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Numerous studies have shown reduced performance in plants that are surrounded  
by neighbours of the same species1,2, a phenomenon known as conspecific negative 
density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is 
more pronounced in tropical than in temperate forests4,5, which increases community 
stabilization, species coexistence and the diversity of local tree species6,7. Previous 
analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from 
methodological limitations related to the use of static data10–12. Here we present a 
comprehensive assessment of latitudinal CNDD patterns using dynamic mortality 
data to estimate species-site-specific CNDD across 23 sites. Averaged across species, 
we found that stabilizing CNDD was present at all except one site, but that average 
stabilizing CNDD was not stronger toward the tropics. However, in tropical tree 
communities, rare and intermediate abundant species experienced stronger 
stabilizing CNDD than did common species. This pattern was absent in temperate 
forests, which suggests that CNDD influences species abundances more strongly in 
tropical forests than it does in temperate ones13. We also found that interspecific 
variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, 
was high but not significantly different across latitudes. Although the consequences 
of these patterns for latitudinal diversity gradients are difficult to evaluate, we 
speculate that a more effective regulation of population abundances could translate 
into greater stabilization of tropical tree communities and thus contribute to the high 
local diversity of tropical forests.

Explaining patterns of diversity across space and time is a fundamental 
goal of ecology16. Among those patterns, the latitudinal gradient in 
tree species diversity is particularly notable17. A central explanation 
for the exceptionally high local diversity in tropical moist forests is 
that their temporally stable and productive conditions allow natural 
enemies, such as herbivores and pathogens, to be more specialized 
and damaging5,18, with the result that conspecific neighbours—by 
virtue of their shared natural enemies—exert more negative effects 
on a target tree individual than do heterospecific neighbours19. Simi-
larly to intraspecific resource competition, specialized enemies can 
thus create a stabilizing mechanism20, often referred to as conspe-
cific negative density dependence (CNDD3), that should prevent the 

dominance of any particular tree species and therefore allow species 
coexistence6,7,21,22. First proposed by Janzen and Connell five decades 
ago4,5, CNDD mediated by specialized enemies is one key hypothesis 
for explaining the maintenance of greater local tree species diversity 
in tropical forests23,24.

After several decades of research, it is well established that CNDD 
is widespread in both tropical and temperate forests1,2. Nevertheless, 
its effect on community composition and large-scale biodiversity pat-
terns is still debated25,26. Meta-analyses on CNDD, based mostly on seed 
and seedling survival in field experiments, have found no variation in 
CNDD with latitude1,2,23,27, possibly because of limited comparability 
among studies2. The few studies that have directly examined large-scale 
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geographical variation in CNDD have assessed larger tree sizes and 
reported a pronounced increase in CNDD with decreasing latitude8,9. 
However, these latitudinal CNDD patterns have been attributed to 
statistical artefacts related to the use of static data10–12,28,29. As a result, 

there is still no conclusive evidence about if and how CNDD differs 
between tropical and temperate forests.

Here, we analyse latitudinal CNDD patterns using dynamic forest 
inventory data (longitudinal tree survival data from repeated censuses, 
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Fig. 1 | Estimated stabilizing CNDD in tree mortality plotted against species 
abundance at the 23 forest plots, along with plot locations. Points in small 
panels indicate CNDD estimates and abundances (number of trees with 
DBH ≥ 1 cm per hectare) of individual species or species groups. Larger point 
sizes indicate lower uncertainty (variance) in CNDD estimates. Points in dark 
grey indicate effects that are statistically significantly different from zero  
(with α = 0.05). Circles are individual species; diamonds are rare species 
analysed jointly as groups of rare trees or rare shrubs. Because of the high 
variation in CNDD estimates, not all species-specific estimates can be shown, 
but the proportion of data that is represented by the estimates outside the 
plotting area is indicated for each site. The regression lines, 95% confidence 

intervals (CI) and P values are based on meta-regression models fitted 
independently per site (except for the Zofin site, for which too few estimates 
were available). Dashed horizontal lines indicate zero stabilizing CNDD. 
Locations of forest sites and CNDD-abundance relationships are coloured by 
latitude (gradient from tropical forests in red–orange to subtropical forests in 
yellow–green and temperate forests in blue). Stabilizing CNDD is defined as the 
relative change (in %) in annual mortality probability (relative average marginal 
effect; rAME) induced by a small perturbation in conspecific density (one 
additional conspecific neighbour with DBH = 2 cm at a one-metre distance) 
while keeping total densities constant. Positive numbers indicate a relative 
increase in mortality with an increase in conspecific density; that is, CNDD.
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Extended Data Table 1) from 23 large (6–52 ha) forest sites from the 
ForestGEO network30, covering a gradient from the tropics to the tem-
perate zone (Fig. 1). We used recently developed best-practice statistical 
methods for measuring and comparing CNDD and making inferences 
about stabilization and species coexistence10,25,31 (Methods). We fitted 
flexible species-site-specific mortality models and quantified CNDD 
as the relative change in the mortality probability of saplings (small 
trees with a diameter at breast height (DBH) of at least 1 cm and less 
than 10 cm) induced by a small perturbation in conspecific density 
while keeping total densities (both measured as basal area) constant 
(‘stabilizing CNDD’)20 (Methods). By adjusting for total density, our 
estimate of ‘stabilizing CNDD’ is equivalent to the difference between 
CNDD and heterospecific negative density dependence (HNDD) in pre-
vious studies3,32, and serves as a proxy for the frequency dependence 
of population growth rates33. We then aggregated estimates of stabiliz-
ing CNDD and patterns therein using multilevel meta-regressions to 
account for the different uncertainties in CNDD estimates resulting 
from different sample sizes among species34. Using this framework, 
we assessed latitudinal patterns in (i) the average strength of stabiliz-
ing CNDD (Fig. 2), (ii) its effects on species abundances (Fig. 3) and  
(iii) its interspecific variability (Fig. 4), thereby testing three predictions 
(each described in a section below) arising from the hypothesis that 
CNDD is more influential for maintaining local tree species diversity 
in the tropics.

No latitudinal trend in average CNDD
According to the Janzen–Connell hypothesis, the average strength 
of stabilizing CNDD across species should become greater at lower 
latitudes4,5,24, but we found no support for this hypothesis, although 

stabilizing CNDD was widespread. Averaged across species, the mor-
tality of small trees increased with conspecific density at all but one 
site (Figs. 1 and 2, CNDD < 0 for Santa Cruz), with an average relative 
annual mortality increase of 6.64% when increasing conspecific density 
from the first to the third quantile for each species (95% confidence 
interval (CI): 2.80 to 10.62%; Extended Data Fig. 1). However, when 
comparing the strength of CNDD across latitudes, we found no sig-
nificant trend: in the tropics, a perturbation in conspecific density 
(expressed by one additional conspecific neighbour with a DBH of 2 cm 
at 1 m distance; see ‘Quantification of conspecific density dependence’ 
in Methods) led to a relative increase in annual mortality probability of 
0.41% (0.31 to 0.51% CI; calculated at 11.75° absolute latitude; Fig. 2). In 
temperate forests, the corresponding value was 0.26% (0.06 to 0.47% 
CI; calculated at 45° absolute latitude). Although the increase in mor-
tality is slightly less in temperate than in tropical forests, the associa-
tion of CNDD with latitude was not statistically significant (P = 0.17, 
assessed through meta-regression, Table 1a) and the absolute change 
in stabilizing CNDD with latitude was small relative to the variation 
in CNDD across species and abundances (see next subsections and 
Figs. 1, 3 and 4).

The lack of a latitudinal gradient in average CNDD was statistically 
robust (see ‘Robustness tests’ in Methods). When tree status (alive or 
dead) or conspecific densities were randomized, our analysis pipeline 
of mortality models and meta-regression revealed neither spurious 
CNDD nor noteworthy patterns of CNDD across latitudes (Extended 
Data Fig. 2a and Extended Data Table 2). Moreover, we obtained 
qualitatively the same result—that is, no latitudinal trend in average 
species CNDD—when statistically influential species were removed 
from the meta-regression (Extended Data Fig. 3a and Extended Data 
Table 2) and when two alternative definitions of CNDD were analysed 
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Fig. 2 | Evaluation of the first hypothesized pattern, whereby the average 
strength of stabilizing CNDD across species becomes greater towards the 
tropics. The estimated relationship of stabilizing CNDD to absolute latitude 
indicates that average species CNDD does not become significantly stronger 
toward the tropics (P = 0.17). The regression line and 95% CI are predictions 
from the meta-regression model fitted with species-site-specific CNDD 
estimates (n = 2,534 species or species groups from 23 forest sites) including 

absolute latitude as a predictor (‘mean species CNDD model’; see Table 1a). 
Black points are mean CNDD estimates per forest site from meta-regressions 
fitted separately for each forest site without predictors (as in Fig. 4); note that 
these points are not the direct data basis for the regression line. The dashed 
horizontal line indicates zero stabilizing CNDD. Stabilizing CNDD is defined as 
in Fig. 1; for the same plot with alternative definitions of CNDD see Extended 
Data Figs. 4 and 5.
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(Extended Data Figs. 4a and 5a and Extended Data Table 3). These 
alternative definitions were calculated as (1) the absolute change 
in mortality, which we consider less relevant for fitness, but which 
may nevertheless be instructive if base mortality rates are independ-
ent of latitude; and (2) the (relative) change in mortality at low con-
specific densities, following the invasion criterion for coexistence, 
which refers to the ability of a species to increase in abundance  
when rare35.

Our results corroborate previous studies that found that stabilizing 
CNDD (that is, the negative effect of being close to conspecifics) was 
widespread across forest tree communities1,2, but they do not sup-
port previous reports of a pronounced latitudinal gradient in average 
CNDD8,9. This discrepancy can be explained by various factors, includ-
ing our focus on mortality rather than on recruitment. We argue that 
our use of robust statistical methods and dynamic rather than static 
data10–12,28,36 is more reliable than previous analyses, suggesting that a 
latitudinal gradient in average CNDD at the sapling stage is absent or 
at least weaker than previously reported.

 
Stronger CNDD for rare tropical species
A second pattern that has been interpreted as more effective stabiliz-
ing control of species abundances and thus as a proxy for the impor-
tance of CNDD for community structure is stronger CNDD for rare 
species3,8,13,21,37. Consistent with this, we found a marked latitudinal 
difference in the association between species abundance and stabi-
lizing CNDD when expanding the meta-regression to include species 
abundance and allowing the relationship with abundance to be moder-
ated by latitude (P = 0.017 of the interaction, Table 1b). In tropical tree 
communities, CNDD decreased significantly with species abundance 
(P = 9.5 × 10−8; Fig. 3a); CNDD was stronger for rare species (0.76%, 0.59 
to 0.92% CI, for a species with an abundance of one tree per hectare) 
and weaker for common species (0.30%, 0.19 to 0.40% CI, for a species 
with an abundance of 100 trees per hectare). With increasing latitude, 
this association weakened. In temperate forests, there was no signifi-
cant relationship between species abundance and CNDD (P = 0.72; 
Fig. 3a), and CNDD was actually slightly higher for common species  
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Fig. 3 | Evaluation of the second hypothesized pattern, whereby CNDD more 
strongly regulates species abundances and thus community structure in 
the tropics. a, The estimated relationship of stabilizing CNDD to absolute 
latitude and species abundance indicates that species-specific CNDD is 
considerably stronger for rare than for common species in tropical forests 
(P = 9.5 × 10−8), whereas species in subtropical and temperate forests show no 
statistically significant association between CNDD and species abundance 
(P = 0.24 and P = 0.72, respectively). b, Consequently, stabilizing CNDD of 
species with low abundance (here, one tree per hectare) is stronger in tropical 
than in temperate forests (P = 0.018), whereas CNDD of species with high 
abundance (here, 100 trees per hectare) shows no latitudinal gradient (P = 0.77). 
Note that a caveat to the comparison in b is that species abundance distributions 
and total community abundance change with latitude so that an abundance of 

one tree per hectare is not necessarily biologically comparable across latitudes. 
The regression lines and 95% CI are predictions from the meta-regression  
model (n = 2,534 species or species groups from 23 forest sites) including 
absolute latitude, species abundance and their interaction as predictors 
(‘abundance-mediated CNDD’ model; see Table 1b). Predictions in a are shown 
for the centres of three latitudinal geographic zones, with the tropical zone 
ranging between 0° and 23.5° absolute latitude, the subtropical between 23.5° 
and 35° and the temperate between 35° and 66.5°. Species abundance is 
quantified as the log-transformed number of trees per hectare. Confidence 
intervals and P values are obtained by refitting the model with data centred at 
the respective latitude or abundance value. Dashed horizontal lines indicate 
zero stabilizing CNDD. Stabilizing CNDD is defined as in Fig. 1; for the same plots 
with alternative definitions of CNDD, see Extended Data Figs. 4 and 5.
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(0.27%, 0.07 to 0.47 CI) than for rare species (0.18%, −0.33 to 0.69% 
CI). From these patterns it follows that CNDD of rare and intermedi-
ate abundant species is stronger in tropical than in temperate forests 
(P = 0.018 and P = 0.043 for species with an abundance of 1 and 10 trees 
per hectare, respectively; Fig. 3b), whereas CNDD of common species 
shows no latitudinal gradient (P = 0.77 for species with an abundance 
of 100 trees per hectare).

Although associations between CNDD and species abundance 
have been reported in previous studies, all but one study8 analysed 
CNDD at only a single site, mostly in tropical forests. Of these, some 
reported stronger CNDD for rare species3,38, others showed stronger 
CNDD for common species28,39 and still others showed no association40. 
We attribute these apparently inconsistent previous results to strong 
between-site variability, which is evident in our data as well (Fig. 1). Our 
multi-site approach allows us to see past the noise and detect the signal 
of a large-scale pattern of stronger CNDD for rare versus common spe-
cies in the tropics, but not in the temperate zone (Fig. 3a). The use of 
dynamic data also allows us to make more statistically robust inferences 
about CNDD and its association with species abundance11,12 (Extended 
Data Figs. 2b,c, 3b,c, 4b,c and 5b,c and Extended Data Tables 2 and 3). 
Our study thus provides stronger evidence than previously available 
that a correlation between CNDD and species abundance exists in tropi-
cal but not in temperate forests.

We believe that the most likely explanation for the latitudinal change 
in the correlation between stabilizing CNDD and species abundance is 
that CNDD is more effective at controlling tree species abundances in 
the tropics3,8,13,21,37. To challenge this interpretation, we sought alterna-
tive explanations for the observed pattern. In particular, we considered 
life history strategies, which can correlate with both species rarity 
and CNDD13,41–43 (see Supplementary Fig. 1a,b) and could thus act as 

a confounder. Accounting for life history strategies (approximated 
by species’ demographic rates, maximum size (stature) or trade-offs 
therein) in the meta-regression, however, did not change the associa-
tion between CNDD and species abundance in the tropics (Extended 
Data Table 4), ruling out those factors as important confounders. In 
addition to confounding, the observed pattern could also arise under 
reverse causality, in which species abundance controls CNDD. A pos-
sible mechanism could be that pathogen loads for common species 
saturate in space, thus rendering local variation in conspecific density 
inconsequential for infection and hence mortality probabilities.

CNDD varies considerably between species
Theoretical studies have suggested that interspecific variation in CNDD 
can increase competitive differences or the risk of local extinctions 
from demographic stochasticity and thus reduce or even reverse the 
diversity-enhancing effects of CNDD14,15. Thus, if interspecific CNDD 
variation were lower in tropical than temperate forests, this would 
provide another avenue whereby CNDD could contribute to latitudinal 
differences in local tree species diversity. No previous study, however, 
has empirically quantified this pattern.

To test for latitudinal differences in interspecific variation in CNDD, 
we used meta-regressions fitted separately for each site to estimate the 
mean and the latent (true) standard deviation (s.d.) of species-specific 
CNDD. Crucially, this approach allows us to distinguish interspecific 
variation in CNDD from sampling uncertainty; that is, the random sam-
pling error of CNDD estimates34. We then calculated the coefficient of 
variation (CV = s.d./mean) of CNDD per site and analysed latitudinal pat-
terns therein. Interspecific variation of CNDD, quantified as CV, showed 
no significant association with latitude (P = 0.69, Fig. 4a). Interestingly 
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Fig. 4 | Evaluation of the third hypothesized pattern, whereby interspecific 
variation in stabilizing CNDD decreases towards the tropics. a, Coefficients 
of variation (CV = s.d./mean) per forest site showed no statistically significant 
latitudinal pattern (P = 0.69) but were on average greater than what theory 
suggests as a maximum for stable coexistence14,15 (CV > 0.4; dotted horizonal 
line; see ‘Stable coexistence and interspecific variation in CNDD’ in Methods) at 
all but three sites (Barro Colorado Island, La Planada and Wabikon), owing to 
large differences among species at comparatively weak CNDD (b). Mean CNDD 
and interspecific variation in CNDD (s.d.) per forest site were estimated using 

meta-regressions without predictors fitted separately for each forest site. 
Points are coloured by latitude (gradient from tropical forests in red–orange  
to subtropical forests in yellow–green and temperate forests in blue). The 
regression line, 95% CI and P value in a are based on a linear regression model. 
Grey lines in b indicate different CV values. Note that we excluded one site for 
which the average CNDD was less than 0 (Santa Cruz; Fig. 2), because positive 
conspecific density dependence is expected to be destabilizing, irrespective 
of species differences. Stabilizing CNDD is defined as in Fig. 1, but here means 
and s.d. are shown at the transformed scale; that is, log(rAME + 1).
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though, the s.d. of CNDD was of a similar magnitude to community 
average CNDD across the forest sites (Fig. 4a,b), implying a CV on the 
order of 1. In simulation studies14,15, CNDD settings with CV > 0.4 have 
tended to reduce rather than to stabilize species diversity (see ‘Stable 
coexistence and interspecific variation in CNDD’ in Methods). Among 
the 22 sites where species on average exhibited CNDD (all except the 
Santa Cruz site), this threshold (CV > 0.4) was exceeded at all but 3 sites 
(Barro Colorado Island, La Planada and Wabikon). We note, however, 
that there are several reasons why the CV parameters in the simula-
tion models cannot be directly matched to our empirical estimates. 
One of them is that temporal variability in CNDD, possibly caused by 
fluctuations of herbivore and pathogen populations, might inflate the 
empirically measured CV above its long-term average.

Discussion
Our results support the conclusion of numerous previous studies that 
the effects of conspecific neighbours on tree survival tend to be nega-
tive (CNDD)1,2. Contrary to long-held ecological conjectures, however, 
we found a latitudinal gradient consistent with the Janzen–Connell 
hypothesis in only one of the three CNDD patterns we tested. Most 
notably, the average strength of CNDD did not increase significantly 
toward the tropics (Fig. 2 and Table 1a). In addition, tree species in tropi-
cal communities did not experience more homogenous levels of CNDD 
than temperate ones did (Fig. 4a), which theoretically could have led 
to more effective stabilization through reduced fitness differences in 
the tropics14,15. However, we did find that CNDD correlates with species 
rarity in tropical but not in temperate forests (Fig. 3 and Table 1b), which 
suggests that CNDD could have a stronger role in structuring species 
abundance distributions in the tropics. The drivers and implications 
of stronger CNDD for rare to intermediate abundant species in tropical 
versus temperate forests merit closer consideration.

Assuming that species abundances are at least partly controlled by 
CNDD, the association of strong CNDD with species rarity in the trop-
ics might be interpreted as an indication of more efficient control of 
tropical tree species abundances through self-limitation21,37, despite 
average CNDD being comparable across latitudes. This interpreta-
tion is broadly consistent with the ideas of Janzen and Connell—with 
the nuance that the effects of specialized enemies are not necessarily 
stronger overall in the tropics but have greater effectiveness in control-
ling species abundances and thus, potentially, community assembly. 
A possible explanation for why species abundances are less effectively 
controlled by CNDD in temperate forests is that other mechanisms, 
such as alternative stabilizing mechanisms, dispersal, immigration or 
disturbances, are stronger in temperate forests and override the effects 
of CNDD14,44. When evaluating these conjectures, we caution that such 

a direct causal link and its direction between CNDD and species rarity 
remains to be established. Although we ruled out confounding by dif-
ferences in life history strategy (Extended Data Table 4), the possibility 
of other unobserved confounding effects or reverse causality remains 
and should be considered in future studies.

Our finding that rarer species experience stronger CNDD in the 
tropics (Fig. 3a), and therefore CNDD weakens for species at rare 
and intermediate abundances towards the temperate zone (Fig. 3b), 
motivates further research targeted at the underlying mechanisms. 
Identifying these mechanisms and showing that their effects differ 
between the tropical and the temperate zone could provide strong 
independent evidence for the idea that CNDD regulates tropical species 
abundances more strongly. This would require, first, a better under-
standing of how specialized natural enemies and resource competition 
generate CNDD45 and how CNDD interacts with other processes (for 
example, facilitation46), and then comparisons of these mechanisms 
in coordinated global experiments47. A further consideration is that 
species abundances are controlled by processes that occur during 
the entire demographic cycle, rather than being controlled only by 
mortality during the sapling life stage, as considered here. It is pos-
sible that CNDD analyses of other vital rates and life stages, particu-
larly earlier ones, would lead to stronger CNDD and different patterns 
and conclusions20, because the interaction between ontogenetic and 
demographic processes might change with latitude. This possibility 
could be investigated using dynamic seedling data along latitudinal 
gradients, ideally with good coverage of temperate tree species, which 
are naturally less represented in latitudinal studies. By accumulating 
CNDD estimates across different vital rates and life stages, we could 
also move closer to the ultimate goal of estimating CNDD in a species’ 
overall fitness and population growth rate22,35.

Additional to the latitudinal change in the correlation with rarity, we 
found high interspecific variation in CNDD at all latitudes (Fig. 4a). 
Based on previous simulation studies, this variation would be high 
enough to offset the stabilizing effect of CNDD at the community 
level2,14,15. We believe that there is an urgent need to better understand 
the effect of CNDD on community stability and coexistence in the pres-
ence of interspecific, spatial and temporal variability. Interspecific 
variation in CNDD has been linked to species-specific characteris-
tics such as mycorrhizal type40 and life history strategy41, as well as 
to population-level diversity of pathogen resistance genes48, but our 
estimate of interspecific variation is also likely to reflect temporal vari-
ation due to complex host–enemy dynamics and resource competition 
in varying environments49. Future empirical and theoretical analyses 
should investigate in more detail the conditions under which interspe-
cific variation in CNDD weakens or reverses the stabilizing effect of 
CNDD on species diversity and whether the competitive disadvantage 

Table 1 | Estimates from the meta-regressions testing the first and second hypothesized latitudinal patterns in stabilizing 
CNDD in tree mortality

Model Characteristic Beta 95% CI P value

(a) Average species CNDD  
σr = 0.0018 σs = 0.0054

Intercept 0.004087 0.003072, 0.005102 2.9 × 10−15

tLatitude −0.000044 −0.000107, 0.000019 0.17

(b) Abundance-mediated CNDD  
σr = 0.0018 σs = 0.0053

Intercept 0.007527 0.005870, 0.009183 5.3 × 10−19

tLatitude −0.000172 −0.000315, −0.000030 0.018

tAbundance −0.000990 −0.001353, −0.000626 9.5 × 10−8

tLatitude:tAbundance 0.000035 0.000006, 0.000064 0.017

We fitted two models for the species-site-specific CNDD estimates (n = 2,534 species or species groups from 23 forest sites): (a) absolute latitude as a predictor (‘average species CNDD’ model); 
and (b) absolute latitude, species abundance and their interaction as predictors (‘abundance-mediated CNDD’ model). Species abundance was measured by log-transformed number of trees 
with DBH ≥1 cm per hectare. Predictors were transformed (t), that is, centred at abundance = 1 tree per hectare and absolute latitude = 11.75°, so that main effects for abundance and latitude 
assess slopes and respective significance tests for rare, tropical species. Stabilizing CNDD is defined as in Fig. 1. For the models, CNDD estimates (rAMEs) were log-transformed after adding 1 to 
improve normality assumptions, so that CNDD as the relative change in annual mortality probability in per cent induced by one additional conspecific neighbour can be calculated from the 
model coefficients as × −+ …e100 ( 1)β β x0 1 . Predictions of the models are shown in Figs. 2 and 3. σr and σs are the estimated standard deviations of random intercepts for CNDD among sites and 
species in sites, respectively. Bold P values are statistically significant at a significance level of 0.05.
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associated with stronger CNDD might be offset by functional traits or 
life history strategies6,33,50. For example, there are indications that trees 
of species with stronger CNDD grow faster41 (but see also Extended 
Data Table 4), which might result in faster population growth when a 
species is rare37.

In the context of the Janzen–Connell hypothesis, we interpret our 
results as partial support for the idea that CNDD contributes to the 
latitudinal gradient in tree species diversity. More specifically, our 
results suggest a novel, refined interpretation of this classic idea: the 
influence of specialized natural enemies—and, more broadly, intraspe-
cific resource competition—might not be stronger on average in tropi-
cal than in temperate forests, but their effects might exert stronger 
controls on species abundances in the tropics. Therefore, we speculate 
that unless interspecific variability in CNDD overrides its stabilizing 
effect, CNDD might contribute more strongly to the maintenance of 
local tree species diversity in the tropics.
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Methods

Overview
We used repeated census data from 23 large forest sites around the 
globe (Fig. 1) to analyse latitudinal patterns in stabilizing CNDD follow-
ing a three-step approach. First, we fitted species-site-specific mortality 
models from repeated observations of individual trees. Second, we 
used these models to quantify CNDD for each species and site using 
an estimator designed to maximize robustness, comparability and 
relevance for fitness and stabilization. Third, we used meta-regressions 
to consider three distinct latitudinal patterns in CNDD derived from 
the hypothesis that CNDD is more influential for maintaining local tree 
species diversity in the tropics. Robustness of the analysis pipeline was 
validated by model diagnostics and randomization.

This approach is based on recently developed best-practice statistical 
methods for estimating CNDD. Crucially, the use of dynamic mortality 
data allowed us to avoid the statistical pitfalls of previous CNDD stud-
ies, in particular with regard to analyses of the static relationship of 
number of saplings to number of adults, in which the null hypothesis 
is a positive linear relationship but regression dilution flattens this 
relationship and thus biases analyses towards finding CNDD, espe-
cially for rare species10–12,28,29. By fitting mortality models in which the 
null hypothesis is no relationship between survival and number of 
conspecific neighbours, we ensure that any regression dilution has a 
conservative effect by reducing CNDD estimates. We also addressed 
other previously identified limitations of CNDD analyses; namely, 
nonlinear and saturating CNDD (see ‘Species-site-specific mortality 
models’), the comparability of CNDD among species and sites (see 
‘Quantification of conspecific density dependence’) and the extent 
to which CNDD estimates are meaningful for stabilization and species 
coexistence10,25,31.

All analyses were conducted in R v.4.2.1 (ref. 51).

Forest data
The data used in this study were collected at 23 sites with permanent 
forest dynamics plots that are part of the Forest Global Earth Observa-
tory network (ForestGEO)30 (Fig. 1 and Supplementary Notes), in which 
all free-standing woody stems with a diameter of at least 1 cm at 1.3 m 
from the ground (DBH) are censused. We stipulated that for plots to be 
suitable for analysing tree mortality in response to local conspecific 
density, they should be at least a few hectares in size with at least two 
censuses available (that is, longitudinal data on individual trees). The 
plots for which we obtained data vary in size between 6 ha and 52 ha 
(Supplementary Table 1), with between 9,718 and 495,577 mapped tree 
individuals at each site. Censuses have been performed with remeasure-
ment intervals of approximately five years (Supplementary Table 1). 
The census data collected for each individual include species identity, 
DBH, spatial coordinates and status (alive or dead).

For the mortality analyses, we selected observations of all living 
trees of non-fern and non-palm species with DBH < 10 cm in one census 
and follow-up data in a consecutive census (Extended Data Table 1). 
We then statistically analysed how tree mortality (measured by the 
status ‘dead’ or ‘alive’ in the consecutive census) depends on local con-
specific density and potential confounders of this relationship (see 
‘Species-site-specific mortality models’). We focused on saplings (small 
trees between 1 cm and 10 cm DBH), on the assumption that CNDD 
effects are most pronounced in earlier life stages52,53.

For tree individuals with more than one stem, the individual was 
considered ‘alive’ if at least one of the stems was alive and ‘dead’ if all 
stems were dead. The DBH of multi-stem trees was calculated from 
the summed basal area of all stems. For trees with multiple stems at 
different coordinates, coordinates of the main stem were used. For 
the forest site Pasoh, where every stem was treated as an individual 
(information on which stems belong to the same tree was unavailable), 
we used observations of individual stems.

Observations of trees or stems were excluded when information 
on coordinates, species, status or date of measurement was missing. 
Individuals classified as morphospecies were kept and analysed as 
the respective morphospecies. Status assignments were checked for 
plausibility and corrected if necessary (for example, trees found to 
be alive after being recorded as dead in a previous census were set to 
‘alive’). If trees or stems changed their coordinates or species between 
censuses, the most recent information was used.

Definition of local conspecific density
Most previous CNDD studies3,32 have estimated separate effects for 
CNDD and HNDD. In the context of the Janzen–Connell hypothesis, in 
which CNDD is a promoter of species diversity, however, we are inter-
ested mainly in the difference between CNDD and HNDD, because 
only a detrimental effect of neighbouring conspecifics that exceeds 
the effect of any kind of neighbour (that is, irrespective of its species 
identity) can lead to a stabilizing effect at the population level6,20. We 
refer to this effect, that is, to the difference between CNDD and HNDD, 
as ‘stabilizing CNDD’. This effect is more appropriate when estimating 
the degree of self-limitation for a tree species.

Because CNDD and HNDD are both estimated with uncertainty (char-
acterized by the standard error), previous analyses that separately 
estimated CNDD and HNDD often faced challenges when formally 
testing whether conspecific effects are significantly more negative 
than are heterospecific effects25. Here, we circumvent this problem 
by estimating the effect of conspecific density, adjusted (in a multi-
ple regression) for total tree density, which is the sum of conspecific 
and heterospecific density54. Defined in this way, the estimated effect 
(slope) for conspecific density in the regression corresponds to the 
effect of CNDD minus HNDD in previous studies55,56 (for details, see Sup-
plementary Methods).

Local conspecific and total densities around each focal tree were cal-
culated as the number of neighbouring trees (N) or their basal area (BA) 
at the census preceding the census at which tree status was modelled. 
We considered neighbouring trees of all sizes at distances up to 30 m54 
and discarded focal trees that were within 30 m of the plot boundaries. 
A decrease of neighbourhood effects with increasing distance was 
considered using two alternative decay functions:

f d eexponential: ( ) =k μ d− 1
k

f d eexponential−normal: ( ) =k μ
d− 1

k2
2

with dk being the distance between a focal tree and its neighbour k, 
and the distance decay parameter μ defining how far neighbourhood 
effects extend on average.

The estimator for local density (N or BA), the shape of the decay 
kernel (exponential or exponential–normal) and its parameter μ were 
optimized through a grid search, optimizing the fit of the mortality 
models (see next section). The parameter μ was optimized jointly for 
all species but separately for conspecific and total densities following 
the idea that the two effects are caused by different agents and thus 
may act at different spatial scales. We tested all four combinations 
of density definitions (N or BA, with exponential or normal distance 
decay) varying μ between 1 and 25 m in 2- m steps. Our selection crite-
rion was the sum of the log likelihood (LL), calculated using the set of 
species for which all models converged (nspecies = 2,500). The highest 
overall LL was achieved when local densities were measured as BA with 
an exponential distance decay and μ = 3 and 17 for conspecific and 
total density, respectively (Supplementary Fig. 2). This definition of 
local densities also resulted in an average area under the curve (AUC) 
comparable with the overall AUC optimum (0.68; difference = 0.001). 
To ensure that the joint optimization of μ for all species did not induce 
a bias that correlated with the main predictors, that is, latitude and 



species abundance, we further examined species-specific optima of μ 
for those species for which the grid search yielded a distinct optimum 
of the log likelihood. We found no pattern with respect to latitude and 
species abundance (Supplementary Fig. 3), justifying the use of a joint 
optimization.

Species-site-specific mortality models
We used binomial generalized linear mixed models (GLMMs) with a 
complementary log-log (cloglog) link to model the tree status (‘dead’ 
or ‘alive’) as a function of conspecific density conD, total density totD 
and tree size DBH, which were added as potential confounder or pre-
cision covariates57. The advantage of the cloglog link over the more 
traditional logit link is that the cloglog allows better accounting for 
differences in observation time Δt (see Supplementary Table 1) through 
an offset term58.

Because evidence suggests that CNDD could be nonlinear and in 
particular saturating10,25, we used generalized additive models (GAMs) 
with thin plate splines59 to allow for flexible nonlinear responses of all 
predictors. When the observations covered more than one census 
interval, ‘census’ was included as a random intercept. In sum, we model 
the status Yij of observation i in census interval j as a binomial random 
variable Y y~ Binom(Pr( = 1))ij ij

, where

y β f x f x

f x u t

log(− log(1 − Pr( = 1))) = + ( ) + ( )

+ ( ) + + log(Δ )
ij

j

0 conD conD totD totD

DBH DBH

Here, Pr(yij = 1) is the mortality probability of observation i in census 
interval j, fk is the smooth function of the predictor xk, conD, totD and 
DBH are the predictor variables, β0 is the intercept term, uj is the random 
intercept for census interval j with u N σ~ (0, )j u

2  and ∆t is the census 
interval length in years.

GAM smoothness selection was performed using restricted maxi-
mum likelihood estimation (REML). Basis dimensions of smoothing 
splines were kept at modest levels (k = 10) but were reduced when the 
number of unique values (nvals) in a predictor was less than 10 (k = 
nvals – 2). Models were fitted with the function gam() from the pack-
age mgcv60 (v.1.8-40).

In this set-up, we fitted species-site-specific mortality models for all 
species that had at least 20 alive and dead status observations each and 
at least 4 unique conspecific density values with a range that included 
the value used to calculate average marginal effects (see ‘Quantifica-
tion of conspecific density dependence’). The species that did not fulfil 
these criteria and those for which no convergence was achieved (over-
all 63.2% of the species) were fitted jointly in one of two groups—rare 
shrub species and rare tree species (Extended Data Table 1)—following 
the assumption that different growth forms may differ in their base 
mortality rate. This allows us to at least consider very rare species for 
our analyses, even if these species do not contribute to the results to 
the same extent as species with more observations do. The growth 
form of each tree species (‘shrub’ or ‘tree’) was derived from a species’ 
maximum tree size. If the maximum of the average DBH of the six largest 
trees or stems of each species per census was more than 10 cm, a spe-
cies was considered a tree, and otherwise it was considered a shrub61,62.

Quantification of conspecific density dependence
On the basis of the species-site-specific mortality models, we then quan-
tified how a change in conspecific density affects mortality probability. 
The challenge here is that the nonlinear link in the GLMMs implies that 
effects at the scale of the linear predictor can translate nonlinearly 
to the response scale (mortality rates) when the estimated intercept 
differs between individual species and sites31. To obtain an estimate 
of the strength of stabilizing CNDD that is nonetheless comparable 
among species and sites, we calculated the average marginal effect 
(AME) of a small perturbation of conspecific density on mortality prob-
ability63 at the response scale. We derived both absolute and relative 

AME (aAME and rAME, respectively), which can be interpreted as the 
average absolute (% per year) and relative (%) change, respectively, in 
mortality probability caused by the increase in conspecific density. In 
meta-analysis and econometrics, aAME is also known as the average 
risk difference, and rAME + 1 as the average risk ratio64,65.

To obtain aAME and rAME, we first calculated the absolute and rela-
tive effect of one additional conspecific neighbour on the mortality 
probability (response scale) for each observation i:

p paME = −i i i,conD +1 ,conDi i

p

p

p p

p
rME = − 1 =

−
i

i

i

i i
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i
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Here, pi is the mortality probability at the response scale and conDi is 
the observed local conspecific density. The subscript conDi + 1 denotes 
the new conspecific density, which is obtained by adding one conspe-
cific neighbour with DBH = 2 cm at a one-metre distance, a relatively 
small perturbation that was within the range of observed conspecific 
densities even for rare species. A larger perturbation in conspecific 
densities could create extrapolation problems. For each observation, 
aMEi and rMEi were calculated using observed conspecific densities. 
Likewise, confounders—that is, total density, DBH and census interval— 
were kept at observed values, and the interval length was fixed at  
one year. As an alternative quantification of density dependence that 
links to theoretical considerations from coexistence theory7 (invasion 
criterion35), we quantified CNDD at low conspecific densities by setting 
conDi = 0 and again increasing it by one additional conspecific neigh-
bour with DBH = 2 cm at a one-metre distance. As a further alternative, 
we calculated CNDD as the change in mortality resulting from a change 
in conspecific density from the first to the third quantile of observed 
conspecific densities per species to estimate how important CNDD is 
effectively for small tree mortality. It must be noted that values from 
this latter metric should not be compared between species (or sites), 
because the change in conspecific density is different for each species 
and tends to increase with species abundance.

Individual marginal effects (aMEi and rMEi) were averaged over all 
observations per species to obtain average marginal effects31. Because 
there is no analytical function to forward the uncertainty of the GAM 
predictions to the response scale, we estimated uncertainties; that is, 
sampling variances vlm, and significance levels for species-site-specific 
aAME and rAME by simulation. To this end, we simulated 500 sets of 
new model coefficients from a multivariate normal distribution with 
the unconditional covariance matrix of the fitted model, calculated 
aAME and rAME for each set66 and used quantiles of the simulated dis-
tributions to approximate sampling variances and significance levels 
of CNDD estimates.

In our results, we concentrate our discussion on rAME because we 
consider relative changes in mortality to be ecologically more meaning-
ful than absolute changes. The reason is that the relevance of an increase 
in mortality for a species’ fitness strongly depends on its base mortality 
rate. Vice versa, if CNDD effects exist, it is to be expected that they are 
higher in absolute terms for species that already have higher absolute 
mortality rates. Moreover, given that species-specific mortality rates 
may also correlate with species abundance and latitude, the use of 
absolute mortality rates is likely to be more prone to confounding. To 
be comparable with previous studies, which commonly use absolute 
effects, results for the two main meta-regressions are also presented 
for the absolute effects; that is, aAME estimates (Extended Data Fig. 4 
and Extended Data Table 3).

Meta-regressions for CNDD patterns
To test for latitudinal patterns in stabilizing CNDD, we fitted 
meta-regressions34,67 using the species-site-specific CNDD estimates. 
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The advantage of these models is that they simultaneously account for 
the uncertainties in aAME and rAME estimates (sampling variances)—
much like measurement error models—as well as heterogeneity among 
sites and species through a multilevel model:

b r s e fAME = + + + + (predictors)lm l lm lm0

r N σ~ (0, )l r
2

s N σ~ (0, )lm s
2

e N v~ (0, )lm lm

Here, AMElm is the average marginal effect for site l and species m, 
b0 is the intercept, rl is the random effect for site l (normally distributed 
with σ r

2), slm is the random effect of species m (normally distributed 
with σ s

2) and elm is the uncertainty of the individual estimates (normally 
distributed with the species-site-specific sampling variance vlm). Omit-
ting the random effects would lead to inappropriate estimates because 
it does not consider the true interspecific variation in species’ CNDD. 
To improve the normality assumption of the residuals of the 
meta-regressions, rAMEs were log-transformed after adding 1 before 
calculating the sampling variances (see above); aAME remained 
untransformed.

Depending on the respective prediction to be evaluated, we used 
different meta-regression models. To evaluate latitudinal patterns in 
average CNDD and in the association of CNDD and abundance, we fit-
ted multilevel models to all species-site-specific estimates (see model 
formula above): the first including absolute latitude as a predictor 
(Fig. 2 and Table 1a) and the second also including log-transformed 
species abundance and its interaction with latitude (Fig. 3 and Table 1b).

Absolute latitude was calculated as the distance (in degrees) to the 
equator. This metric does not distinguish between the northern and 
southern hemispheres and is commonly used as a proxy for the cur-
rent and past bio-climatic variables that are assumed to underlie most 
latitudinal biological patterns68,69. We calculated the abundance of each 
tree species per site as the number of all living trees (or stems, for the 
Pasoh site) with DBH ≥ 1 cm per hectare on the entire plot. Abundance 
for the two groups of rare species (rare trees and rare shrubs) was cal-
culated as the average of species abundances within the respective 
group. The predictors were centred at abundance = 1 tree per hectare 
and absolute latitude = 11.75°, so that main effects reflect slopes and 
respective significance tests for rare tropical species (Table 1).

We also separately fitted meta-regressions for each site with species 
as a random intercept: first, without any predictor to obtain mean 
CNDD and its s.d. among species per site (Figs. 2 and 4); and then with 
species abundance as a predictor to illustrate site-specific relationships 
of CNDD and abundance (Fig. 1).

AMEs calculated for species-specific interquantile ranges were aggre-
gated in a global meta-regression with random intercepts for sites and 
species within sites to obtain a global average of CNDD and assess its 
importance for small tree mortality (Extended Data Fig. 1).

Models were fitted with REML using the functions rma.mv() and rma() 
from the package metafor70 (v.3.4-0) for the global and site-specific 
cases, respectively.

Robustness tests
Statistical assumptions of the mortality models were verified on the 
basis of simulated residuals generated with the package DHARMa 
(v.0.4.6)71. Distributional assumptions and residual patterns against 
predictors were assessed visually, revealing no critical violations 
of assumptions and a consistently good model fit. To verify that 
no additional unobserved local confounders, particularly habitat 
effects, were affecting the relationship between conspecific density 

and mortality, we tested each mortality model for spatial autocor-
relation using the package DHARMa (ref. 71). After adjusting P val-
ues for multiple testing using the Holm method, significant spatial 
autocorrelation was detected in only seven models, or 0.28% of all 
species–site combinations, which means that there is no indication 
that local species-specific CNDD estimates were affected by spatial 
pseudo-replication.

Model diagnostics for the meta-regressions were based on stand-
ardized residuals and visual assessments. Because of the unbalanced 
design (more tropical than temperate species; see Supplementary 
Fig. 1c), we performed additional robustness tests by identifying influ-
ential species-site-specific CNDD estimates and refitting the two main 
meta-regression models (see Table 1) with a reduced dataset without 
these observations. We removed 99 CNDD estimates that had Cook’s 
distances larger than 0.005 in the abundance-mediated CNDD model72. 
Meta-regressions fitted with these reduced datasets revealed similar 
patterns and significance levels (Extended Data Fig. 3 and Extended 
Data Table 2).

To evaluate the robustness of the entire analysis pipeline with respect 
to potential abundance- and latitude-related biases11,12, we repeated all 
steps of the analysis (mortality models, average marginal effects and 
meta-regressions) with two randomizations of the original dataset 
(similar tests highlighted biases in a previously described pipeline8, 
see also refs. 11,12). We randomized (1) observations of tree status 
within each species, thus removing any relationship between mortal-
ity and predictors but maintaining species-level mortality rates; and 
(2) observations of local conspecific density within each species, thus 
removing the relationship between mortality and conspecific density 
but maintaining the relationships between mortality and confound-
ers. Meta-regressions applied to these randomized datasets revealed 
close to zero CNDD and no considerable patterns with latitude or 
species abundance (Extended Data Fig. 2 and Extended Data Table 2). 
When randomizing tree status, rare species exhibited minimally, but 
significantly, stronger CNDD, but the effect sizes varied by orders of 
magnitude from those observed in the original dataset. We therefore 
consider our results robust to statistical artefacts related to species 
abundance and latitude.

In addition, not only statistical biases but also alternative explana-
tions could create a spurious correlation between CNDD and species 
abundance. To test this, we included potential confounders for this 
relationship in the ‘abundance-mediated CNDD’ model. Following the 
idea that fast-growing tree species with short life spans (that is, lower 
survival rates) tend to be rarer43—a pattern also observed across the 
23 forest sites analysed here (Supplementary Fig. 1a,b)—and at the 
same time may experience stronger CNDD41, we considered two sets of 
predictors that are proxies for different life history strategies, namely: 
(1) species-specific growth and survival rates; and (2) species-specific 
values along two demographic trade-off axes73,74. Species-specific 
growth was calculated as the median of the annual DBH increment, 
log-transformed after adding 1. For survival, we calculated mean 
annual survival rates (based on the intercept of a GLM similar to the 
mortality models for CNDD but without predictors) and applied a 
logit-transformation. Both rates were standardized within sites (that 
is, subtracting the mean and dividing by the s.d.) to account for dif-
ferences in the realized demographic spectrum between sites. The 
demographic trade-offs reflect the two axes ‘growth–survival’ and ‘stat-
ure–recruitment’ and were adapted from a procedure described previ-
ously73 using species-specific growth and survival rates (as described 
before) and the species’ maximum size (stature), calculated as the 
log-transformed 90th percentile of the DBH, again standardized within 
sites. In both cases, we included main effects of the two predictors and 
their interaction. Accounting for life history strategies did not change 
the patterns obtained, and species abundance and CNDD were still 
strongly and statistically significantly correlated in tropical forests 
(Extended Data Table 4).



Stable coexistence and interspecific variation in CNDD
If CNDD varies strongly among species and the resulting interspecific 
fitness differences are not compensated by equalizing mechanisms6,33, 
the stabilizing advantage of CNDD may not promote diversity. One 
study14 suggested, on the basis of simulations, that the number of 
species maintained strongly drops when the coefficient of variation 
(CV = s.d./mean) for CNDD is above 0.4 (see the second figure in that 
study); that is, the stronger CNDD becomes, the more interspecific 
variation it enables. Similarly, another study15 found considerably fewer 
species with increasing standard deviations of CNDD supporting a 
comparable threshold of CV = 0.4 (s.d. = 0.2 at mean CNDD = 0.5; see the 
second figure in that study). Another study75, which also investigated 
the effect of interspecific variation in CNDD, identified no threshold for 
stable coexistence, which is most likely to be caused by the relatively 
small variation in CNDD that this study tested (see the second figure 
in that study). Although it is not entirely clear whether the threshold 
of CV = 0.4 is truly due to the magnitude of fitness differences or to 
the fact that some species tend to have almost no CNDD when inter-
specific variation becomes large, the consistency of this threshold, 
despite different implementations of CNDD14,15, provides a starting 
point for evaluating the relevance of CNDD for community assembly. 
We estimated true interspecific variation of CNDD within forest com-
munities fitting site-specific meta-regressions without predictors (see 
‘Meta-regressions for CNDD patterns’), which are particularly helpful in 
this case because the raw variability of species-specific CNDD estimates 
is also driven by statistical uncertainty.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
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Extended Data Fig. 1 | Distribution of stabilizing CNDD calculated over 
species-site-specific interquantile ranges in conspecific density. Besides 
the frequency distribution of species-site-specific estimates, the figure 
indicates the global average assessed through meta-regression with random 
intercepts for sites and species in sites (red diamond with 95% CI) and the 
interquantile range of the estimates. Note that 1% of the CNDD estimates are 
outside the limits of the x axis. Stabilizing CNDD is defined as the relative 
change (in %) in annual mortality probability (relative average marginal effect; 
rAME) induced by changing conspecific density from the first to the third 
quantile of observed conspecific densities per species while keeping total 
densities constant.
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Extended Data Fig. 2 | Robustness tests of the analysis pipeline based on 
randomized datasets. a–c, When observations of tree status (blue) or 
conspecific density (red) were randomized, stabilizing CNDD was practically 
zero at all latitudes (a) and for all species abundances (b,c). Rare species 
exhibited minimally, but significantly, stronger CNDD for the dataset with 
randomized tree status (blue), but the effect sizes varied by orders of 

magnitude from those observed in the original dataset (black). See 
‘Robustness tests’ in Methods for details. For details on the visualization and 
definition of CNDD in a and b,c, see Figs. 2 and 3, respectively. Estimates of the 
meta-regressions are shown in Extended Data Table 2 (randomized datasets) 
and Table 1 (original dataset).
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Extended Data Fig. 3 | Robustness tests without the most influential 
observations. a–c, When influential observations were removed (nremoved = 99, 
see ‘Robustness tests’ in Methods for details), the qualitative patterns remained 
the same; that is, stronger CNDD for rare than for common species in the 

tropics (b,c) but not generally stronger tropical CNDD (a). For details on the 
visualization and definition of CNDD in a and b,c, see Figs. 2 and 3, respectively. 
Estimates of the meta-regressions are shown in Extended Data Table 2.
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Extended Data Fig. 4 | Alternative definition of stabilizing CNDD as the 
absolute change in mortality probability. a–c, Similar patterns to the main 
analysis are visible; that is, stronger CNDD for rare than for common species in 
the tropics (b,c) but not generally stronger tropical CNDD (a), but, in contrast 
to the main analysis, the interaction of species abundance and latitude was 

insignificant. See ‘Quantification of conspecific density dependence’ in 
Methods for details on the definition of CNDD. For details on the visualization 
in a and b,c, see Figs. 2 and 3, respectively. Estimates of the meta-regressions 
are shown in Extended Data Table 3.



Article

0 10 20 30 40 50

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

absolute latitude (°)

st
ab

iliz
in

g 
C

N
D

D
 (%

)
P � 0.26

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8 Tropical
11.75°

0.1 10 1000

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

st
ab

iliz
in

g 
C

N
D

D
 (%

)

P � 0.00029 Subtropical
29.25°

0.1 10 1000

abundance (trees per ha)

P � 0.88

Temperate
45°

0.1 10 1000

P � 0.33

Species abundance
1 tree per ha

0 10 20 30 40 50

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

st
ab

iliz
in

g 
C

N
D

D
 (%

)

P � 0.016 Species abundance
10 trees per ha

0 10 20 30 40 50

absolute latitude (°)

P � 0.037

Species abundance
100 trees per ha

0 10 20 30 40 50

P � 0.77

a

b

c

Extended Data Fig. 5 | Alternative definition of stabilizing CNDD calculated 
at low conspecific densities (invasion densities). The patterns remained 
qualitatively the same as in the main analysis; that is, stronger CNDD for rare 
than for common species in the tropics (b,c) but not generally stronger tropical 
CNDD (a). See ‘Quantification of conspecific density dependence’ for details 

on the definition of CNDD. For details on the visualization in a and b,c, see 
Figs. 2 and 3, respectively. Note that for one of the sites (Smithsonian 
Conservation Biology Institute), no point could be drawn for mean CNDD in  
a because the site-specific meta-regression did not converge. Estimates of the 
meta-regressions are shown in Extended Data Table 3.



Extended Data Table 1 | Summary information of the data used in mortality models per forest plot

Observations for the mortality analyses (N status observations) were selected as follows: (1) no fern or palm species, (2) no missing information on coordinates, species, status, or date of 
measurement, (3) alive in the first census and alive or dead in the consecutive census, (4) DBH between 1 and 10 cm in the first census, (5) more than 30 m away from the plot boundaries. From 
the total number of species in the mortality dataset (N species for mortality analyses), only some proportion could be successfully fit (% species fitted individually). The remaining species were 
jointly fitted in species groups (N species fitted as rare trees or shrubs): these were species with fewer than 20 alive and dead observations each, species with fewer than four unique values of 
conspecific density, species with a range of conspecific density values not including the value used to calculate average marginal effects, or species for which no convergence of the mortality 
model was achieved. In some cases, also the mortality model for a species group did not converge (indicated by N = 0 in the respective column). Note that the percentage of dead trees (% dead 
status observations) does not correspond to mortality rates because of varying interval lengths. Numbers of species can include morphospecies. Note that for the Pasoh site, each stem was 
counted as an individual tree (see ‘Forest data’ in Methods).
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Extended Data Table 2 | Estimates for the two main meta-regressions using randomized and reduced datasets

We randomized observations of tree status within each species, thus removing any relationship between mortality and predictors but retaining species-level mortality rates, and observations of 
local conspecific density within each species, thus removing the relationship between mortality and conspecific density but retaining the relationships between mortality and confounders (see 
‘Robustness tests’ in Methods). For the reduced dataset, we removed n = 99 influential species-site-specific CNDD estimates with Cook’s distances larger than 0.005 to evaluate the possibility 
that a few observations were responsible for the observed patterns. Species-site-specific CNDD estimates and predictors are defined as in Table 1. Predictions of the meta-regressions are shown 
in Extended Data Figs. 2 and 3.



Extended Data Table 3 | Estimates for the two main meta-regressions using two alternative definitions of stabilizing CNDD

Species-site-specific CNDD estimates (n = 2,534 species or species groups from 23 forest sites) were calculated as the absolute change in mortality probability (aAME) and as the relative 
change in mortality probability (rAME) but at low conspecific densities (invasion densities; see ‘Quantification of conspecific density dependence’ in Methods). For the meta-regressions, aAMEs 
were not transformed and can be simply multiplied by 100 to obtain the absolute change in annual mortality probability induced by additional conspecific neighbour in per cent. For rAMEs, 
back-transformation is necessary as in Table 1. Predictions of the meta-regressions are shown in Extended Data Figs. 4 and 5.



Article
Extended Data Table 4 | Estimates for the meta-regression testing the second hypothesized latitudinal pattern in stabilizing 
CNDD additionally accounting for potential confounding by life history strategies

The original ‘abundance-mediated CNDD’ model (see Table 1b) was extended to include either the demographic rates growth and mortality or demographic trade-offs (see ‘Robustness tests’ 
in Methods). Demographic rates and trade-off axes were centred and scaled. Species-site-specific CNDD estimates (n = 2,534 species or species groups from 23 forest sites) and predictors 
(latitude and abundance) are defined as in Table 1.
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