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The hydrocarbon seepage chronology during deglaciation across the formerly
glaciated Barents Sea was established using uranium-thorium (U–Th) dating
of seep carbonates. Seep carbonates were sampled with remotely operated
vehicles (ROV) from the seafloor at three active hydrocarbon seeps (water
depth 156–383 m), located in the north-west (Storfjordrenna), north-central
(Storbanken High), and south-west (Loppa High) Barents Sea. Overall, the U–Th
dates range from 13.5 to 1.2 thousand years (ka) before present, indicating
episodic seep carbonate formation since the late Pleistocene throughout the
Holocene. The new U–Th dates indicate protracted post-glacial gas seepage,
congruent with previously published seep carbonate ages from the south-west
Barents Sea. Gas hydrate dissociation and associated seep carbonate formation
occurred at Storfjordrenna between ≈6 and 1.2 ka, and around 13.5 and 6 ka
at Storbanken. Early and late Holocene seep carbonate ages from Loppa High
support post-glacial seismic activity as potential seepage trigger mechanism.
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1 Introduction

Hydrocarbon seeps occur on the seafloor where upward migrating hydrocarbon-rich
fluids emanate, delivering dissolved and free gas by diffusion and ebullition from the
sediment into the seawater (e.g., Suess, 2014). The seeping hydrocarbon fluids can contain
methane from various sources, including hydrocarbon reservoirs, free gas accumulations
underneath gas hydrate layers, dissociating gas hydrates, or from microbial processes in
the shallow subsurface (e.g., Judd et al., 2002; Pohlmann et al., 2009). Before escaping at the
seafloor, most of the dissolved methane is typically consumed below the sediment–water
interface viamicrobialmediated sulfate-driven anaerobic oxidation ofmethane (AOM:CH4
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+ SO4
2− → HCO3

− + HS− + H2O) (Boetius et al., 2000; Reeburgh,
2007; and references therein). AOM can also be coupled to
the reduction of iron and manganese oxides, making it an
effective microbial barrier in marine sediments for upward
migrating dissolved methane (Beal et al., 2009; Egger et al., 2018).
A consequence of sulfate- and metal-driven AOM is increased pore
water carbonate alkalinity through the production of bicarbonate
(HCO3

−), which induces the precipitation of authigenic seep
carbonates (e.g., Ritger et al., 1987; Aloisi et al., 2002; Luff et al.,
2004; Leefmann et al., 2008). Seep carbonates comprise authigenic
carbonate phases including mainly aragonite and minor calcite
and dolomite cements. The authigenic carbonate minerals cement
seafloor sediments, ranging from cm-sized cemented nodules
to meter-sized mounds and exhaustive seafloor pavements (e.g.,
Greinert et al., 2001; Teichert et al., 2003; Naehr et al., 2007;
Himmler et al., 2015; Sauer et al., 2017; Crémière et al., 2018).
By using uranium–thorium (U–Th) radioisotopic dating of seep
carbonates, the chronology of methane flux episodes can be
reconstructed, which plausibly reflects the timing of various
environmental and geological mechanisms triggering past methane
release (e.g., Teichert et al., 2003; Feng et al., 2010; Crémiere et al.,
2016; Himmler et al., 2019).

On the formerly glaciated Barents Sea shelf more than 7000
active hydrocarbon seeps have been discovered, originating from
Palaeozoic through Cenozoic petroleum systems (e.g., Serov et al.,
2023; Thorsnes et al., 2023). Upward gas migration is controlled
by multiple geological mechanisms, including faults/fractures
connecting reservoirs to the seafloor, reservoir rocks structurally
exposed at the seafloor, and repeated glacial erosion of cap rocks
(e.g., Andreassen et al., 2017; Serov et al., 2023). Depending on the
ambient pressure–temperature conditions, rising methane may be
sequestered as or released from gas hydrate in the shallow sub-
seafloor gas hydrate stability zone (GHSZ; e.g., Chand et al., 2008;
Andreassen et al., 2017). While the GHSZ was relatively thicker
when grounded ice sheets covered the Barents Sea during the
Last Glacial Maximum (LGM; ≈20,000 ka), oceanographic and
environmental changes in concert with post–LGM ice retreat caused
thinning of the hydrate stability zone, resulting in enhanced gas
efflux (e.g., Andreassen et al., 2017; Serov et al., 2023). Indeed,
hydrate-related enhanced post–LGM methane seepage has been
suggested for various Barents Sea sites. It was previously put
forward that increased bottom water temperatures in concert with
depressurization and isostatic adjustment following the ice retreat
has induced gas hydrate dissociation, resulting in strong episodic
methane seepage in the south-west Barents Sea (Crémière et al.,
2016). Likewise, ice-sheet and GHSZ modeling implies that
the gradual changes in oceanographic conditions and isostatic
adjustment following ice retreat promoted rapid gas hydrate
dissociation and enhanced gas seepage in the north-west and
central Barents Sea (Andreassen et al., 2017; Waage et al., 2019;
Waage et al., 2020; Serov, et al., 2023). Regardless of the more than
7000 currently active hydrocarbon seeps mapped in the Barents
Sea, seepage histories based on U–Th dates of seep carbonates
corroborating enhanced post-glacial methane seepage have only
been reported from the south-west Barents Sea (Crémière et al.,
2016; Crémière et al., 2018; Argentino et al., 2022). Reconstruction
of the post-glacial gas efflux chronology in the north-west and
central areas of the Barents Sea has remained model-based to date.

Here we report petrographic and geochemical data including
new U–Th dates of 17 seep carbonates collected from three active
methane seeps located in the north-west (Storfjordrenna), central-
north (Storbanken High), and south-west (Loppa High) Barents
Sea (Figure 1). The U–Th dates reveal multiple episodes of seep
carbonate precipitation and enhanced methane release since the
late Pleistocene through the Holocene. The new carbonate ages
are in agreement with strong episodic gas efflux in the Barents
Sea following ice-retreat, and allow us to reconstruct the seepage
chronology and associated carbonate formation after deglaciation.

2 Materials and methods

Seep carbonates were sampled from the seabed using remotely
operated vehicles (ROVs) during four expeditions (Table 1;
Figure 1); samples HH1029 and HH1077 were collected using the
ROV 30K (Centre for AutonomousMarine Operations and Systems
AMOS, Norwegian University of Science and Technology) during
expedition CAGE16–5 with R/VHelmer Hanssen in 2016; the other
samples were retrieved with the ROV Ægir 6000 (University of
Bergen) during R/V Kronprins Haakon expedition CAGE18–5
in 2018 (Bünz et al., 2022); the PR1810 and PL954 samples were
collected using a work class ROV (FMC Technologies) during two
expeditions with M/S Bourbon Arctic in 2018.

2.1 XRD analyses

Quantitative mineralogical compositions were determined by
powder X-ray diffraction and are reported in weight-% (wt%;
Table 2). Powders were produced by pulverizing broken chunks
(i.e., bulk-rock) and micro-drilling of cut slabs using a hand-held
micro-drill. The powders were analysed with a Bruker D8 Advance
diffractometer using Cu K α radiation at a 2ϴ scanning angle of
3°–75° (step size of 0.02°, 1 s per step). Minerals were identified
by automatic and manual peak search using the Bruker DIFFRAC
EVA3.1 software; quantification was performed applying Rietveld
refinement with the TOPAS 5 software. Repeated internal standard
measurements yielded a detection limit and uncertainty of ±2 wt%.

2.2 Petrography and carbonate δ13C and
δ18O analyses

Thin sections (6.5 x 5 cm) were prepared from ca. 1.5 cm thick
cut slabs that were embedded in epoxy resin. The thin sections
were examined using standard petrographic microscopy (Figure 2).
Samples for stable carbon and oxygen isotopes (δ13C and δ18O)
were drilled from the surface of cut slabs with a hand-held micro-
drill. Approximately 200 µg of the obtained powders were reacted
with anhydrous phosphoric acid in a GasBench II preparation line;
released CO2 gas was analysed with a ThermoScientific Delta V
Advantage isotope ratio mass spectrometer. The δ13C and δ18O
values are reported in per mill (‰) relative to the Vienna–Pee
Dee Belemnite standard (V–PDB). The data were calibrated against
standardmaterials and the uncertainties for δ13C and δ18Owere not
higher than ± 0.2‰.
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FIGURE 1
Sampling locations (stars) in the north-west (Storfjordrenna), central-north (Storbanken High), and south-west (Loppa High) Barents Sea, relative to
reconstructed marine-based ice margin positions during deglaciation (redrawn after Sejrup et al., 2022; bathymetry data from Jakobsson et al., 2012).

2.3 Uranium–thorium dating

From 17 seep carbonates the U–Th ages of 55 fibrous cement
samples were determined. Sample powders between 0.2 and 9.3 mg
were obtained from polished cut slabs using a hand-held micro-
drill. After powder digestion in 8 M HNO3 U and Th were
separated, concentrated, and analysed as described previously
(Crémière et al., 2016). In brief, after digestion, centrifuging, and
detritus dissolution, U and Th were pre-concentrated by iron
co-precipitation and separated via column ion chromatography
(Edwards et al., 1987). Isotope ratios were measured with a Neptune
Plus multicollector inductively coupled plasma mass spectrometer.
Argon and nitrogen were used as carrying gases to minimize
oxide formation. Uranium–Th ages were calculated using an in-
house spreadsheet, applying the 230Th and 234U decay constants
of Cheng et al. (2013). Initial 230Th correction was based on mean
continental crust values. Sample ages are given in thousand years
before present (ka BP; BP = before 1950). Samples with 230Th/232Th
activity ratios ≤2 were rejected for data interpretation. The initial U
isotope signature of seep carbonate tends to reflect seawater values or
slight enrichment in 234U relative to seawater if precipitation occurs
under more restrictive conditions from pore fluids (Teichert et al.,
2003). Therefore, analyses where (234U/238U)i sample <1.14 or
(234U/238U)i sample >1.18 were assumed to represent an open-
system behaviour with respect to U and/or Th, and were rejected
for interpretation, too (see Supplementary Figure S1).

3 Results

3.1 Mineralogy, petrography, and
carbonate δ13C and δ18O values

Aragonite is the main carbonate mineral (22–90 wt%), followed
by moderate to low contents in magnesium-calcite (Mg-calcite; 3
to 63 wt%) and calcite (up to 22 wt%; Table 2). Quartz, feldspar,
and clay minerals are the major non-carbonate components,
ranging between 3 and 17 wt%. Micro-drilled fibrous aragonite
in samples HH1029 and HH1077 is completely devoid of non-
carbonate components (Table 2). Micrite in sample HH1029 has
moreMg-calcite (63 wt%) than aragonite (22 wt%), whereas micrite
in HH1077 is mainly aragonite (77 wt%) with only trace Mg-calcite
content (below 2 wt%).

The carbonates comprise porous intraformational breccias of
micrite-cemented sediment clasts, cemented by fibrous aragonite
crusts (Figure 2; Supplementary Figures S1–S6). Relatively earlier
formed micrite cemented clasts and subsequently formed fibrous
aragonite cement comprise the volumetric dominant microfacies.
The micrite cements hemipelagic sediment rich in silt-sized
quartz and feldspar grains (Figures 2A,D). Fibrous aragonite forms
mm-to cm-thick cement crusts, partly surrounding clasts and
filling the pore space between micrite-cemented sediment and
bioclasts (Figures 2B, C; Supplementary Figures S1–S6). Samples
from Storfjordrenna show abundant tube-worm fossils in
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TABLE 1 Overview of sampling sites and locations; GHP = gas hydrate pingo; mbsl = meters below sea level.

Sample Location Site Latitude [N] Longitude [E] Water depth (mbsl)

HH1029 NW Barents Sea Storfjordrenna, GHP 3 76°6′24.804″ 15°58′4.728″ 378

HH1077 NW Barents Sea Storfjordrenna, GHP 3 76°6′25.2″ 15°58′9.876″ 378

CAGE18–5–C1 NW Barents Sea Storfjordrenna, GHP 3 76°6′25.204″ 15°58′4.195″' 377

CAGE18–5–C2 NW Barents Sea Storfjordrenna, GHP 3 76°6′25.628″ 15°58′7.372″ 378

CAGE18–5–C3 NW Barents Sea Storfjordrenna, GHP 3 76°6′25.585″ 15°58′7.813″ 379

CAGE18–5–C4 NW Barents Sea Storfjordrenna, GHP 3 76°6′25.799″ 15°58′7.79″ 379

CAGE18–5–C5 NW Barents Sea Storfjordrenna, GHP 3 76°6′25.75″ 15°58′7.669″ 379

CAGE18–5–C6 NW Barents Sea Storfjordrenna, GHP 3 76°6′25.198″ 15°58′0.101″ 379

CAGE18–5–C7 NW Barents Sea Storfjordrenna, GHP 3 76°6′25.297″ 15°57′59.961″ 379

CAGE18–5–C11 Central-north Barents Sea Storbanken High 76°46′49.007″ 35°9′45.99″ 156

CAGE18–5–C14 Central-north Barents Sea Storbanken High 76°46′56.926″ 35°13′51.4″ 158

PR 1810–001 SW Barents Sea Loppa High 72°4′2.442″ 21°48′19.3356″ 383

PR 1810–002 SW Barents Sea Loppa High 72°4′2.365″ 21°48′19.3608″ 382

PR 1810–003 SW Barents Sea Loppa High 72°4′2.481″ 21°48′19.4832″ 383

PR 1810–051 SW Barents Sea Loppa High 72°4′2.524″ 21°48′20.1024″ 383

PL954–C1 SW Barents Sea Loppa High 71°57′58.104″ 21°35′11.256″ 354

PL954–C2 SW Barents Sea Loppa High 71°57′58.104″ 21°35′11.256″ 354

both, micrite and fibrous cement (Figures 2A, B), relatively
few articulated bivalve shells, and centimetre-sized grains of
ice-rafted debris (IRD; Supplementary Figures S1–S3). Likewise,
the Storbanken High samples display some bivalve shells and
IRD grains (Supplementary Figures S3D, E). Samples from the
Loppa High contain many articulated bivalves with abundant
inter- and intraparticle fibrous cement (Supplementary Figure S5).
Macroscopically, fibrous cement in the Loppa High samples can be
distinguished into whitish and grey aragonite. Whitish aragonite
appears as incoherent layer of inclusion-rich, cryptocrystalline
cement between micrite and fibrous aragonite (Figure 2E;
Supplementary Figures S6). Under UV light cryptocrystalline
aragonite exhibits intense fluorescence, whereas subsequent clear
fibrous aragonite is non-fluorescent. Likewise, dark inclusion-rich
clotted aragonite and brownish botryoidal aragonite display strong
fluorescence (Figure 2F). Occasionally, pockets of a few square
centimetre size containing cemented IRD are intercalated within
cemented clasts and bivalves (Supplementary Figures S6).

Carbonate δ13C and δ18O values were analysed for micrite (n =
47) andfibrous cement (n=47; Figure 3; Supplementary Figures S1).
Overall, δ13C values range from −43.3 to −18.4‰ while the δ18O
values range from 3.1‰ to 5.6‰.Micrite yielded slightly lower δ13C
(median ±SD: −32.2‰ ± 4.8‰) and slightly higher δ18O (4.8‰ ±
0.5‰) values than fibrous cement (δ13C = −31.2‰ ± 5.1‰; δ18O

= 4.6‰ ± 0.5‰). Samples from Storbanken High exhibit relatively
lower δ13C values (−37.8‰ ± 3.7‰; n = 19) than the Loppa High
(−31.9‰ ± 3.6‰; n = 51) and Storfjordrenna (−27.0‰ ± 2.5‰;
n= 30) samples. Storfjordrenna samples show relatively higher δ18O
values (5.0‰ ± 0.3‰) than the samples from Storbanken (4.9‰ ±
0.2‰) and Loppa High (4.3‰ ± 0.5‰).

3.2 Carbonate U–Th ages

From the 55 micro-drilled U–Th samples, four have been
discarded for interpretation due to relatively low data quality and
resulting high uncertainty, and three are coral skeleton material
(Figure 4; Supplementary Figure S1–S6; Supplementary Figure S1).
Samples C1 through C7, HH1029, and HH1077, were collected
from the gas hydrate pingo mound 3 (GHP 3; Serov et al., 2017) at
Storfjordrenna and yielded exclusively mid to late Holocene ages,
ranging from6.3 ± 2.3 (ka ± 2σ) to 1.2 ± 0.1 ka.The two samples from
the Storbanken High area yielded one late Pleistocene 13.5 ± 2.4 ka
(one subsample from C11) and three mid-Holocene ages from 6.6
± 0.3 to 5.4 ± 0.1 ka (three subsamples, C14). Samples PR1810 and
PL954 from the LoppaHigh area exhibit late Pleistocene and early to
midHolocene ages, ranging from 13.4 ± 0.7 to 4.1 ± 1.3 ka.The three
coral samples exhibit Holocene ages from 10.4 ± 1.3 to 4.2 ± 1.3 ka.
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TABLE 2 Mineralogical compositions (weight–%). Arag = aragonite; Cc = calcite Mg-Cc = magnesium calcite; Qtz = quartz; K-fsp = potassium feldspar;
Plc = plagioclase; Clays = illite, muscovite, smectite, and chlorite; tr. = trace; n.d. = not detected.

Sample Site Sampling
method

Microfacies Arag Cc Mg-Cc Qtz K-fsp Plc Clays

HH1029 Storfjordrenna,
GHP 3

micro-drill micrite 22 n.d 63 10 n.d tr 5

HH1029 Storfjordrenna,
GHP 3

micro-drill fibrous cement 78 22 n.d n.d n.d n.d n.d

HH1077 Storfjordrenna,
GHP 3

micro-drill fibrous cement 90 10 n.d n.d n.d n.d n.d

HH1077 Storfjordrenna,
GHP 3

micro-drill micrite 77 tr. 3 11 n.d 4 4

CAGE18–5–C1 Storfjordrenna,
GHP 3

broken chunk bulk-rock 43 n.d 31 10 n.d 4 12

CAGE18–5–C2 Storfjordrenna,
GHP 3

broken chunk bulk-rock 55 n.d 15 11 n.d 4 14

CAGE18–5–C3 Storfjordrenna,
GHP 3

broken chunk bulk-rock 68 n.d 8 10 n.d 4 10

CAGE18–5–C4 Storfjordrenna,
GHP 3

broken chunk bulk-rock 71 n.d 7 9 n.d 3 10

CAGE18–5–C5 Storfjordrenna,
GHP 3

broken chunk bulk-rock 65 n.d 10 9 n.d 4 12

CAGE18–5–C6 Storfjordrenna,
GHP 3

broken chunk bulk-rock 80 n.d 5 4 n.d 3 8

CAGE18–5–C7 Storfjordrenna,
GHP 3

broken chunk bulk-rock 61 n.d 17 8 n.d 3 11

CAGE18–5–C11 Storbanken High broken chunk bulk-rock 40 n.d 28 11 3 6 12

CAGE18–5–C14 Storbanken High broken chunk bulk-rock 61 n.d 7 17 3 4 8

P1810–001–5 Loppa High broken chunk bulk-rock 68 n.d 9 8 n.d 4 11

P1810–002–2 Loppa High broken chunk bulk-rock 61 n.d 23 5 n.d 3 8

P1810–003–2 Loppa High broken chunk bulk-rock 70 n.d 3 8 n.d 5 14

P1810–051–2 Loppa High broken chunk bulk-rock 66 n.d 4 14 3 5 8

4 Discussion

4.1 Carbonate precipitation induced by
anaerobic oxidation of methane and
non-methane hydrocarbons

The carbonate δ13C values are as low as previously reported
values of seep carbonates sampled from the south-west and
north-west Barents Sea (Crémière et al., 2016; Crémière et al., 2018;
Yao et al., 2021;Argentino et al., 2022), and indicate apredominantly
hydrocarbon-derived carbon source. Seepage gas samples from
Storfjordrenna and Loppa High show a thermogenic composition
and yielded δ13Cmethane values of −47‰ and−48% V–PDB,

respectively (Crémière et al., 2016; Serov et al., 2017). Weniger et al.
(2019) extracted gas from surface sediments at Storfjordrenna and
report a thermogenic composition with slightly higher average
δ13Cmethane of −41.3‰ ± 2.7‰ V–PDB (n=4). In the same study,
Weniger et al. (2019) show a thermogenic gas composition with
average δ13Cmethane of −50.8‰ ± 5.2‰ V–PDB (n=18) for surface
sediment bound gas from the Olga Basin, which borders along the
southern flank of the Storbanken High. To the best of the authors’
knowledge there are no published methane δ13C values for seepage
or bound gas from the Storbanken High seeps. Given that the
Storbanken High and the Olga Basin share the same reservoir rocks
(Lundschien et al., 2023; Serov et al., 2023), a thermogenic origin for
the gas seeping at Storbanken High is assumed.
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FIGURE 2
Thin section micrographs of representative seep carbonates from Storfjordrenna (A,B), Storbanken High (C,D), and Loppa High (E,F); PPL =
parallel-polarized light, XPL = cross-polarized light; P = pore space. (A) Sample CAGE18-5-C1, showing micrite-cemented sediment (Mic) with
abundant silt-sized quartz grains, surrounded by radial and botryoidal aragonite (Ara) cement; please note the abundant dark layered, and clotted and
peloidal inclusions; note also the longitudinal/oblique and perpendicular cut tube worm walls (Tw; arrows) which are open or completely cemented;
Tw are likely fossils of siboglinid Oligobrachia sp. (Sen et al., 2018); PPL, open pore space appears white. (B) Sample CAGE18-5-C4 with abundant
cemented tubes in micritic sediment (Mic), cross-cut by multiple layers of dark inclusion rich, mm-thick radial and botryoidal aragonite (Ara); PPL. (C)
XPL view (pore space appears black) of sample CAGE18-5-C11, showing micrite-cemented sediment with silt-sized quartz and some areas with clotted
micrite, surrounded by botryoidal aragonite (Ara); note that the aragonite fans originate from a layer of inclusion-rich cryptocrystalline aragonite (Cra).
(D) Sample CAGE18-5-C14 exhibiting rounded clasts of micrite-cemented sediment (Mic), cemented by radial fibrous aragonite (Ara); note abundant
siliciclastic grains cemented fibrous aragonite (XPL). (E) and (F) show transmitted light (left panels, XPL) and UV epifluorescence images (right panels) of
samples PR 1810–002 and PL954-02, respectively; inclusion-rich cryptocrystalline aragonite (Cra) and clotted and botryoidal aragonite in sample
P1810-002; note the stronger fluorescence of Cra compared to clear non-fluorescent aragonite; inclusion-rich clotted and botryoidal aragonite (Ara)
in sample PL954-02 exhibits strong fluorescence whereas clear aragonite is non-fluorescent.

The seep carbonates are relatively 13C-enriched compared to
the methane. This is interpreted as the result of mixing 13C-
depleted dissolved inorganic carbon (DIC) with 13C-rich DIC
during carbonate precipitation, yielding higher carbonate δ13C

values relative to the parent methane (Formolo et al., 2004;
Peckmann and Thiel, 2004; Roberts et al., 2010; Himmler et al.,
2015). Seep carbonate δ13C values represent a DIC mixture of
seawater (δ13C ≈ 0‰), DIC produced during organiclastic sulfate
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FIGURE 3
Seep carbonate δ13C and δ18O values (‰ V–PDB); LH = Loppa High,
SR = Storfjordrenna; SH = Storbanken High. The dashed and stippled
lines mark theoretical δ18O values for aragonite (4.7‰) and
magnesium-calcite (5.6‰) precipitated in equilibrium with bottom
water at 1°C temperature and δ18O = 1‰ (Vienna–Standard Mean
Ocean Water) assumed for ≈15 ka (see Crémière et al., 2016).

reduction (≈ −25‰), and DIC produced by AOM/or and oxidation
of higher hydrocarbons (δ13C below −20‰; e.g., Irwin, et al.,
1977; Formolo et al., 2004; Sassen et al., 2004; Smrzka et al.,
2019). Whereas the highest δ13Ccarbonate value of −18‰ (Figure 3;
Supplementary Figure S1) can be explained by a DIC mixture
of seawater and organiclastic sulfate-reduction, the rest of the
δ13Ccarbonate values between −43‰ and −24‰ point to a DIC
mixture produced by the anaerobic oxidation of the thermogenic
methane and/or non-methane hydrocarbons (Formolo et al., 2004;
Sassen et al., 2004; Smrzka et al., 2019). The relatively lower values
indicate a higher contribution of AOM-derived DIC, whereas
the relatively higher values indicate significant contribution DIC
resulting from the anaerobic oxidation non-methane hydrocarbons
(Formolo et al., 2004).

Aragonite is the dominant carbonate phase, except for the
magnesium-calcite rich micrite in sample HH1029 (Table 2). It is
not unusual for seep carbonates to mainly comprise aragonite and
partly include Mg-calcite (e.g., Greinert et al., 2001; Crémière et al.,
2018; Lu et al., 2021). At hydrocarbon seeps aragonite formation is
likely favoured over calcite by relatively high sulfate concentrations
(Burton, 1993). Bioturbation of the sediment by bivalves and
bubble ebullition during episodes of strong gas efflux likely eased
entrainment of sulfate-rich seawater into the shallow subsurface,

supporting sulfate-driven AOM near the sediment–water interface
(e.g., Borowski et al., 1999; Aloisi et al., 2002; Luff et al., 2004). In
contrast, during episodes of weak seepage with low gas flux, AOM
was likely mediated deeper in the sediment at relatively lower
pore water sulfate concentrations, and Mg-calcite precipitation
was favoured (e.g., Greinert et al., 2001). Increased magnesium
incorporation into the calcite lattice is plausible under low flux
conditions, when abundant AOM-produced hydrogen sulfide (HS−)
supports de-hydration of Mg2+ ions, thus increasing the pore
fluid Mg2+/Ca2+ ratio (Zhang et al., 2012; Lu et al., 2021). At the
same time, the increased alkalinity resulting from AOM-produced
bicarbonate (HCO3

−) also supports carbonate precipitation.
Overall, the aragonite-dominated mineralogy is congruent

with carbonate precipitation near the sediment–water interface.
This is also supported by the macrofossil content, including the
chemosynthesis-based siboglinid tube worms Oligobrachia sp.
(Sen et al., 2018; Åström et al., 2018), unidentified articulated
bivalves, and a presumably cool water coral (Figure 2,
Supplementary Figures S1–S6). Moreover, molecular fossils
including 13C-depleted lipid biomarkers diagnostic of AOM-
mediating methanotrophic archaea and sulfate-reducing bacteria
have been found in Storfjordrenna samples HH1029 and HH1077,
corroborating that microbial-mediated sulfate-driven AOM
induced carbonate precipitation (Yao et al., 2021). Although
no lipid biomarker data are available for the Storbanken High
and Loppa High samples, they contain abundant microbial
textures, including clotted micrite and cryptocrystalline aragonite
(Figures 2C–F; Riding, 2000; Zwicker et al., 2018). Both textures
exhibit strong fluorescence under UV radiation, indicative of high
organic matter content resulting from in situ organomineralization
(Neuweiler et al., 2000). Given that increased carbonate alkalinity at
methane seeps supports the lithification of microbial biofilms, it is
feasible that the fluorescent textures observed in the Storbanken
High and Loppa High samples represent mineralized AOM
hotspots (Himmler et al., 2018; Zwicker et al., 2018). Remarkably,
the strong fluorescent textures in samples PR1810-002 and PL945-
C2 (Figures 2E,F) correspond macroscopically to whitish aragonite,
similar to whitish and cryptorcrystalline aragonite with high
AOM-biomarker contents described in modern and ancient seep
carbonates (Leefmann et al., 2008; Hagemann et al., 2013).

4.2 Timing of seep-carbonate formation
relative to the palaeoenvironment

Regarding the reconstructed ice margins, all U–Th dates are
consistent with carbonate formation after local ice retreat and
protracted methane flux (e.g., Crémière et al., 2016; Serov et al.,
2023). The oldest samples C11 (Storbanken High; SH) and PR1810-
001C (Loppa High; LH) yielded similar ages of 13.5 (SH) and 13.4
(LH) ka. The ages indicate relatively high gas flux and associated
seep carbonate formation at these two distant sites during the
Bølling–Allerød interstadial. At this time, influx of relatively warmer
Atlantic seawater promoted rapid disintegration of the grounded
Barents Sea ice sheet, leaving large areas in the west and south-
west Barents Sea ice free (e.g., Rasmussen and Thomsen, 2021;
Sejrup et al., 2022). The influx of warm water likely accelerated
the dissociation of shallow subsurface gas hydrates, resulting in
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FIGURE 4
Seep carbonate U–Th ages (±2σ) from Storfjordrenna (SR), Storbanken High (SH) and Loppa High (LH), relative to reconstructed regional ice cover and
palaeoenvironment (vertical shaded bars). Symbols in brackets indicate coral skeleton ages (seep carbonate sample PR 1810–001E; note that the oldest
coral date is likely a mixture of skeleton and seep carbonate cement); HS1 = Heinrich stadial 1 (cool); B–A = Bølling–Allerød interstadial (warm); YD,
Younger Dryas (cool); palaeoenvironment timing after Rasmussen and Thomsen (2021); ice-sheet cover after Sejrup et al. (2022).

increased methane emissions at the seafloor (Crémière et al., 2016;
Andreassen, et al., 2017). This is congruent with the SH carbonate
δ18O values, indicating a contribution of hydrate-derived 18O-
enriched water during carbonate precipitation (Figure 3).

Except for sample PL954–C2 (≈4.7 and 4.4 ka), the rest of the
non-coral LH samples have late Pleistocene and early Holocene
U–Th ages between ≈12.6 and 7.5 ka. Overall, the LH dates are in
agreementwith previously reported seep carbonateU–Thdates from
the south-west Barents Sea and northern Norwegian Sea, together
indicating episodic post–LGM hydrocarbon gas release and seep
carbonate formation between 17.5 and 1.6 ka (Crémière et al., 2016;
Sauer et al., 2017; Crémière et al., 2018; Argentino et al., 2022).
Sauer et al. (2017) suggested that in northern Scandinavia, seismic
activities and resulting fault reactivation and changes in reservoirs
pore pressure could have triggered gas seepage around ≈11 and 4 ka.
Remarkably, the majority of the new LH U–Th ages between 12 and
10 ka plus the two ages of sample PL954–C2 (≈4.7 and 4.4 ka), are
in agreement with this scenario.

The carbonate ages reveal lag times between local ice retreat and
distinct episodes of enhanced gas efflux. It needs to be stressed that
the reported ages were exclusively derived from relatively late-stage
fibrous aragonite cement and do not constrain the initial seepage
stage (see also Crémière et al., 2016; Crémière et al., 2018). In
particular at Storfjordrenna, seep carbonate formation occurred ≈13
ka after the grounded ice has had retreated after ≈19 ka (Rasmussen
and Thomsen, 2021; Sejrup et al., 2022). The long lag time at
Storfjordrenna is surprising, considering that abundant gas hydrates

(and probably free gas) had accumulated in the subsurface during
the LGM in an approximately 200 m thickGHSZ (Serov et al., 2017).
After glacial retreat, the GHSZ totally diminished by ≈13 ka and
must have released significant gas amounts from the seabed due
to gas hydrate dissociation (Serov et al., 2017). Yet, the carbonate
ages do not indicate carbonate formation before 6.3 ka. It could
be that the U–Th ages of seafloor-sampled seep carbonates do not
reflect the entire post–LGM seepage history, and large ice bergs
from the disintegrating ice sheet might have eroded any older seep
carbonates from the seafloor (Rasmussen and Thomsen, 2021).
El bani Altuna et al. (2021) showed that the average bottom water
temperature at Storfjordrenna increased from 2.5°C ± 1°C to 4.3°C
± 1°C between ≈13 and 5 ka, followed by cooling down to down
2.8°C ± 1°C after 4 ka. In addition, their gas hydrate model suggests
that a fluctuating GHSZ existed between 13 and 9 ka (i.e., variable
thickness of 0 to ca. 100 m below seafloor), but was absent between
9 and 5 ka, resulting in liberation of gas and hydrate-derived water.
Remarkably, the gas hydrate modeling also shows a stable GHSZ
since 5 ka, which would sequester most of the upward migrating
gas. Yet, our U–Th ages show constant seep carbonate formation
near the sediment–water interface since 6.3 ka. Regardless of the
existence of the GHSZ, the carbonate dates support the notion that
the underlying hydrocarbon reservoir actively injects thermogenic
methane into the shallow subsurface sediments at this site, probably
since the mid to late Holocene until modern times, as put forward
by Waage et al. (2019). Given constant gas supply from below and
the resulting high methane concentrations, free methane likely
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bypasses the GHSZ through cracks and faults, eventually escaping
at the seafloor.

Seep carbonate δ18O values depend on the mineralogy, the
ambient temperature and the δ18O of the carbonate-precipitating
fluid, and serve as proxy for possible gas hydrate dissociation
during carbonate formation (e.g., Aloisi et al., 2000; Greinert et al.,
2001; Crémière et al., 2016; Crémière et al., 2018). Assuming seep
carbonate formation under post-glacial conditions, i.e., bottom
water temperature 1°C and seawater δ18O = 1‰ V–SMOW
(Duplessy et al., 2002), carbonate δ18O values of 4.7‰ for aragonite
and 5.6‰ for magnesium–calcite would be expected (Kim et al.,
2007; Crémière et al., 2016). Samples from Storfjordrenna (median
δ18O = 5.0) and Storbanken High (median δ18O = 4.9) show
carbonate δ18O values slightly higher than 4.7‰, while the Loppa
High samples are mostly (but not exclusively) below 4.7‰ (median
δ18O = 4.3; Figure 3). Values above 4.7‰ would indicate either
precipitation from fluids below 1°C temperature or relatively
enriched in 18O, while lower values point to precipitation at slightly
higher temperatures or fluids depleted in 18O. Given that the
reconstructed bottom water temperature was above 2°C in the
Storfjordrenna since the early Holocene (El bani Altuna et al., 2021;
Rasmussen and Thomsen, 2021), the seep carbonates most likely
precipitated from 18O-enriched fluids. It is feasible that the 18O-rich
fluids originated from extensive post–LGMgas hydrate dissociation,
since hydrate incorporates preferentially 18O (Davidson et al., 1983;
Serov et al., 2023). Considering that warmwater influx has triggered
abrupt gas hydrate dissociation to form large craters on the seafloor
between 15 and 12 ka ago (Andreassen et al., 2017), a similar
formation scenario for the ≈6 ka old Storbanken High sample
C14 is suggested. Influx of warmer bottom water around 6 ka, as
shown by El bani Altuna et al. (2021), likely accelerated gas hydrate
dissociation in the shallow subsurface, which would explain the
relatively 18O-erniched carbonates. For the Loppa High samples,
most of the carbonate δ18O values can be explained by precipitation
in equilibriumwith ambient post–LGMbottomwater temperatures.
However, as pointed out by Crémière et al. (2018), a contribution
of 18O-rich fluids from the relatively deeper reservoir and/or from
gas hydrate dissociation can not be ruled out, considering the
complex tectono–sedimentary history and possible fluid dilution
effects during carbonate precipitation.

5 Conclusions

1) Carbonates sampled from active gas seeps at Storfjordrenna,
Storbanken High, and Loppa High areas in the Barents Sea
formed as a result of the anaerobic oxidation of methane and
higher hydrocarbons. New U–Th ages overlap with previously
published ages for seep carbonates from the south-west
Barents Sea, corroborating episodic gas release and carbonate
precipitation in the aftermath of the retreat of the Barents
Sea–Svalbard Ice Sheet since the Last Glacial Maximum.

2) Major carbonate formation periods occurred after the
Bølling–Allerød interstadial, during the Younger Dryas
stadial, and at the beginning of and throughout the mid to
late Holocene.

3) The U–Th ages from Storfjordrenna, where gas hydrates
are present today, indicate seep carbonate precipitation

resulting from gas hydrate dissociation-related methane
release ca.13 ka after the marine-based ice sheet had retreated.
The new U–Th ages indicate that carbonate formation
continued between 6.3 and 1.2 ka.

4) At gas seeps which are structurally connected to deep-seated
hydrocarbon reservoirs at Storbanken High and Loppa High,
seep carbonates formed relatively early after the local ice
retreat, indicating episodic gas release from ca.13.5 to 4.4 ka.
It is speculated that seismic activity resulting from post-glacial
isostatic adjustment reactivated faults and triggered episodic
gas seepage.

5) Relatively 18O-enriched seep carbonates indicate gas hydrate
dissociation related seepage due to relative warmer bottom
waters since the mid Holocene at Storfjordrenna and
Storbanken High.
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