

DATA NOTE

The genome sequence of the White-triangle Button, *Acleris holmiana* (Linnaeus, 1758) [version 1; peer review: awaiting peer review]

Douglas Boyes¹⁺, Clare Boyes¹⁰²,

University of Oxford and Wytham Woods Genome Acquisition Lab, Darwin Tree of Life Barcoding collective,

Wellcome Sanger Institute Tree of Life Management, Samples and Laboratory team,

Wellcome Sanger Institute Scientific Operations: Sequencing Operations, Wellcome Sanger Institute Tree of Life Core Informatics team, Tree of Life Core Informatics collective, Darwin Tree of Life Consortium

v1

First published: 29 Feb 2024, 9:97

https://doi.org/10.12688/wellcomeopenres.20839.1

Latest published: 29 Feb 2024, 9:97

https://doi.org/10.12688/wellcomeopenres.20839.1

Abstract

We present a genome assembly from an individual female *Acleris holmiana* (the White-triangle Button; Arthropoda; Insecta; Lepidoptera; Tortricidae). The genome sequence is 650.2 megabases in span. Most of the assembly is scaffolded into 31 chromosomal pseudomolecules, including the Z and W sex chromosomes. The mitochondrial genome has also been assembled and is 16.28 kilobases in length.

Keywords

Acleris holmiana, White-triangle Button, genome sequence, chromosomal, Lepidoptera

This article is included in the Tree of Life gateway.

Open Peer Review

Approval Status AWAITING PEER REVIEW

Any reports and responses or comments on the article can be found at the end of the article.

¹UK Centre for Ecology & Hydrology, Wallingford, England, UK

²Independent researcher, Welshpool, Wales, UK

⁺ Deceased author

Corresponding author: Darwin Tree of Life Consortium (mark.blaxter@sanger.ac.uk)

Author roles: Boyes D: Investigation, Resources; Boyes C: Writing - Original Draft Preparation;

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by Wellcome through core funding to the Wellcome Sanger Institute (206194) and the Darwin Tree of Life Discretionary Award (218328).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2024 Boyes D *et al.* This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Boyes D, Boyes C, University of Oxford and Wytham Woods Genome Acquisition Lab *et al.* The genome sequence of the White-triangle Button, *Acleris holmiana* (Linnaeus, 1758) [version 1; peer review: awaiting peer review] Wellcome Open Research 2024, 9:97 https://doi.org/10.12688/wellcomeopenres.20839.1

First published: 29 Feb 2024, **9**:97 https://doi.org/10.12688/wellcomeopenres.20839.1

Species taxonomy

Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Protostomia; Ecdysozoa; Panarthropoda; Arthropoda; Mandibulata; Pancrustacea; Hexapoda; Insecta; Dicondylia; Pterygota; Neoptera; Endopterygota; Amphiesmenoptera; Lepidoptera; Glossata; Neolepidoptera; Heteroneura; Ditrysia; Apoditrysia; Tortricoidea; Tortricidae; Tortricinae; Tortricini; *Acleris*; *Acleris holmiana* (Linnaeus, 1758) (NCBI:txid572802).

Background

Acleris holmiana is a micro-moth in the family Tortricidae with the common name of White-triangle Button. This is a small but distinctive species (forewing 6–7 mm). The forewing is dark orange with reddish-brown bands and a large, bright white, triangular mark on the costa (Sterling *et al.*, 2012). The moth is found throughout Europe excluding the Iberian Peninsula (GBIF Secretariat, 2023), and was accidentally introduced to British Columbia in 1977 (TortAI, 2014).

The moth can be disturbed by day, and comes to light at night (Langmaid *et al.*, 2018). In the UK, the moth is single brooded and flies between mid-June and early September (Sterling *et al.*, 2012) however, in British Columbia it is double or triple brooded (TortAI, 2014). The eggs are laid on twigs of various rosaceous shrubs including hawthorn, *Prunus* spp. and apple, and do not hatch until the following spring. The larvae feed between two leaves of the foodplant which it spins together at the edge to create a shelter in which it feeds, and later (Hancock *et al.*, 2015). It is considered a minor pest of fruit trees in Europe.

The genome of *A. holmiana* was sequenced as part of the Darwin Tree of Life Project, a collaborative effort to sequence all named eukaryotic species in the Atlantic Archipelago of Britain and Ireland. Here we present a chromosomally complete genome sequence for *A. holmiana* based on one female specimen from Wytham Woods, Oxfordshire, UK.

Genome sequence report

The genome was sequenced from one female *Acleris holmiana* (Figure 1) collected from Wytham Woods, Oxfordshire, UK (51.77, -1.34). A total of 40-fold coverage in Pacific Biosciences single-molecule HiFi long reads was generated. Primary assembly contigs were scaffolded with chromosome conformation Hi-C data. Manual assembly curation corrected 116 missing joins or mis-joins and removed 16 haplotypic duplications, reducing the assembly length by 0.38% and the scaffold number by 4.19%.

The final assembly has a total length of 650.2 Mb in 296 sequence scaffolds with a scaffold N50 of 21.2 Mb (Table 1). The snailplot in Figure 2 provides a summary of the assembly statistics, while the distribution of assembly scaffolds on GC proportion and coverage is shown in Figure 3. The cumulative assembly plot in Figure 4 shows curves for subsets of scaffolds assigned to different phyla. Most (97.85%) of the assembly sequence was assigned to 31 chromosomal-level

Figure 1. Photograph of the *Acleris holmiana* (ilAclHolm1) specimen used for genome sequencing.

scaffolds, representing 29 autosomes and the Z and W sex chromosomes. Chromosome-scale scaffolds confirmed by the Hi-C data are named in order of size (Figure 5; Table 2). The Z chromosome was assigned by alignment to Acleris literana (GCA_946894065.1) (Crowley et al., 2023). While not fully phased, the assembly deposited is of one haplotype. Contigs corresponding to the second haplotype have also been deposited. The mitochondrial genome was also assembled and can be found as a contig within the multifasta file of the genome submission.

The estimated Quality Value (QV) of the final assembly is 61.0 with k-mer completeness of 100.0%, and the assembly has a BUSCO v5.3.2 completeness of 97.3% (single = 96.4%, duplicated = 0.9%), using the lepidoptera_odb10 reference set (n = 5.286).

Metadata for specimens, barcode results, spectra estimates, sequencing runs, contaminants and pre-curation assembly statistics are given at https://links.tol.sanger.ac.uk/species/572802.

Methods

Sample acquisition and nucleic acid extraction

The specimen used for genome sequencing was a female *Acleris holmiana* (specimen ID Ox000637, ToLID ilAclHolm1). The specimen was collected from Wytham Woods, Oxfordshire (biological vice-county Berkshire), UK (latitude 51.77, longitude –1.34) on 2020-07-20 using a light trap. The specimen used for Hi-C sequencing (specimen ID Ox001677, ToLID ilAclHolm2) was collected from the same location on 2021-07-17 also using a light trap. The specimens were collected and identified by Douglas Boyes (University of Oxford) and preserved on dry ice.

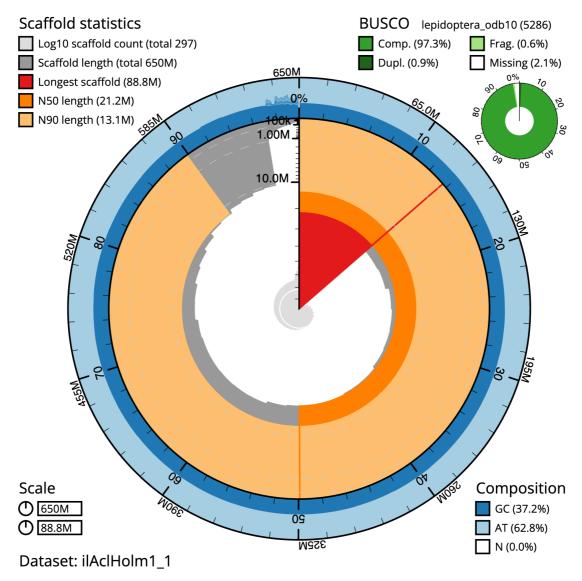

The workflow for high molecular weight (HMW) DNA extraction at the Wellcome Sanger Institute (WSI) includes a sequence of core procedures: sample preparation; sample homogenisation, DNA extraction, fragmentation, and clean-up.

Table 1. Genome data for Acleris holmiana, ilAclHolm1.1.

Project accession data		
Assembly identifier	ilAclHolm1.1	
Species	Acleris holmiana	
Specimen	ilAclHolm1	
NCBI taxonomy ID	572802	
BioProject	PRJEB58938	
BioSample ID	SAMEA7701499	
Isolate information	ilAclHolm1, whole organism (DNA sequencing) ilAclHolm2, whole organism (Hi-C sequencing)	
Assembly metrics*		Benchmark
Consensus quality (QV)	61.0	≥50
k-mer completeness	100.0%	≥95%
BUSCO**	C:97.3%[S:96.4%,D:0.9%], F:0.6%,M:2.1%,n:5,286	<i>C</i> ≥ 95%
Percentage of assembly mapped to chromosomes	97.85%	≥95%
Sex chromosomes	ZW	localised homologous pairs
Organelles	Mitochondrial genome: 16.28 kb	complete single alleles
Raw data accessions		
PacificBiosciences SEQUEL II	ERR10798423	
Hi-C Illumina	ERR10786010	
Genome assembly		
Assembly accession	GCA_949316455.1	
Accession of alternate haplotype	GCA_949316255.1	
Span (Mb)	650.2	
Number of contigs	1240	
Contig N50 length (Mb)	1.1	
Number of scaffolds	296	
Scaffold N50 length (Mb)	21.2	
Longest scaffold (Mb)	88.82	

^{*} Assembly metric benchmarks are adapted from column VGP-2020 of "Table 1: Proposed standards and metrics for defining genome assembly quality" from (Rhie *et al.*, 2021).

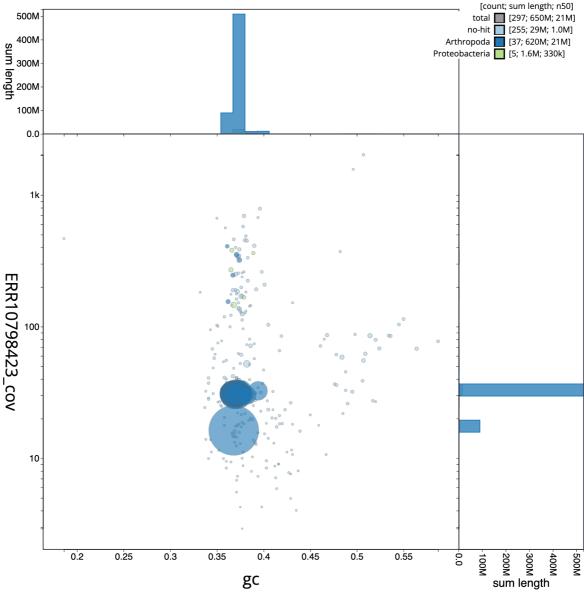
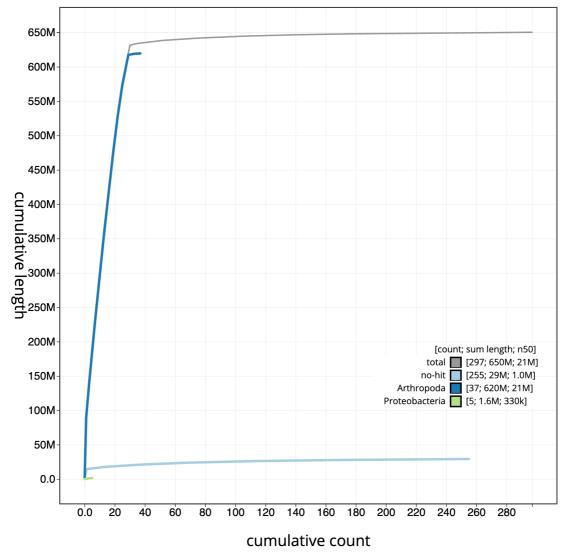

^{**} BUSCO scores based on the lepidoptera_odb10 BUSCO set using version 5.3.2. C = complete [S = single copy, D = duplicated], F = fragmented, M = missing, n = number of orthologues in comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/ilAclHolm1_1/dataset/ilAclHolm1_1/busco.

Figure 2. Genome assembly of *Acleris holmiana*, **ilAclHolm1.1: metrics.** The BlobToolKit Snailplot shows N50 metrics and BUSCO gene completeness. The main plot is divided into 1,000 size-ordered bins around the circumference with each bin representing 0.1% of the 650,224,491 bp assembly. The distribution of scaffold lengths is shown in dark grey with the plot radius scaled to the longest scaffold present in the assembly (88,816,612 bp, shown in red). Orange and pale-orange arcs show the N50 and N90 scaffold lengths (21,176,203 and 13,133,638 bp), respectively. The pale grey spiral shows the cumulative scaffold count on a log scale with white scale lines showing successive orders of magnitude. The blue and pale-blue area around the outside of the plot shows the distribution of GC, AT and N percentages in the same bins as the inner plot. A summary of complete, fragmented, duplicated and missing BUSCO genes in the lepidoptera_odb10 set is shown in the top right. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ilAclHolm1_1/snail.

In sample preparation, the ilAclHolm1 sample was weighed and dissected on dry ice (Jay et al., 2023). Tissue of the whole organism was homogenised using a PowerMasher II tissue disruptor (Denton et al., 2023a). HMW DNA was extracted using the Automated MagAttract v1 protocol (Sheerin et al., 2023). DNA was sheared into an average fragment size of 12–20 kb in a Megaruptor 3 system with speed setting 30 (Todorovic et al., 2023). Sheared DNA was purified by

solid-phase reversible immobilisation (Strickland *et al.*, 2023): in brief, the method employs a 1.8X ratio of AMPure PB beads to sample to eliminate shorter fragments and concentrate the DNA. The concentration of the sheared and purified DNA was assessed using a Nanodrop spectrophotometer and Qubit Fluorometer and Qubit dsDNA High Sensitivity Assay kit. Fragment size distribution was evaluated by running the sample on the FemtoPulse system.

Figure 3. Genome assembly of *Acleris holmiana*, **ilAclHolm1.1: BlobToolKit GC-coverage plot.** Scaffolds are coloured by phylum. Circles are sized in proportion to scaffold length. Histograms show the distribution of scaffold length sum along each axis. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ilAclHolm1_1/dataset/ilAclHolm1_1/blob.


Protocols developed by the WSI Tree of Life laboratory are publicly available on protocols.io (Denton *et al.*, 2023b).

Sequencing

Pacific Biosciences HiFi circular consensus DNA sequencing libraries were constructed according to the manufacturers' instructions. DNA sequencing was performed by the Scientific Operations core at the WSI on a Pacific Biosciences SEQUEL II instrument. Hi-C data were also generated from whole organism tissue of ilAclHolm2 using the Arima2 kit and sequenced on the Illumina NovaSeq 6000 instrument.

Genome assembly, curation and evaluation

Assembly was carried out with Hifiasm (Cheng et al., 2021) and haplotypic duplication was identified and removed with purge_dups (Guan et al., 2020). The assembly was then scaffolded with Hi-C data (Rao et al., 2014) using YaHS (Zhou et al., 2023). The assembly was checked for contamination and corrected as described previously (Howe et al., 2021). Manual curation was performed using HiGlass (Kerpedjiev et al., 2018) and Pretext (Harry, 2022). The mitochondrial genome was assembled using MitoHiFi (Uliano-Silva et al., 2023), which runs MitoFinder (Allio et al., 2020) or MITOS (Bernt et al., 2013)

Figure 4. Genome assembly of *Acleris holmiana*, **ilAclHolm1.1: BlobToolKit cumulative sequence plot.** The grey line shows cumulative length for all scaffolds. Coloured lines show cumulative lengths of scaffolds assigned to each phylum using the buscogenes taxrule. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ilAclHolm1_1/dataset/ilAclHolm1_1/cumulative.

and uses these annotations to select the final mitochondrial contig and to ensure the general quality of the sequence.

A Hi-C map for the final assembly was produced using bwa-mem2 (Vasimuddin *et al.*, 2019) in the Cooler file format (Abdennur & Mirny, 2020). To assess the assembly metrics, the *k*-mer completeness and QV consensus quality values were calculated in Merqury (Rhie *et al.*, 2020). This work was done using Nextflow (Di Tommaso *et al.*, 2017) DSL2 pipelines "sanger-tol/readmapping" (Surana *et al.*, 2023a) and "sanger-tol/genomenote" (Surana *et al.*, 2023b). The genome was analysed within the BlobToolKit environment (Challis *et al.*, 2020) and BUSCO scores (Manni *et al.*, 2021; Simão *et al.*, 2015) were calculated.

Table 3 contains a list of relevant software tool versions and sources.

Wellcome Sanger Institute – Legal and Governance
The materials that have contributed to this genome note
have been supplied by a Darwin Tree of Life Partner.
The submission of materials by a Darwin Tree of Life Partner is subject to the 'Darwin Tree of Life Project Sampling
Code of Practice', which can be found in full on the
Darwin Tree of Life website here. By agreeing with and signing up to the Sampling Code of Practice, the Darwin Tree of
Life Partner agrees they will meet the legal and ethical
requirements and standards set out within this document
in respect of all samples acquired for, and supplied to, the
Darwin Tree of Life Project.

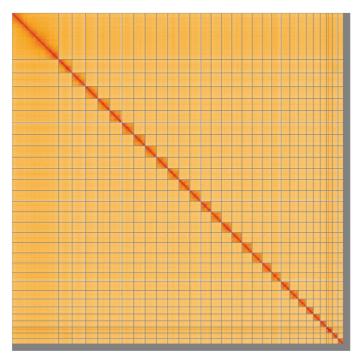


Figure 5. Genome assembly of *Acleris holmiana*, ilAclHolm1.1: Hi-C contact map of the ilAclHolm1.1 assembly, visualised using HiGlass. Chromosomes are shown in order of size from left to right and top to bottom. An interactive version of this figure may be viewed at https://genome-note-higlass.tol.sanger.ac.uk/l/?d=B67WVoD-RpCarufRFZ8dAQ.

Table 2. Chromosomal pseudomolecules in the genome assembly of *Acleris holmiana*, ilAclHolm1.

INSDC accession	Chromosome	Length (Mb)	GC%
OX438763.1	1	25.64	37.0
OX438764.1	2	25.22	37.0
OX438765.1	3	23.53	37.0
OX438766.1	4	23.11	37.0
OX438767.1	5	22.88	36.5
OX438768.1	6	22.58	36.5
OX438769.1	7	21.67	36.5
OX438770.1	8	21.66	37.0
OX438771.1	9	21.22	36.5
OX438772.1	10	21.19	37.0
OX438773.1	11	21.18	37.0
OX438774.1	12	20.78	37.0
OX438775.1	13	19.77	37.0
OX438776.1	14	19.72	37.0
OX438777.1	15	19.58	37.0

INSDC accession	Chromosome	Length (Mb)	GC%
OX438778.1	16	19.47	37.5
OX438779.1	17	19.46	37.0
OX438780.1	18	19.09	37.5
OX438781.1	19	17.92	37.0
OX438782.1	20	17.81	37.5
OX438783.1	21	16.84	37.5
OX438784.1	22	16.15	37.0
OX438785.1	23	15.04	37.0
OX438786.1	24	13.55	37.5
OX438787.1	25	13.13	37.0
OX438788.1	26	11.76	37.5
OX438789.1	27	11.36	39.5
OX438790.1	28	10.52	38.0
OX438791.1	29	10.25	38.0
OX438792.1	W	0.66	37.0
OX438762.1	Z	88.82	37.0
OX438793.1	MT	0.02	19.0

Table 3. Software tools: versions and sources.

Software tool	Version	Source
BlobToolKit	4.2.1	https://github.com/blobtoolkit/blobtoolkit
BUSCO	5.3.2	https://gitlab.com/ezlab/busco
Hifiasm	0.16.1-r375	https://github.com/chhylp123/hifiasm
HiGlass	1.11.6	https://github.com/higlass/higlass
Merqury	MerquryFK	https://github.com/thegenemyers/MERQURY.FK
MitoHiFi	2	https://github.com/marcelauliano/MitoHiFi
PretextView	0.2	https://github.com/wtsi-hpag/PretextView
purge_dups	1.2.3	https://github.com/dfguan/purge_dups
sanger-tol/genomenote	v1.0	https://github.com/sanger-tol/genomenote
sanger-tol/readmapping	1.1.0	https://github.com/sanger-tol/readmapping/tree/1.1.0
YaHS	1.2a	https://github.com/c-zhou/yahs

Further, the Wellcome Sanger Institute employs a process whereby due diligence is carried out proportionate to the nature of the materials themselves, and the circumstances under which they have been/are to be collected and provided for use. The purpose of this is to address and mitigate any potential legal and/or ethical implications of receipt and use of the materials as part of the research project, and to ensure that in doing so we align with best practice wherever possible. The overarching areas of consideration are:

- · Ethical review of provenance and sourcing of the material
- Legality of collection, transfer and use (national and international)

Each transfer of samples is further undertaken according to a Research Collaboration Agreement or Material Transfer Agreement entered into by the Darwin Tree of Life Partner, Genome Research Limited (operating as the Wellcome Sanger Institute), and in some circumstances other Darwin Tree of Life collaborators.

Data availability

European Nucleotide Archive: Acleris holmiana (white-triangle button). Accession number PRJEB58938; https://identifiers.org/ena.embl/PRJEB58938 (Wellcome Sanger Institute, 2023). The genome sequence is released openly for reuse. The Acleris holmiana genome sequencing initiative is part of the Darwin Tree of Life (DToL) project. All raw sequence data and the assembly have been deposited in INSDC databases.

The genome will be annotated using available RNA-Seq data and presented through the Ensembl pipeline at the European Bioinformatics Institute. Raw data and assembly accession identifiers are reported in Table 1.

Author information

Members of the University of Oxford and Wytham Woods Genome Acquisition Lab are listed here: https://doi.org/10.5281/zenodo.7125292.

Members of the Darwin Tree of Life Barcoding collective are listed here: https://doi.org/10.5281/zenodo.4893703.

Members of the Wellcome Sanger Institute Tree of Life Management, Samples and Laboratory team are listed here: https://doi.org/10.5281/zenodo.10066175.

Members of Wellcome Sanger Institute Scientific Operations: Sequencing Operations are listed here: https://doi.org/10.5281/zenodo.10043364.

Members of the Wellcome Sanger Institute Tree of Life Core Informatics team are listed here: https://doi.org/10.5281/zenodo.10066637.

Members of the Tree of Life Core Informatics collective are listed here: https://doi.org/10.5281/zenodo.5013541.

Members of the Darwin Tree of Life Consortium are listed here: https://doi.org/10.5281/zenodo.4783558.

References

Abdennur N, Mirny LA: Cooler: Scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics. 2020; 36(1): 311-316. PubMed Abstract | Publisher Full Text | Free Full Text

Allio R, Schomaker-Bastos A, Romiguier J, et al.: MitoFinder: Efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Mol Ecol Resour. 2020; 20(4): 892-905. PubMed Abstract | Publisher Full Text | Free Full Text

Bernt M, Donath A, Jühling F, et al.: MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013; 69(2): 313-319. PubMed Abstract | Publisher Full Text

Challis R, Richards E, Rajan J, et al.: BlobToolKit - interactive quality assessment of genome assemblies. G3 (Bethesda). 2020; 10(4): 1361-1374. PubMed Abstract | Publisher Full Text | Free Full Text

Cheng H, Concepcion GT, Feng X, et al.: Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021; 18(2):

PubMed Abstract | Publisher Full Text | Free Full Text

Crowley LM, Hammond J, University of Oxford and Wytham Woods Genome Acquisition Lab, et al.: The genome sequence of the Lichen Button, Acleris literana (Linnaeus, 1758) [version 1; peer review: 1 approved]. Wellcome Open Res. 2023; 8: 232. **Publisher Full Text**

Denton A, Oatley G, Cornwell C, et al.: Sanger Tree of Life Sample Homogenisation: PowerMash. protocols.io. 2023a.

Publisher Full Text

Denton A, Yatsenko H, Jay J, et al.: Sanger Tree of Life Wet Laboratory Protocol Collection V.1. protocols.io. 2023b. **Publisher Full Text**

Di Tommaso P, Chatzou M, Floden EW, et al.: Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017; 35(4): 316–319.

PubMed Abstract | Publisher Full Text GBIF Secretariat: Acleris holmiana (Linnaeus, 1758). GBIF Backbone Taxonomy.

2023; [Accessed 31 December 2023]. **Reference Source**

Guan D, McCarthy SA, Wood J, et al.: Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics. 2020; 36(9) 2896-2898

PubMed Abstract | Publisher Full Text | Free Full Text

Hancock F, Bland KP, Razowski J: The Moths and Butterflies of Great Britain and Ireland - Volume 5 (Part 2). Leiden: Brill, 2015.

Harry E: PretextView (Paired REad TEXTure Viewer): A desktop application for viewing pretext contact maps. 2022; [Accessed 19 October 2022].

Howe K, Chow W, Collins J, et al.: Significantly improving the quality of genome assemblies through curation. GigaScience. Oxford University Press, 2021; **10**(1): giaa153.

PubMed Abstract | Publisher Full Text | Free Full Text

Jay J, Yatsenko H, Narváez-Gómez JP, et al.: Sanger Tree of Life Sample Preparation: Triage and Dissection. protocols.io. 2023. **Publisher Full Text**

Kerpedjiev P, Abdennur N, Lekschas F, et al.: HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol. 2018; 19(1): 125

PubMed Abstract | Publisher Full Text | Free Full Text

Langmaid JR, Palmer S, Young MR: A Field Guide to the Smaller Moths of Great Britain and Ireland. 3rd ed. British Entomological and Natural History Society, 2018.

Manni M, Berkeley MR, Seppey M, et al.: BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021; 38(10): 4647-4654.

PubMed Abstract | Publisher Full Text | Free Full Text

Rao SS, Huntley MH, Durand NC, et al.: A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014; 159(7): 1665-1680.

PubMed Abstract | Publisher Full Text | Free Full Text

Rhie A, McCarthy SA, Fedrigo O, et al.: Towards complete and error-free genome assemblies of all vertebrate species. Nature. 2021; 592(7856):

PubMed Abstract | Publisher Full Text | Free Full Text

Rhie A, Walenz BP, Koren S, et al.: Merqury: Reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 2020: 21(1): 245

PubMed Abstract | Publisher Full Text | Free Full Text

Sheerin E, Sampaio F, Oatley G, et al.: Sanger Tree of Life HMW DNA Extraction: Automated MagAttract v.1. protocols.io. 2023. Publisher Full Text

Simão FA, Waterhouse RM, Ioannidis P, et al.: BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics*. 2015; **31**(19): 3210–3212. PubMed Abstract | Publisher Full Text

Sterling P, Parsons M, Lewington R: Field Guide to the Micro Moths of Great Britain and Ireland. Gillingham, Dorset: British Wildlife Publishing, 2012.

Strickland M, Cornwell C, Howard C: Sanger Tree of Life Fragmented DNA clean up: Manual SPRI. protocols.io. 2023

Publisher Full Text

Surana P, Muffato M, Qi G: sanger-tol/readmapping: sanger-tol/ readmapping v1.1.0 - Hebridean Black (1.1.0). Zenodo. 2023a. **Publisher Full Text**

Surana P, Muffato M, Sadasivan Baby C: sanger-tol/genomenote (v1.0.dev). Zenodo. 2023b.

Publisher Full Text

Todorovic M, Sampaio F, Howard C: Sanger Tree of Life HMW DNA Fragmentation: Diagenode Megaruptor®3 for PacBio HiFi. protocols.io. 2023. **Publisher Full Text**

TortAI: Factsheet - Acleris holmiana. Tortricids of Agricultural Importance. 2014; [Accessed 31 December 2023].

. Reference Source

Uliano-Silva M, Ferreira JG, Krasheninnikova K, et al.: MitoHiFi: a python pipeline for mitochondrial genome assembly from PacBio high fidelity reads. BMC Bioinformatics. 2023; 24(1): 288.

PubMed Abstract | Publisher Full Text | Free Full Text

Vasimuddin M, Misra S, Li H, et al.: Efficient Architecture-Aware Acceleration of BWA-MEM for Multicore Systems. 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2019; 314–324. **Publisher Full Text**

Wellcome Sanger Institute: The genome sequence of the White-triangle **Button**, *Acleris holmiana* (Linnaeus, 1758). European Nucleotide Archive, [dataset], accession number PRJEB58938. 2023.

Zhou C, McCarthy SA, Durbin R: YaHS: yet another Hi-C scaffolding tool. Bioinformatics. 2023; 39(1): btac808.

PubMed Abstract | Publisher Full Text | Free Full Text