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O C E A N O G R A P H Y

Historical and future maximum sea 
surface temperatures
B. B. Cael1*, Friedrich A. Burger2,3, Stephanie A. Henson1, Gregory L. Britten4,5,  
Thomas L. Frölicher2,3

Marine heat waves affect ocean ecosystems and are expected to become more frequent and intense. Earth system 
models’ ability to reproduce extreme ocean temperature statistics has not been tested quantitatively, making the 
reliability of their future projections of marine heat waves uncertain. We demonstrate that annual maxima of de-
trended anomalies in daily mean sea surface temperatures (SSTs) over 39 years of global satellite observations are 
described excellently by the generalized extreme value distribution. If models can reproduce the observed distri-
bution of SST extremes, this increases confidence in their marine heat wave projections. 14 CMIP6 models' his-
torical realizations reproduce the satellite- based distribution and its parameters’ spatial patterns. We find that 
maximum ocean temperatures will become warmer (by 1.07° ± 0.17°C under 2°C warming and 2.04° ± 0.18°C 
under 3.2°C warming). These changes are mainly due to mean SST increases, slightly reinforced by SST seasonality 
increases. Our study quantifies ocean temperature extremes and gives confidence to model projections of marine 
heat waves.

INTRODUCTION
Marine heat waves (MHWs)—anomalously high ocean tempera-
tures (1)—can extend thousands of kilometers and last for weeks to 
years (2, 3). MHWs have occurred in all ocean basins over the past 
few decades (4, 5) and often caused devastating impacts on marine 
ecosystems (6), ranging from habitat shifts (7) and changes in popu-
lation structure (8) to high mortality of various marine keystone 
species (9, 10). These extreme events can overwhelm the capacity of 
both natural and human systems to cope, potentially causing socio-
economic impacts such as loss of essential ecosystem services and 
fisheries income (6, 11). The frequency of MHWs has increased over 
the past century (12), including a doubling over the satellite period (4), 
mainly due to anthropogenic climate change (3, 4). The frequency and 
intensity of MHWs are projected to increase in the future as global 
temperatures are projected to continue to rise (4, 5) with potentially 
widespread consequences for marine ecosystems globally. However, 
the reliability of these projections is uncertain because the models 
used to make them have not been statistically compared to historical 
observations of MHWs. In this study, we test these models’ ability to 
capture the observed statistics of maximum ocean temperatures to 
evaluate how reliable their future projections of MHWs may be.

To do so, we use the generalized extreme value (GEV) distribu-
tion, a well- established statistical model to describe the maxima of 
temperature distributions (or maxima of any other time series data) 
(13). The GEV distribution has been applied to study, for example, 
extreme temperatures and precipitation on land (14–18). While there 
has been some application of the GEV in marine contexts (19, 20), 
it remains underused in oceanic applications and, in particular, in 
studies of MHWs (21).

Analogous to the Gaussian distribution and the central limit theo-
rem (22), the maxima of many natural phenomena are GEV- distributed, 

explained by the extreme value theorem (13). The GEV distribu-
tion’s three parameters, location [μ, (°C)], scale [σ, (°C)], and shape 
(ξ), roughly determine its central value, its variability, and the weight 
of its upper tail (Materials and Methods). The advantage of a distri-
butional approach is that if the GEV can describe the variability in 
observation- based sea surface temperature (SST, °C) maxima, this 
simplifies the description and quantitative comparison with climate 
models. The question of how statistically similar models and obser-
vations’ SST maxima are becomes a question of how GEV- like mod-
eled and observed SST maxima are, what the parameters of the 
associated distributions are, and how these parameters vary in space 
when estimated for individual locations.

Our analysis starts with the hypothesis that SST maxima are GEV- 
distributed. Here, we test this hypothesis for satellite- derived annual 
maxima of mean daily SST. We then test whether SSTs simulated by 
the latest generation of Earth system models that participated in 
phase 6 of the Coupled Model Intercomparison Project [CMIP6; 
(23)] capture the statistical characteristics of observed SST extremes 
well. We then use this finding to make inferences about future ocean 
temperature extremes under two different global warming scenarios.

RESULTS
We find that the GEV is appropriate for modeling annual maxima in 
SST (Fig. 1). When pooling all annual maxima of linearly detrended 
SST anomalies over the 39- year satellite- based observation period 
(1982 to 2020) over all grid cells across the globe (see Materials and 
Methods), the GEV distribution captures the shape of the empirical 
distribution excellently. This is seen visually in Fig. 1 and quantified 
by the Kuiper statistic V, which measures the difference between 
two distributions in terms of the maximum differences in their cu-
mulative distribution functions (CDFs) (Materials and Methods). 
The Kuiper statistic is similar to the more common Kolmogorov- 
Smirnov statistic but is preferred because it is equally sensitive for all 
SST values (24). No significant trends in the parameter estimates can 
be found over the 39- year period; specifically, we repeated the analy-
sis shown in Fig. 1 for individual years, both globally and regionally, 
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and found no significant trends in the estimated GEV parameters 
(Materials and Methods). The parameter estimates of distributions 
for individual years do not change systematically with time. Hence, 
we do not find evidence of nonstationarity in the distribution of an-
nual maxima of detrended SST anomalies.

At the local scale, the GEV is fitted to detrended SST anomalies 
as well as to raw SST data (see Materials and Methods). The good-
ness of fit is assessed on the basis of the median Kuiper statistic; we 
find a median Kuiper statistic of 0.14 (anomalies) and 0.13 (raw data). 
In the ideal case of sampling 39 values from a GEV distribution 
many times, one also obtains a very similar median Kuiper statistic 
of 0.14 (Materials and Methods), suggesting that the GEV is a good 
model also at the local scale. In other words, a Kuiper statistic value 
of 0.14 is expected for true GEV data given the sample size, which 
matches the values found for the observations. In Materials and 
Methods, we also describe a sensitivity test showing that the GEV 
is applicable at the regional (10° × 10°) scale, in addition to the local 
(1° × 1°) and global scales.

The spatial pattern in the location parameter for the raw data 
(Fig. 2D) mainly reflects the latitudinal gradients in SSTs, with high-
er maxima in low- latitude regions where SST is generally higher. For 
the detrended anomaly data (Fig. 2A), we find the largest location 
parameters where SST variability is largest, such as in western 
boundary current regions (25) and the high latitudes (26). The scale 

parameter is generally large where strong interannual variability in 
SST drives large year- to- year variations in SST maxima (Fig. 2, B 
and E), such as in the equatorial Pacific and in the northern high 
latitudes. The scale parameter estimates are often larger for the raw 
data (median ratio σ anom./σ raw = 0.79, 90% range 0.56 to 1.16) 
because detrending reduces the year- to- year variability in the SST 
maxima relative to the raw SST data (see Materials and Methods for 
uncertainties). The shape parameter is close to zero over much of 
the ocean (Fig. 2, C and F) and slightly negative elsewhere. The mean 
and SD of the shape parameter fit to local anomaly maxima (Fig. 2C) 
are −0.15 and 0.17, generally consistent with the value of ξ = −0.01 
for a GEV fit to the global distribution of anomaly maxima (Fig. 1).

There are no systematic deviations between the CMIP6 Earth 
system model ensemble and the satellite observations (Table 1). For 
the globally pooled data, the goodness of fit matches that of the sat-
ellite observations well (model- mean Kuiper statistic of 0.032 com-
pared to 0.030 for the satellite data; Table 1). The model- mean 
parameter estimates are relatively close to the estimates of the satel-
lite product. The observations easily fall within the 90% confidence 
interval of the model ensemble for every parameter. The satellite- 
data parameter estimates are thus not significantly different from 
the respective model distributions. Put differently, the satellite data 
are indistinguishable from being another model in the CMIP6 mod-
el ensemble. While we do not find a systematic difference between 
the model parameter estimates and those from satellite data, there is 
notable variation within the model parameter estimates. For in-
stance, the global location and scale parameter estimates range from 
0.72° to 1.37°C and 0.49° to 0.76°C, respectively (Table 1). However, 
analysis of an ensemble of realizations from a single model (see be-
low) suggests that internal variability may explain two- thirds of the 
multimodel variation for σ and half of that for μ.

At the local scale, the models show a very similar goodness of fit 
as the satellite observations (median Kuiper statistic in Table 1). 
Furthermore, the parameter estimates agree well with those of the 
satellite data. The r2 values for μ and σ, which express the propor-
tions of variance in the model estimates that can be accounted for by 
the satellite estimates, are often close to 0.9 or higher (Table 1; Mate-
rials and Methods). The best match is found for the raw μ estimates 
because the models and satellite observations generally agree on the 
latitudinal temperature gradient that imprints on μ for the raw data.

We further support these results by repeating the analysis in Table 1 
for the 14- model CMIP6 analysis with an ensemble of 30 realiza-
tions with a single model from CMIP5, GFDL ESM2M- LE (Materials 
and Methods) (27). This allows us to test the extent to which differ-
ences between models’ values in Table 1 are due to structural differ-
ences between models versus internal variability. The intramodel 
spread (calculated as the width of the 90% confidence interval) for 
this single- model ensemble in the global V and ξ values is larger 
than that for the 14- model CMIP6 ensemble; that of the global σ 
parameter is similar in magnitude. This suggests that variations in 
these parameters across models are dominated by internal variabil-
ity, further supporting the conclusion that the observed behavior of 
SST maxima is not distinguishable from models. The CMIP6 inter-
model spread is appreciably larger than that of the GFDL ESM2M- 
LE intramodel spread for the global μ parameter, the r2 of the model 
versus observational local σ parameters, and the r2 of the model versus 
observational local μ parameter for the SST anomaly maxima. This 
suggests that models differ in their ability to capture the mean inten-
sity and spatial patterns of SST maxima, which could be leveraged to 

Fig. 1. GEV distribution fit for globally pooled maximum annual SST anomalies. 
Shown are the empirical and Gev (fit to the observations) cumulative distribution 
function (CdF), with the corresponding empirical and Gev probability density func-
tion (PdF; as a histogram for the empirical PdF) in the bottom inset, and in the top 
inset the empirical versus Gev percentiles (%iles; i.e., the percentiles of the observa-
tions and the fitted Gev, respectively) overlaid on a 1:1 line. the fit parameters for 
shape (ξ), location [μ, (°C)], scale [σ, (°C)], and the Kuiper statistic (V) are given. data 
are analyzed at 1° resolution to facilitate comparison with models. δT (°C) is the an-
nual maximum daily mean SSt anomaly after removing the interdecadal trend 
and seasonal cycle (Materials and Methods). note that by construction, the CdF 
plots each observational value individually, in ranked order, whereas the inset fig-
ures plot different simplified approximations of this distribution. the time period 
analyzed is 1982–2020.
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make constrained projections of future SST maxima. Here, we in-
stead take a more conservative approach, considering future changes 
in SST maxima only where (i) the CMIP6 14 model ensemble’s 90% 
confidence interval for the change of a given quantity excludes zero, 
and also (ii) the CMIP6 14 model ensemble’s 90% confidence inter-
val for that quantity itself includes the observational value. That is, we 
look for changes where the observed value of a quantity falls within 
the models’ range of values and where the models agree on the sign 
of change of that quantity.

Where satellite observations fall within the spread of model re-
sults in the 39- year historical period (all ocean area outside the pink 
stippled areas in Fig. 3), one may also expect that the spread of pro-
jected changes in GEV parameters with global warming contains the 
“true” change in parameters under a forcing scenario. We here focus 
on the location and scale parameters for the raw data, μraw and σraw. 
For the other cases (ξraw, μanom., σanom., and ξanom.), the models gen-
erally do not predict substantial changes nor agree on the sign of 
change, i.e., the 90% confidence intervals there include zero over 
almost all of the ocean. The location parameter for the raw SST data 
increases almost everywhere between the observation period 1982–
2020 and 2061–2100, both under SSP1- 2.6 and SSP5- 8.5 (Fig. 3, A 
and C). This increase is mainly due to the mean sea surface warming 

that is simulated by all models in most regions. Exceptions are parts 
of the Southern Ocean and the North Atlantic, where trends in SST 
are not always positive (black stippled regions in Fig. 3) (28–30). 
Increases in the location parameter μ are generally larger under 
SSP5- 8.5 than under SSP1- 2.6, reflecting the larger warming under 
higher radiative forcing in SSP5- 8.5 (Fig. 3). Across all models and 
over the total ocean, the average difference in μ under SSP5- 8.5 ver-
sus SSP1- 2.6 in 2061–2100 is 1.24°C. Robust increases in σ are simu-
lated for the raw data in the tropical Atlantic and Indian Ocean 
under SSP5-8.5 scenario (Fig. 4), but not for SSP1-2.6 (not shown in figure). 
The increases under SSP5- 8.5 may simply occur because of increasing 
warming trends with respect to the period 1982–2020, artificially 
increasing the interannual variability (31) and scale parameter of the 
GEV distribution. To investigate whether these significant changes 
in Fig. 4 were due to changes in mean SST trends or to changes in 
interannual variability, Fig. 5 shows the ensemble mean interannual 
SST variance, its change from 1982 to 2020 versus 2061 to 2100, and 
its change from 1982 to 2020 versus 2061 to 2100 after detrending. 
Significant increases in the σ parameter are mainly simulated in 
tropical regions of the Indian Ocean and Atlantic Ocean, where in-
terannual variability is generally low (Fig. 5A). It is also in these regions 
where significant increases in interannual variability are simulated 

Fig. 2. Local GEV parameter estimates for the satellite SST observations. estimated parameters are shown for the anomalies (first row) and raw data (second row). 
Black stippling in (C and F) indicates regions where the estimate’s 90% confidence interval includes 0; no such region exists for (A, B, D, or E). μ (°C), σ (°C), and ξ are the 
location, scale, and shape parameters of the Gev distribution fit to raw or anomaly SSt maxima at each location (Materials and Methods). “raw” refers to the annual maxi-
mum daily SSts, and “anom” refers to the anomalies of these relative to an interdecadal trend and seasonal cycle (Materials and Methods). the color scale is different for 
each subfigure. the time period analyzed is 1982–2020.
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(Fig. 5B), linking changes in interannual variability and σ. Last, no 
significant increases in interannual variability or σ are found when 
detrending the data (Fig. 5C), suggesting that the apparent increase 
in σ in the raw data in those regions is due to increasing warming 
trends in the SSP5- 8.5 simulations, as in (4, 31).

When using fixed warming levels of 2° and 3.2°C instead of a 
fixed future period, regions where the model ensemble distribution 
includes zero are similar (black stippling areas in Fig. 3; 3.2°C is 
used as it is the maximum warming level possible to analyze given 
the warming in the model realizations investigated here). Further-
more, the coefficient of variation is not substantially reduced by 
considering warming level rather than time period. The median ra-
tio between the coefficient of variation in μ in the 3.2°C warming 
level case (Fig. 3H) versus in the end- of- century SSP5- 8.5 case 
(Fig. 3D) is 0.81. This suggests that only ∼20% of the intermodel 
disagreement in μ changes is due to the CMIP6 models’ different 
warming rates. Thus, the disagreement between models in these re-
gions is not primarily caused by differing warming rates between the 
models. The global average increase in the GEV- based expected 
value of SST maxima is 1.07° ± 0.17°C (mean and SD across models) 
under 2°C warming and 2.04° ± 0.18°C under 3.2°C warming. These 
changes are almost entirely (>95%) due to changes in μ, noting that 

all three parameters can affect the expected value of the GEV. This is 
slightly greater than the global mean SST increase in these models, 
which increase by 0.91° ± 0.15°C and 1.76° ± 0.14°C on average in 
the 2° and 3.2°C cases, respectively, consistent with previous work 
(4). The larger increase in annual SST maxima than in mean SST is 
almost entirely because of increasing seasonal cycle amplitudes (32, 33). 
An increase in SST seasonality with ocean warming is caused by 
larger increases in ocean surface temperature in summer com-
pared to winter that result from greater warming from air- sea heat 
fluxes in summer when surface mixed layers are shallower (32). In-
creases in seasonal cycle amplitude, i.e., the difference between 
maximum and minimum of the mean seasonal cycle over an ana-
lyzed period, are simulated by all models between the 1982–2020 
period and the 40- year periods corresponding to the 2° and 3.2°C 
warming levels. Consequently, the difference between the maxi-
mum of the seasonal cycle and annual mean conditions also in-
creases. On average, across the model ensemble, the difference 
between SST seasonal cycle maximum and mean SST increases 
0.14°C between the 1982–2020 period and 2°C warming period, and 
0.25°C for the 3.2°C warming period. Thus, increases in seasonality 
are responsible for 13% (0.14 of 1.07°C) and 12% (0.25 of 2.04°C) of 
total increases in annual SST maxima, respectively, in each case.

Table 1. GEV distribution fits for the satellite observations and CMIP6 models’ historical simulations. For the globally pooled anomalies, the Kuiper 
statistic (V) as well as the parameter estimates are shown. For the fits at each location using anomalies and raw data, the median Kuiper statistic ( ̃V  ) as well as r2 
values for the simulated μ and σ parameters are shown, indicating how well the simulated parameter estimates from the models’ historical runs agree with those 
from the observations (see Materials and Methods). An r2 value of 1 indicates an everywhere perfect match between the parameter estimates in a simulation 
and those from observations. For this comparison, the models’ historical runs were treated identically to the observations in terms of detrending and 
deseasonalizing (Materials and Methods). the last two table rows give the ensemble mean and 90% confidence interval (Ci) width of the GFdl eSM2M- le single- 
model 30- member ensemble. the time period analyzed is 1982–2020.

Global Anomalies Raw

V μ σ ξ Ṽ r2 (μ) r2 (σ) Ṽ r2 (μ) r2 (σ)

Observations 0.030 1.12 0.62 −0.01 0.14 – – 0.1 – –

ACCeSS- CM2 0.020 0.83 0.54 −0.03 0.14 0.87 0.87 0.14 0.99 0.90

ACCeSS- eSM1- 5 0.030 0.72 0.51 −0.01 0.14 0.83 0.87 0.14 0.99 0.89

BCC- CSM2- MR 0.036 0.77 0.49 −0.04 0.14 0.84 0.87 0.14 0.99 0.92

CaneSM5 0.022 0.89 0.56 −0.01 0.14 0.82 0.77 0.15 0.99 0.75

CMCC- eSM2 0.038 1.02 0.74 −0.06 0.14 0.91 0.81 0.14 0.99 0.87

CnRM- CM6- 1 0.023 1.37 0.62 +0.03 0.14 0.88 0.86 0.14 0.97 0.89

CnRM- eSM2- 1 0.029 1.34 0.65 +0.05 0.14 0.81 0.81 0.14 0.98 0.86

CeSM2 0.043 0.76 0.56 −0.08 0.14 0.88 0.88 0.14 0.99 0.87

GFdl- eSM4 0.018 1.30 0.64 −0.08 0.14 0.92 0.90 0.14 0.98 0.91

MiROC6 0.030 0.75 0.58 −0.04 0.13 0.82 0.85 0.14 0.96 0.89

MPi- eSM1- 2- hR 0.037 0.90 0.55 −0.06 0.14 0.90 0.89 0.14 0.97 0.91

MPi- eSM1- 2- lR 0.043 0.85 0.53 −0.07 0.14 0.87 0.90 0.14 0.99 0.91

noreSM2- lM 0.034 1.06 0.66 −0.06 0.14 0.91 0.86 0.14 0.98 0.83

noreSM2- MM 0.056 0.95 0.76 −0.09 0.14 0.991 0.77 0.14 0.98 0.83

Model mean 0.032 0.97 0.60 −0.04 0.14 0.87 0.85 0.14 0.98 0.87

Model 90% Ci ±0.018 ±0.36 ±0.13 ±0.07 ±0.00 ±0.06 ±0.07 ±0.00 0.02 ±0.07

GFdl eSM2M- le 
mean

0.033 0.97 0.54 −0.05 0.14 0.83 0.80 0.14 0.99 0.79

GFdl eSM2M- le 
90% Ci

±0.023 ±0.19 ±0.09 ±0.09 ±0.00 ±0.00 ±0.02 ±0.00 ±0.00 ±0.02
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Fig. 3. CMIP6 changes in μ. ensemble mean (A, C, E, and G) and coefficient of variation (B, D, F, and H) of the change in location parameter μ for raw SSt data between 
the 1982–2020 satellite period and [(A) and (B)] 2061–2100 under the SSP1- 2.6 scenario, [(C) and (d)] 2061–2100 under the SSP5- 8.5 scenario, [(e) and (F)] the 40- year 
period centered on the 2°C warming level in the SSP5- 8.5 scenario, and [(G) and (h)] the 40- year period centered on the 3.2°C warming level in the SSP5- 8.5 scenario. Black 
stippling in (A) (C), (e), and (G) indicates regions where the 90% confidence interval of the model ensemble distribution includes 0, i.e., that a parameter change of 0 can-
not be rejected based on the model ensemble distribution or, equivalently, that the coefficient of variation is >0.61. Pink stippling indicates regions where the parameter 
estimate from satellite observations is not contained in the 90% confidence interval of the model ensemble distribution during the 39- year historical period. in these re-
gions, the observed Gev distribution thus significantly differs from the models, and it cannot be expected that the future parameter change can be represented by the 
model ensemble distribution.
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DISCUSSION
Our results demonstrate the utility of the generalized extreme value 
distribution for investigating extreme ocean surface temperatures. 
We find almost no evidence for heavier tails of maximum SSTs than 
that of the Gumbel (ξ = 0 case) distribution (i.e., almost no evidence 
that ξ > 0, where a more positive ξ value is associated with a higher 
probability of “extreme extremes” in SST). This is to some extent 
expected because there are numerous stabilizing feedback processes 
for SSTs, including exchange with the atmosphere and both vertical 

and lateral mixing. It may also be because we analyze the observa-
tions at 1° resolution to facilitate comparison with models as spatial 
averaging necessarily truncates the tails of temperature maxima. 
Note that the GEV distribution’s parameters’ values depend on the 
block size considered and, relatedly, the spatial and temporal scales 
used. The important aspects of our analysis are therefore that the 
GEV is a good descriptor of SST maxima and that models and ob-
servations yield similar parameter values and spatial patterns at a 
given scale. It will be valuable in future work to further explore the 

Fig. 4. CMIP6 changes in σ. ensemble mean (A and C) and coefficient of variation (B and D) of the change in the scale parameter σ between the satellite period and [(A) 
and (B)] 2061–2100 under the SSP5- 8.5 scenario or [(C) and (d)] after 3.2°C global warming. As Fig. 3 but for σ.

Fig. 5. CMIP6 ensemble mean interannual SST variance. (A) ensemble mean SSt variance 1982–2020. (B) difference in ensemble mean interannual SSt variance 
1982–2020 versus 2061–2100 under SSP5- 8.5. (C) Same as (B) but when annual mean SSts are (linearly) detrended. Black stippling in (B) and (C) indicates regions where 
the 90% confidence interval of the model ensemble distribution includes 0, i.e., that interannual SSt variance change of 0 cannot be rejected based on the model en-
semble distribution.
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dependency of GEV parameters on the spatial scale of analysis, par-
ticularly with respect to ξ. That said, extreme temperature phenom-
ena in the ocean occurring on larger scales (i.e., >1°) may be of 
greater interest due to their larger potential impacts, although the 
larger the spatial scale investigated, the less representative the aver-
age is of conditions experienced at a given location. We also find no 
evidence for nonstationarity in the detrended and deseasonalized 
SST anomalies, i.e., changes in the distribution of extremes over the 
39- year historical period, although this may be due to small sample 
size and may be detectable in future work via large ensembles of 
historical simulations (34).

Maximum SST is connected to MHWs as it reflects the intensity 
of the strongest MHW in a year, either for summertime MHWs 
(that is hottest day of the year for the raw data) or for MHWs occur-
ring throughout the year (largest warm anomalies for the deseason-
alized data). Similarly, it was recently used to illustrate changes in 
land- based heat wave intensity in future scenarios in the Inter-
governmental Panel on Climate Change (IPCC) AR6 synthesis 
report (35). However, extreme events, such as MHWs, can be de-
scribed by multiple characteristics, such as frequency, duration, cu-
mulative intensity, or the recurrence interval between succeeding 
MHWs (36). The definition of MHWs is currently an active area of 
debate, with practical importance for ecosystem applications (37). 
The analysis of maximum SST adds value in addition to these MHW 
metrics, as it is comparatively simple, independent of a reference 
state and threshold definition, and based on established statistical 
theory. Hence, it facilitates comparing simulated SST maxima to 
observations and eventually gives greater confidence in the robust-
ness of climate model projections of MHWs. Future work could also 
use the GEV to estimate return levels as another metric of MHWs.

Our analysis suggests that CMIP6 models capture ocean maxi-
mum temperatures well on the whole. This comparison provides 
strong quantitative evidence that CMIP6 models are well suited to 
making reliable projections about the future characteristics of MHWs 
under continued climate change. While many studies have shown 
that the frequency of MHWs will increase in the future (4, 5), our 
approach identifies regions where significant changes are expected 
for the ocean—i.e., where historical observations lie within the range 
of models’ historical simulations and where this model range shifts 
significantly in the future. In agreement with previous studies (4, 5), 
our results indicate changes in the intensity of extreme SSTs with 
global warming. In our analysis, the change in the location param-
eter dominates the shifts in the GEV distribution, corresponding to 
significant increases in annual SST maxima in the Indian Ocean, most 
of the Pacific Ocean, most of the Atlantic Ocean south of ~40°N, 
and portions of the Southern Ocean, for both scenarios and both 
warming levels considered here. The increase in location parameter 
and annual SST maxima is mainly due to increasing mean SST, con-
sistent with previous analyses identifying trends in mean SST as the 
main driver of increases in different MHW metrics (4, 12).

Some authors have advocated for defining MHWs relative to a 
shifting- mean baseline (38), wherein the long- term ocean warming 
signal is effectively removed. However, shifting their temperature 
thresholds at the same rate as the long- term warming may not be 
feasible for organisms with limited adaptation capability, such as 
warm water corals (9). Besides the dominant effect from long- term 
warming, we find consistent but smaller increases in annual SST 
maxima from increases in seasonality in all analyzed CMIP6 models 
and both warming levels. Note that the approach presented here has 

the advantage of not requiring reference to a background state or 
fixed threshold.

Although maximum temperatures become significantly warmer 
over most of the ocean under a lower- emissions scenario, our results 
suggest that emissions reductions will substantially reduce the rate 
of increase in maximum temperatures, and likely therefore substan-
tially reduce the harmful impacts of MHWs on ocean ecosystems.

MATERIALS AND METHODS
Observations
The observations we analyze are the 0.05° resolution, but regridded 
to 1°, satellite SST product from the European Space Agency (ESA) 
Climate Change Initiative (CCI) (available via https://surftemp.net/, 
downloaded on 10 June 2022) (39). Note that the citation (39) de-
scribes data up to 2016, but since the time of publication, the data-
set has been extended to include the data from 2017 to 2020 that we 
also use. The dataset version used is CCI SST v2.1, which has also 
been corrected for desert dust–related biases (40). It includes 39 
complete years (1982–2020) and uses purely satellite- based observa-
tions without explicitly blending in situ observations. This dataset is 
uniquely suited to our purposes because of its thorough validation 
and rigorous construction and because it provides depth- adjusted 
SSTs de- aliased with respect to the diurnal cycle for direct compari-
son with model SSTs (39). The data were regridded to 1° to facilitate 
comparison with the model realizations we were able to obtain (see 
below). In general, this product and resolution were both chosen 
because they make the comparison between observations and models 
as direct as possible. The regridding is performed by the surftemp.net 
tool provided by the data generators and incorporates the same as-
sumptions and corrections used to generate the underlying data-
set, detailed in (39). The notable aspect of these is that a 7- day/3° 
temporal/spatial decorrelation scale is assumed; these values are not 
known exactly, but their orders of magnitude are known given that 
the process to which they are related is the imperfectly accounted- 
for influence of the atmospheric state on the estimated SST (39). 
Given the small size of the errors accounted for by this factor, it is 
implausible that these time and spatial scale estimates affect our 
conclusions. Future work with higher- resolution models should ex-
plore how GEV parameters depend on the spatial scale considered. 
Note that all GEV parameters are dependent on the block size and 
relatedly the spatiotemporal scales considered. Therefore, our analy-
sis focuses on the suitability of the GEV as a description of SST 
maxima and the correspondence between model-  and observation- 
derived GEV parameters at a given scale, rather than the exact values 
of these parameters.

Model output
The model output we use is daily mean SST (tos, in CMIP notation) 
output regridded to 1° resolution from the Earth system models that 
participated in the CMIP6 (23). We were able to obtain one realiza-
tion of 14 different models, provided by 10 modeling centers (Table 1). 
We use the historical simulations over the 1850–2014 period and 
the future projections over 2015–2100 from the ScenarioMIP simu-
lations (41), in particular the low- emissions high- mitigation scenario 
SSP1- 2.6 and the high- emission low- mitigation scenario SSP5- 8.5. 
We used the latter scenario simulations to determine the decades in 
which each model exceeds 2° and 3.2°C of global mean surface tem-
perature change (i.e., warming averaged over both land and sea) since 
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preindustrial (i.e., 1850–1900) for Fig. 3. The value of 3.2°C was chosen 
because all of the models used here reached at least this level of warm-
ing, i.e., it is the maximum SST increase common to all the models. 
The global warming levels (GWLs) of 2.0° and 3.2°C represent 40- year 
time periods in the model simulations centered on the years when 
global mean surface air temperature crosses the respective tempera-
ture values. For the 2.0°C GWL, these years range from 2023 to 2057 
with a median of 2045, and for the 3.2°C GWL from 2044 to 2081 
with a median of 2070. The 40- year periods centered on these years 
represent periods when temperature transiently crosses 2.0° and 3.2°C 
global warming. Hence, the ocean is not yet in equilibrium with the 
atmosphere, and SST is lower compared to when the ocean is in 
equilibrium with the atmosphere at the same GWLs (42, 43). We 
also use a 30- member ensemble for the historical period of a 15th 
model from CMIP5, GFDL ESM2M- LE (27, 44, 45). To test for the 
influence of internal variability on the variations of the quantities in 
Table 1, we perform the same analyses reported in Table 1 for this 
single model ensemble.

Statistical analysis
Different approaches exist to define MHWs (1, 4, 21, 36, 46). Here, 
we consider exclusively the annual maximum of daily mean SST 
(unit of °C). We remove leap days from our analysis for simplicity. 
We only consider the latitudes 60°S to 70°N because latitudes pole-
ward of these are affected by sea ice, which strongly alters both the 
characteristics and measurement of SST. Figure 6 illustrates this for 
75°S to 60°S; the data appear to be a mixture of a GEV- like distribu-
tion and a narrow Gaussian distribution centered near zero. The latter 
of these is likely due to locations that are sea ice–covered throughout 
the year, substantially restricting their SST variation. Future work 
could address the high latitudes using a Gaussian- GEV mixture 
modeling approach; this analysis would be substantially more com-
plicated than the analysis described here but would be valuable be-
cause high- latitude ecosystems may be particularly sensitive to the 
impacts of MHWs (47).

For both observations and model output, we consider both the 
“raw” maxima, i.e., the maximum daily mean SST in a given year, 
and the maximum “anomaly” (δT in Figs. 1 and 6), from an inter-
decadal trend and a seasonal cycle. For the latter, we regress SST 
against a linear trend model with a categorical variable for each day 
of the year and then take the residuals from this regression for the 
anomalies. The trend that is subtracted from the daily mean SSTs by 
this calculation is the linear trend in daily mean SST over the full 
39- year period. The seasonal cycle that is thereby subtracted from 
the daily mean SSTs is the average daily mean SST for each day of 
the year after the trend has been removed and over the same period. 
The anomaly is therefore relative to the average detrended SST value 
for a given day of the year. This allows us to simultaneously remove 
a linear interdecadal temperature trend and an annual seasonal cy-
cle without making assumptions about the shape of the latter over 
the course of a year. Note, however, that this does assume a constant 
trend and seasonal cycle over time. Removing a seasonal cycle also 
means that maximum SST anomalies may occur at any point in the 
year, whereas maximum (raw) SSTs predominantly occur during times 
of year when average SSTs are already high. Note that the detrending 
of model output is performed separately for different 40- year periods, 
as is the removal of the seasonal cycle. SST trends over periods sub-
stantially longer than ~40 years are likely to be significantly nonlinear, 
and fitting such nonlinear trends with linear approximations can 

introduce artifacts into the residuals that would affect the GEV pa-
rameters and other metrics of interannual variability (31, 48).

We then fit these raw maxima and maximum anomalies by a 
GEV distribution via maximum likelihood estimation using the 
“mle” (maximum likelihood estimate) function in Matlab 2021b. 
The extreme value theorem states that the GEV distribution is the 
only possible limit distribution of properly normalized maxima of a 
sequence of independent and identically distributed (i.i.d.) random 
variables. Here, we consider blocks of 1 year, i.e., annual maxima. 
Natural phenomena are rarely if ever truly i.i.d., but the GEV distri-
bution holds and is applied broadly nonetheless (13). Autocorrela-
tion does not bias tail estimation (49), and formally accounting for 
it in GEV parameter estimation is computationally intensive and 
does not significantly affect parameter values (50). Furthermore, in 
this case, only 17% of locations have significantly autocorrelated an-
nual maximum daily mean temperatures at the 90% confidence 
level, with a median autocorrelation across grid cells of 0.12, so con-
sideration of autocorrelation in our analysis is not justified and does 
not affect our conclusions.

The GEV distribution has the form (51)

where f(·) is the probability density function and

where the range of x is such that [1 + ξ(x − μ)/σ] > 0, μ (°C) and σ 
(°C) are the location and scale parameters, and ξ is the parameter 
that controls the shape of the distribution. In our study, x is the an-
nual maximum daily SST. A large positive ξ results in a heavy- tailed 
distribution, while a negative value of ξ results in a light- tailed dis-
tribution. The extent to which the empirical distribution of maxima 
deviates from the GEV is then determined by calculating the Kuiper 

f (x; μ, σ, ξ) =
1

σ
t(x)ξ+1e−t(x)

t(x) =

⎧
⎪⎨⎪⎩

�
1+ξ

�x−μ

σ

��−1∕ξ
if ξ≠0

e
−(x−μ)∕σ if ξ=0

Fig. 6. Empirical CDF and PDF for 75°S to 60°S. 
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statistic V, which is the maximum of the empirical minus hypothe-
sized CDFs plus the maximum of the empirical minus hypothesized 
CDF, i.e.,

where E(x) is the empirical CDF of x and H(x) is the hypothesized 
empirical CDF of x. For a GEV distribution, H(x) has the form H(x) = 
e−t(x) for the function t(x) above. This statistic is chosen over the 
more common Kolmogorov- Smirnov statistic D = max∣E(x) − H(x)∣ 
because it is equally sensitive for all values of the random variable x 
(24). (Repeating all analysis with D instead of V does not affect our 
conclusions.) The Kuiper statistic takes values in the range [0,2], 
with lower values indicating closer correspondence. We first fit the 

GEV of the maximum anomalies, pooled across both all years and 
all locations; the parameters and V value associated with this fit are 
given in Fig. 1. Values of V or other CDF statistics are difficult to 
interpret for large observational sample sizes because one cannot 
distinguish whether minute detected differences between empirical 
and hypothesized distributions are due to measurement errors ver-
sus process- relevant factors. We therefore not only rely on the quan-
titative value of V but also evaluate correspondence between the 
observations and the GEV visually in multiple ways in Fig. 1. Given 
the excellent correspondence seen in Fig. 1, we then fit the distribu-
tion of the 39 years of annual maximum temperatures (both raw and 
anomalies) at each location. The associated parameter values are 
given in Fig. 2. In Fig. 7, the standard (i.e., ±1 SD) uncertainties of 

V =max[E(x) −H(x)] +max[H(x) − E(x)]

Fig. 7. Observational GEV parameter uncertainties. One Sd uncertainties of the maximum likelihood estimates for the anomaly (A) and raw (B) location parameter μ 
(°C), the anomaly (C) and raw (D) scale parameter σ (°C), and the anomaly (E) and raw (F) shape parameter ξ (∼) in the satellite SSt observations. the color scale is the same 
for all subfigures and in the same units as each parameter. the uncertainties are due to the small sample size (n = 39) from which the Gev parameters are estimated for 
each location.
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the μ and σ values estimated for observations are shown; these are 
calculated by the Wald method using the approximate Hessian matrix 
at the maximum likelihood estimates to compute SEs. This method 
demonstrates that the estimation variability for the global parameter 
values is negligible. The same fitting procedure is then repeated both 
for globally pooled maximum anomalies and for local raw maxima 
and maximum anomalies for each model realization, both for the 
39- year historical period matching the observations and for future 
periods (see below).

Figure 3 shows the model ensemble mean of the parameter changes 
from 1982–2020 to (A) 2061–2100 for SSP1- 2.6, (B) 2061–2100 for 
SSP5- 8.5, (C) the 40- year period centered on when 2°C warming is 
reached in each model in SSP5- 8.5, and (D) the 40- year period cen-
tered on when 3.2°C warming is reached in each model in SSP5- 8.5. 
The black stippling indicates regions where the 90% range (i.e., the 
5th to 95th percentile) of the model ensemble distribution for each 
mapped quantity includes zero. This 90% range is estimated as the 
model ensemble mean plus or minus 1.645 times the model ensem-
ble SD (n.b. 1.645 is the z score associated with the 95th percentile 
of a standard normal random variable). The pink stippling indicates 
regions where the 90% range of the model ensemble distribution for 
each mapped quantity in the 39- year historical period does not in-
clude the observational estimate of that quantity.

In Table 1, in the global section, the V and parameter values are 
given for each model realization by following the same procedure as 
in Fig. 1 but for the historical model output rather than the observa-
tions. In the anomalies and raw sections, the r2 values indicate the 
fraction of the variance accounted for in the observed parameters’ 
(spatial) distribution by the models’ parameters’ (spatial) distribu-
tions. r2 = 1 − RSS/TSS, where RSS is the residual sum of squares—
here the residual being the difference in a given parameter’s values at 
each location for a given model versus the observations—and TSS is the 
total sum of squares for the observations. An r2 = 1 thus indicates an 
everywhere perfect correspondence between the observed and mod-
eled values. The Ṽ  values indicate the median value of V across 
GEV fits to all locations. To contextualize the magnitude of these V 
values, we generate 10,000 sets of 39 draws each from a known 
GEV(0,1,0) distribution and fit each of these with a GEV exactly like we 

do the sets of annual maximum temperatures. The median V value 
for these sets is 0.14, which thus indicates high correspondence be-
tween the underlying and fitted distributions. Varying the GEV pa-
rameters within the range of the values found for SST maxima here 
does not change this result.

Testing for nonstationarity
We tested for nonstationarity by repeating the analysis shown in 
Fig. 1 for the spatially pooled anomalies for individual years. Note 
that the raw SST data cannot be aggregated in space and fit with a 
GEV to test for nonstationarity in this way. We repeated this process 
both with globally pooled anomalies and with regionally pooled 
anomalies, defining regions corresponding to the equatorial and 
eastern tropical Pacific, the rest of the subtropics, and the subpolar 
regions poleward of 30 N/S. None of the parameters exhibited a sig-
nificant trend in any region (bootstrap 90% confidence intervals of 
trends, estimated by linear regression of parameter estimates versus 
year, all included zero), indicating a lack of appreciable nonstationarity 
in these data. Note that the anomalies include a linear inter-
decadal trend, but μ could be nonstationary even for these detrend-
ed data if maximum SST values were increasing significantly faster 
or slower than annual mean SSTs. This does not wholly exclude the 
possibility of nonstationarity of course, given the small sample size 
of 39 years; a more thorough analysis of nonstationarity behavior is 
outside the scope of this manuscript but may be fruitful to pursue in 
particular with large model ensembles with many realizations using 
a single model.

Testing for regional applicability
In addition to the local (1°) and global GEV fits described above, we 
perform an additional analysis to test whether the GEV is applicable to 
SST maxima at the regional scale. We define three 10° × 10° boxes in 
the North Atlantic—a tropical box at 15°N to 24°N, 41°W to 50°W; 
a Gulf Stream box at 30°N to 39°N, 61°W to 70°W; and a subpolar 
box at 50°N to 59°N, 26°W to 35°W. These boxes are defined so as to 
represent different dynamical regions. We then repeat the analysis 
from Fig. 1 on the subsets of the observations within each box. We 
expect the GEV to be applicable at this scale, with slightly larger V 
values due to having ∼500× smaller sample sizes and with parame-
ters that vary between regions. The result of the regional analysis is 
shown in Fig. 8. As expected, we find that the GEV captures the 
distributions of SST maxima in these regions, with plausible varia-
tions in the distributions corresponding to each region.
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