝐴𝐶 + 𝜕𝑦𝐴𝜕𝑥𝐶 + 𝜕𝑥𝑦𝐵𝐷 + 𝜕𝑦𝐵𝜕𝑥𝐷)

+ 𝜎
[

𝛿1(𝜕𝑥𝑦𝐵𝐷 + 𝜕𝑦𝐵𝜕𝑥𝐷 − 𝜕𝑥𝑦𝐴𝐶 − 𝜕𝑦𝐴𝜕𝑥𝐶)

+ 𝛿2(𝜕𝑥𝑦𝐴𝐷 + 𝜕𝑦𝐴𝜕𝑥𝐷 + 𝜕𝑥𝑦𝐵𝐶𝜕𝑦𝐵𝜕𝑥𝐶)
]

}

𝑒2𝜎𝑡1 ,

𝜕𝑦𝐹𝑦 =
𝛤
𝜏

{

(𝜎2 + 𝜔2)(𝜕𝑥𝑦𝐴𝐶 + 𝜕𝑥𝐴𝜕𝑦𝐶 + 𝜕𝑥𝑦𝐵𝐷 + 𝜕𝑥𝐵𝜕𝑦𝐷)

+ 𝜎
[

𝛿1(𝜕𝑥𝑦𝐴𝐶 + 𝜕𝑥𝐴𝜕𝑦𝐶 − 𝜕𝑥𝑦𝐵𝐷 − 𝜕𝑥𝐵𝜕𝑦𝐷)

− 𝛿2(𝜕𝑥𝑦𝐴𝐷 + 𝜕𝑥𝐴𝜕𝑦𝐷 + 𝜕𝑥𝑦𝐵𝐶𝜕𝑥𝐵𝜕𝑦𝐶)
]

}

𝑒2𝜎𝑡1 ,
9

and

J (𝜓𝐴, 𝑞𝐴) =
𝛤
𝜏

{

(𝜎2 + 𝜔2)(J𝐴,𝐶 + J𝐵,𝐷)

+ 𝜎
[

𝛿1(J𝐴,𝐶 − J𝐵,𝐷) + 𝛿2(J𝐷,𝐴 + J𝐶,𝐵)
]

}

.

Note that the derivation of the energy transfer between the background
dipole and D-mode perturbations is similar.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.physd.2024.134068.
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