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A B S T R A C T   

Synthetic Aperture Radar (SAR) imagery is the primary data type used for sea ice mapping due to its spatio-
temporal coverage and the ability to detect sea ice independent of cloud and lighting conditions. Automatic sea 
ice detection using SAR imagery remains problematic due to the presence of ambiguous signal and noise within 
the image. Conversely, ice and water are easily distinguishable using multispectral imagery (MSI), but in the 
polar regions the ocean's surface is often occluded by cloud or the sun may not appear above the horizon for 
many months. To address some of these limitations, this paper proposes a new tool trained using concurrent 
multispectral Visible and SAR imagery for sea Ice Detection (ViSual_IceD). ViSual_IceD is a convolution neural 
network (CNN) that builds on the classic U-Net architecture by containing two parallel encoder stages, enabling 
the fusion and concatenation of MSI and SAR imagery containing different spatial resolutions. The performance 
of ViSual_IceD is compared with U-Net models trained using concatenated MSI and SAR imagery as well as 
models trained exclusively on MSI or SAR imagery. ViSual_IceD outperforms the other networks, with a F1 score 
1.30% points higher than the next best network, and results indicate that ViSual_IceD is selective in the image 
type it uses during image segmentation. Outputs from ViSual_IceD are compared to sea ice concentration 
products derived from the AMSR2 Passive Microwave (PMW) sensor. Results highlight how ViSual_IceD is a 
useful tool to use in conjunction with PMW data, particularly in coastal regions. As the spatial-temporal coverage 
of MSI and SAR imagery continues to increase, ViSual_IceD provides a new opportunity for robust, accurate sea 
ice coverage detection in polar regions.   

1. Introduction 

Sea ice affects oceanic-atmospheric fluxes of heat and gases (Haid 
and Timmermann, 2013), influences local climate conditions through 
changes to surface albedo (Riihela et al., 2021), provides habitat and 
breeding grounds for wildlife (Steiner, 2021), and potentially safeguards 
the fracture and calving of ice shelves by buttressing ice shelves and 
dissipating ocean wave energy (Christie et al., 2022). The rapid and 
accurate detection of sea ice is important for operational monitoring and 
for analysing large numbers of images to determine seasonal to decadal 
scale changes in polar ice in response to changing climatic conditions 
(Parkinson, 2019). 

Remote sensing image analysis is well-suited to sea ice mapping due 
to the large spatial extent and dynamic nature of sea ice (Zakhvatkina 

et al., 2019). Sea ice coverage, investigated within this study, is defined 
as the total area of sea ice on the ocean's surface and differs from sea ice 
extent which is the area of ice with a sea ice concentration (SIC) >15%. 
Sea ice coverage has historically been manually digitised from remote 
sensing imagery to produce sea-ice charts (National Snow and Ice Data 
Centre, 2023; Norwegian Meteorological Institute, 2023). The time- 
consuming, subjective nature of this exercise has motivated the devel-
opment of automated tools for this task, particularly for shipping where 
accurate, low latency ice charts are necessary for safe navigation (Smith 
et al., 2022). 

Three publicly available satellite image datasets have primarily been 
used for sea ice detection: (i) passive microwave (PMW) data (ii) mul-
tispectral imagery (MSI) and (iii) Synthetic Aperture Radar (SAR). PMW 
data products such as the Bremen SIC products derived from the 

* Corresponding author. 
E-mail addresses: marrog@bas.ac.uk (M.S.J. Rogers), marfox@bas.ac.uk (M. Fox), ahf@bas.ac.uk (A. Fleming), lvanzeeland@turing.ac.uk (L. van Zeeland), 

jpw28@bas.ac.uk (J. Wilkinson), jask@bas.ac.uk (J.S. Hosking).  

Contents lists available at ScienceDirect 

Remote Sensing of Environment 

journal homepage: www.elsevier.com/locate/rse 

https://doi.org/10.1016/j.rse.2024.114073 
Received 24 August 2023; Received in revised form 9 February 2024; Accepted 19 February 2024   

mailto:marrog@bas.ac.uk
mailto:marfox@bas.ac.uk
mailto:ahf@bas.ac.uk
mailto:lvanzeeland@turing.ac.uk
mailto:jpw28@bas.ac.uk
mailto:jask@bas.ac.uk
www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2024.114073
https://doi.org/10.1016/j.rse.2024.114073
https://doi.org/10.1016/j.rse.2024.114073
http://creativecommons.org/licenses/by/4.0/


Remote Sensing of Environment 305 (2024) 114073

2

Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor and the 
Ocean and Sea Ice Satellite Application Facility (OSI SAF) SIC products 
derived from the Special Sensor Microwave Imager/Sounder (SSMIS) 
sensors provide unparalleled, multi-decadal, daily coverage of both 
polar regions (Spreen et al., 2008; Lavergne et al., 2019); however, its 
coarse spatial resolution precludes the precise identification of the ice- 
water interface. MSI platforms including the Moderate Resolution Im-
aging Spectroradiometer (MODIS) provide daily, 102 m resolution, pan- 
Antarctic imagery of sea ice coverage (Roger et al., 2015). The spectral 
properties of ice and water are generally very distinct, but deleterious 
cloud cover and lighting conditions often preclude the analysis of MSI 
for sea ice detection (Lee et al., 2020). Radar imagery from the Sentinel- 
1 missions, referred to from here as SAR, captures information on sea ice 
coverage independent of cloud and lightning conditions, and is freely 
available with an approximate pixel spacing of 40 m in modes usually 
used for sea ice charting. However, this SAR imagery has a less frequent 
and lower spatial coverage and phenomena such as ocean waves and 
water melt on the ice surface can generate ambiguous textures in SAR 
imagery, making ice-water classification problematic (Stokholm et al., 
2022). The benefits and limitations of MSI and SAR imagery justifies the 
development of tools to detect sea ice via multiple concurrent images, 
and to investigate the ability of these tools to utilise the benefits and 
overcome the limitations of MSI and SAR images respectively. 

This paper investigates the viability of training a machine learning 
tool, namely a convolutional neural network (CNN), on concurrent 
MODIS MSI and Sentinel-1 SAR imagery to detect Antarctic sea ice 
coverage. The performance of two separate networks that combine the 
MSI and SAR imagery is explored:  

(i) a traditional U-Net model trained using resized and fused MSI and 
SAR imagery (referred to from here as FuseNet); and  

(ii) a model with novel CNN architecture that contains two parallel 
encoder phases (ViSual_IceD). 

The relative performance of single and multiple encoder networks 
for image segmentation tasks has been compared in other domains 
including land cover classification (Marmanis et al., 2018) and object 
detection in natural red-green-blue imagery (Hazirbas et al., 2017), but 
the same analysis has not previously been performed for sea ice detec-
tion. The performance of these two multi-image networks is compared 
against two further U-Net models, the first trained exclusively on MSI 
scenes (MSI network) and the other trained exclusively using SAR im-
agery (SAR network). The relative importance of the MSI and SAR im-
agery for sea ice detection is investigated using the explainable AI 
technique, permute and predict. The outputs from the best performing 
network are compared to a time series of SIC values derived from the 
AMSR2 sensor in the South Bellingshausen Sea. 

All studies addressing the same issue have developed and applied 
tools exclusively to Arctic imagery. Compared with the Arctic, Antarctic 
sea ice backscatter properties can differ because it is generally younger, 
thinner, contains fewer melt ponds, has a greater number of icebergs, 
has less ridging and is located at lower latitudes (Zakhvatkina et al., 
2019). It is also more prevalent in the Antarctic for snow fall to depress 
the sea ice, causing it to flood and refreeze forming ‘snow ice’. Detailed 
understanding of Antarctic sea ice conditions is necessary because its 
extent has not exhibited the same linear reduction over the past 40 years 
as in the Arctic (Parkinson, 2019). These points highlight the necessity 
of developing separate networks with appropriate training datasets to 
detect sea ice coverage at high resolution in the Antarctic and Arctic. 

2. Machine learning applications to sea ice detection 

Numerous machine learning tools have been developed to detect sea 
ice coverage or classify sea ice type, with most previous research using 
object-based classifiers such as CNN (Yu et al., 2023). A CNN is a form of 
machine learning that stacks successive layers of convolution and 

pooling to identify scale-invariant features within the original input 
image. Internal weights within the CNN architecture connect the input 
image to successive features maps computed by the convolutional ker-
nels, and activation functions are applied to the weights to enable the 
model to learn non-linear functions. During the training stage, epochs of 
feed-forward passes and back propagation successively update the in-
ternal weights contained within the model, see Gu et al. (2018) for 
greater detail on CNN operations and recent advances. Numerous CNN 
architectures exist, with the U-Net architecture most widely used for sea 
ice detection in remote sensing imagery (Ronneberger et al., 2015). 

The U-Net architecture is an end-to-end CNN where an output layer 
is produced at the same resolution and extent as the original input image 
(Ronneberger et al., 2015). The encoder stage contains the alternate 
convolution and pooling layers to extract features from the image. The 
decoder consists of layers of deconvolution or up-sampling to recon-
struct the segmented output layer using the image features. The outputs 
from the encoder stage are passed via skip connections to the decoder 
stage to aid image segmentation. Recent advancements in the applica-
tion of U-Net models to sea ice include increasing the receptive field or 
the size of the neighbourhood of pixels the CNN considers when clas-
sifying each output pixel (Stokholm et al., 2022); employing an 
ensemble of U-Net models (Wang and Li, 2021) and altering the batch 
size, the number of images the model is simultaneously trained on 
(Boulze et al., 2020). Despite these advances, most papers highlight the 
potential of fusing multiple data sources prior to model training to 
improve network performance. 

Models trained using multiple data sources commonly utilise SAR 
data due to the rich textual information the imagery provides (Han et al., 
2021). Malmgren-Hansen et al. (2021) trained a U-Net model using SAR 
imagery as input and subsequently injected SIC data derived from the 
AMSR2 sensor into a deeper layer of the model, reducing noise in 
segmented outputs. De Gelis et al. (2021) concatenated SAR imagery 
with reanalysis data of wind speed to address the change in backscatter 
properties of water driven by wind strength and angle. The inclusion of 
this wind layer was found to have negligible benefit on the performance 
of the CNN but was retained in case it provided more information to the 
CNN on the radiometric ambiguities between sea ice and open water. 
PMW and reanalysis data have a coarse spatial resolution, restricting the 
ability to resolve low-level features such as edges with high precision. 
This highlights the need to investigate the fusion of other data sources 
containing similar spatial resolutions. 

Models using concurrent MSI and SAR imagery remain uncommon, 
despite the finer spatial resolution and pixel spacing of both data sour-
ces. Konig et al. (2021) combined these two image types to classify sea 
ice type and thickness. Initially, the authors calculated ratios of reflec-
tance values from different channels in MSI scenes and a Support Vector 
Machines classification algorithm was independently applied to the 
corresponding SAR imagery. The outputs of the two classification tasks 
were combined via multiplication and principal component analysis to 
generate a final ice classification map. Han et al. (2021) extracted fea-
tures individually from hyperspectral MSI and SAR imagery using two 
separate deep learning models before fusing spectral and spatial joint 
features to classify SIC in Hudson Bay, Canada. Both projects highlight 
the potential of training a CNN using concurrent MSI and SAR imagery, 
but only applied their trained network to an individual test site and used 
a cloud mask prior to model training, meaning sea ice information is not 
provided by the networks in locations where cloud occludes the MSI 
scene. Therefore, further investigation is required to train a CNN using 
concurrent MSI and SAR imagery where a cloud mask is not applied and 
to determine if the CNN can generalise to segment sea ice coverage in a 
range of new locations. 
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3. Methods 

3.1. Image data sources and preprocessing 

Copernicus Sentinel-1 A and B satellites capture C-Band (5.5 cm 
wavelength) Synthetic Aperture Radar (SAR) imagery (European Space 
Agency, 2023). This study acquired single-polarised, HH, SAR images in 
the Extra Wide (EW) swath mode with an approximate swath width of 
400 km and an approximate pixel spacing of 40 m. Single polarisation 
images were exclusively used due to the failure of the Sentinel 1B sat-
ellite and subsequent reduction in dual polarisation imagery availability 
in the Antarctic region. Imagery was collated from across West 
Antarctica with the majority acquired in the Lazarev Sea (18 images), 
Weddell Sea (20), Bellingshausen Sea (19), Amundsen Sea (17), Ross Sea 
(14), and Antarctic Peninsula (20) (Fig. 1). Due to lighting conditions, 
all imagery was captured in the austral summer between October–March 
inclusive from 2016 to 2022. 

Sentinel-1 SAR imagery was sourced and preprocessed using an 
automated programmatic method developed using the SentiNel Appli-
cation Program (SNAP) tool (Zuhlke et al., 2015). To address ambigu-
ities in SAR imagery deriving from the elevated backscatter values of 
water in areas of low (steep) incidence angle, this study compared the 
performance of ViSual_IceD when the model was trained using three 
different SAR processing methods: (i) orbit files were applied to all 
images prior to thermal noise removal, sigma0 calibration and terrain 
correction, (ii) after applying the steps in (i), radiometric terrain flat-
tening was applied, which accounts for changes in incidence angle 
caused by topography, and (iii) after applying the steps in (i), a novel 
method was used which normalises the backscatter values by incidence 
angle (Evans et al., 2023). Appendix 2 summarises the findings of this 

comparative investigation, most notably that the addition of the steps 
outlined in (ii) and (iii) reduced the number of false positives (water 
misclassified as ice) in areas of low (steep) incidence angle, but the 
image-wide performance of ViSual_IceD reduced. This is attributed to a 
reduction in the contrast of backscatter values for ice and water in other 
parts of the image when applying the additional processing steps listed 
in (ii) and (iii). Subsequently, the models trained within this project 
utilised SAR imagery processed using the procedures outlined in (i). 

NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) 
satellite provides MSI scenes at 250 m spatial resolution. This study used 
a combination of visible and short-wave infrared (SWIR) MODIS-Terra 
Corrected Reflectance imagery wavebands, namely band 3 (459–479 
nm), band 6 (1628 - 1652 nm) and band 7 (2105–2155 nm) (MODIS 
Science Team, 2017), where the initial values within each band range 
[0, 255]. This combination was chosen because it is well-suited to dis-
tinguishing between ice, cloud and water. Ice strongly reflects visible 
radiation but absorbs most SWIR, whereas water and cloud absorb and 
reflect all three bands respectively (Roger et al., 2015). Each band used 
had an initial resolution of 500 m but was sharpened to 250 m using the 
corresponding panchromatic band prior to extraction from the MODIS 
repository. 

A publicly available interface was developed to automatically extract 
the corresponding MSI scene for each SAR image from NASA's Global 
Imagery Browse Services (GIBS) repository (Rogers, 2022). 

To collate spatially and temporally concurrent MSI and SAR imagery, 
the acquisition time and bounding coordinates of each SAR image were 
initially collected. MSI and SAR image pairs acquired >8 h apart from 
each other were immediately discarded. Three factors were considered 
when deciding to retain the remaining MSI-SAR image pairs: (i) the time 
difference between the acquisition of the two images, (ii) the location of 

Fig. 1. Location of test images visualised in this paper. Inset shows Carroll Inlet test area discussed in Section 3.8.  
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image capture and (iii) the identification of major discrepancies be-
tween the location of the major ice-water boundary in the image pairs, 
determined via manual inspection during the generation of reference 
images (Section 3.2). Ice drift models were referred to when identifying 
the maximum allowable time lag between MSI and SAR image pairs 
(Kimura, 2004; Farooq et al., 2020). For locations with the greatest rates 
of ice drift, such as the North Weddell Sea, images pairs were only 
retained when the MSI and SAR scenes were acquired within 1–2 h of 
each other, whereas lag times between image acquisition was up to 8 h 
in locations where sea ice drift velocities are lower, including the 
Weddell Sea and Western Peninsula. 

Manual inspection of all remaining image pairs was subsequently 
conducted in GIS software, QGIS, to determine whether any major dis-
crepancies, > 720 m or 3 CNN output image pixels, in the position of the 
major ice-water interface between the two images remained. A mini-
mum zoom level of 1:250000 was used, enabling a detailed comparison 
of the location of the ice-water edge in the MSI and SAR image pairs. 

3.2. Reference sea ice classification layer generation 

To train a supervised CNN, corresponding reference sea ice classifi-
cation layers of ice (1) and water (0) were generated. Fig. 2 outlines the 
steps used to generate the reference sea ice classification for the ViSu-
al_IceD, FuseNet and MSI-only networks. A threshold was first applied to 
the visible band of the MSI scene to produce an initial binary layer of ice 
(including icebergs) and water (Fig. 2 (c)). After manual comparison of 
the outputs derived from applying different threshold values to the 
visible band, a threshold value of 70 was selected to ensure that the 
majority of mixed ice-water pixels were classified as ice, reducing 

underrepresentation of sea ice extent in the marginal ice zone. To correct 
for cloud erroneously labelled as ice, an additional threshold was 
applied to the SWIR band to distinguish ice from cloud (Fig. 2 (d)). A low 
threshold value of 20 was applied to the SWIR band to ensure all cloud 
was identified in the image. The corresponding SAR image was used to 
manually digitise all areas of open water and major in-ice water features, 
such as large leads and polynyas, under cloud using QGIS software 
(Fig. 2 (e)). The manually digitised polygons were applied as a mask to 
the initial binary layer to produce the final reference sea ice classifica-
tion (Fig. 2 (f)). Note, for the SAR-only network, the reference imagery 
was exclusively generated by manually digitising the entire SAR scene in 
QGIS. The corresponding MSI scene was referred to during digitisation 
where ambiguous signals or low incidence angles made it difficult to 
decipher the location of the major ice-water boundary. 

MSI and SAR images and their corresponding reference sea ice 
classification were combined to generate two separate sets of image 
pairs: SAR-reference and MSI-reference, and one set of image triplets: 
SAR-MSI-reference. The SAR-reference dataset was produced at 80 m 
resolution, whereas the MSI-reference and SAR-MSI-reference datasets 
were generated at 240 m resolution. See Fig. 3 for a summary of the 
processing workflow employed in this study. 

3.3. Data augmentation and paired image creation 

Data augmentation techniques were employed to increase the size of 
the image training dataset. All MSI and SAR images were resized to 240 
m and 80 m resolution respectively and normalised to [− 1,1] to increase 
the speed of CNN training. Resized MSI and SAR images were subset into 
patches with width and heights of 240 × 240 and 720 × 720 pixels 

Fig. 2. Workflow used to generate reference sea ice classification, (a) original MSI scene, (b) original SAR image, (c) simple threshold method to distinguish water 
(blue) from ice and cloud (yellow) (d) MSI scene classified into ice (yellow), water (blue) and cloud (red) using an additional threshold method, (e) manual digi-
tisation of areas of water under cloud (green), (f) output reference sea ice classification. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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respectively. These dimensions ensured that MSI and SAR patches had 
the same footprint. To further ensure spatial overlap between the MSI 
and SAR patches, every patch pair was subset using coordinates rather 
than image row and column values. The corresponding reference sea ice 
classification was also subset into patches with the same extent. Any 
patches containing NaN values at the boundary of the original SAR 
images were discarded. All patches were flipped along the vertical axis 
and rotated by 90, 180 and 270◦. This resulted in a total of >80,000 
SAR-MSI-reference patch triplets. 

Fewer than 20% of patches contained both ice and water, meaning 
>80% of the patches from the corresponding reference sea ice classifi-
cation were labelled as all water (0) or all ice (1). To reduce the likeli-
hood of the CNN segmenting every future unseen image to be 
exclusively ice or exclusively water, CNN performance was compared 
when trained on datasets containing different proportions of patches 

containing ice-water boundaries. Accordingly, three image datasets 
were produced: (i) one containing all patches generated (all images), (ii) 
one containing only the patches with an ice-water boundary (edge im-
ages) and (iii) one containing all the edge patches, and the same number 
of patches containing all water and all ice pixels (equal images). 
Concretely, equal images contained three times the number of patches as 
edge images. 

3.4. Convolutional neural network architecture design 

Four separate CNN were trained to detect sea ice coverage within this 
study (Fig. 3). Three separate CNNs with U-Net architectures were 
developed and trained using (i) SAR imagery (SAR network) (ii) MSI 
scenes (MSI network) or (iii) fused MSI and SAR imagery (FuseNet). To 
produce the FuseNet training dataset, the SAR image was resized to the 

Fig. 3. Summary of the processing workflow employed in this study to train four convolutional neural networks.  

Fig. 4. ViSual_IceD architecture.  
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same, coarser resolution as the MSI scene and concatenated with two of 
the three bands in the MSI scene (visible and SWIR). The final CNN 
developed in this study contained a novel architecture, ViSual_IceD, that 
contains two parallel encoder phases for the two image types (Fig. 4). 
Three CNNs, ViSual_IceD, FuseNet and the MSI network were trained to 
generate outputs at 240 m resolution, whereas the SAR network pro-
duced outputs at 80 m resolution. 

Numerous modifications were made to the original U-Net architec-
ture: (i) A batch normalisation layer was added between each set of 
convolutional layers to reduce CNN training time; (ii) an additional 
convolutional layer with stride = 2 was used instead of the 2 × 2 max 
pooling layer to allow the CNN to learn its own pooling function; and 
(iii) deconvolution layers were replaced by up-sampling layers within 
the decoder stage to reduce the presence of ‘checkerboard’ features in 
the CNN outputs (Odena et al., 2016). The above-mentioned model 
improvements were also employed in the ViSual_IceD network. 

To account for the differences in the spatial resolution between the 
two image types in the ViSual_IceD architecture, the SAR encoder stage 
contains an additional set of convolutional and downsizing layers than 
the MSI encoder stage (Fig. 4). The SAR encoder stage contains a 3 × 3 
max pooling layer after the first set of convolutional layers to create a 
feature layer with height and width of 240 pixels. This ensures all MSI 
and SAR feature layers in subsequent layers of the model have the same 
height and width, allowing these feature layers to be concatenated and 
provided via skip connections to the decoder stage (Fig. 4). The decoder 
stage correspondingly contains four sets of up-scaling and convolutional 
layers, resulting in an output image being produced with the same di-
mensions and spatial resolution as the input SAR imagery. 

3.5. Convolutional neural network training 

For every CNN, the augmented datasets described in Section 3.3. 
were split into 80% training and 20% validation data. The Rectified 
Linear Unit (ReLU) activation function was used in each model to learn 
non-linear relations and the cross-entropy loss function was employed to 
update internal architecture weights. 

Hyperparameters such as learning rate, batch size and input dataset 
have a large influence on CNN performance, but individual testing of all 
combinations of hyperparameter values can be time consuming. To 
overcome this issue, the WandB package was employed to run many 
CNN training iterations using different hyperparameter values. WandB 
uses a Bayesian optimisation algorithm to efficiently identify combina-
tions of hyperparameter values that reduce validation loss values (Snoek 
et al., 2012). Table 1 outlines the hyperparameters and the range of 
values tested within this study as well as the best hyperparameter values 
identified for each CNN. Memory capacity prevented the use of batch 
sizes >32. For the transfer learning hyperparameter, the network per-
formance was tested using the pretrained ImageNet weights (Stanford 
Vision Lab, 2016). A class balance constant of 0.1 and 10 encouraged the 
detection of water and ice respectively. To prevent overfitting, the 
maximum number of epochs during model training was set at 100 
epochs and an early stopping criterion was employed to stop training if 
loss did not improve over five epochs. 

All CNN training and hyperparameter tuning was implemented in 

Python 3.8 using the Keras library with Tensorflow backend. Training 
was run on a Nvidia Quadro P4000 graphical processing unit (GPU) and 
the maximum run time for training any individual CNN was 8.5 h. 

3.6. Convolutional neural network testing 

To validate the performance of the four CNN tested within this 
investigation, four pixel-based evaluation metrics were used: binary 
accuracy (Eq. 1), user accuracy or precision (Eq. 2), producer accuracy 
or recall (Eq. 3) and F-Score (Eq. 4). Each network was applied to 40 
previously unseen West Antarctic test images. The same preprocessing 
steps outlined in Section 3.1. were applied to each test image. 

BA =
TP + TN

TP + TN + FP + FN
(1)  

UA =
TP

TP + FP
(2)  

PA =
TP

TP + FN
(3)  

F1 =
UA + PA

UA × PA
(4)  

where BA, UA, PA and F1 are the binary accuracy, user accuracy, pro-
ducer accuracy and F-Score values, respectively. TP = true positive and 
TN = true negative, each corresponding to correctly classified pixels and 
FP = false positives and FN = false negative, each corresponding to 
incorrectly classified pixels. A lower PA corresponds to a greater number 
of pixels misclassified as ice and a lower UA is caused by more pixels 
being incorrectly classified as water. The metrics were applied to the 
entire test set, and then the performance of ViSual_IceD was compared 
between three separate regions of Antarctica: (i) Amundsen and Bel-
lingshausen Sea, (ii) Antarctic Peninsula and West Weddell Sea, and (iii) 
East Weddell Sea and Indian Ocean. To assess the impact of low inci-
dence angle in the SAR image on network performance, the evaluation 
metrics were also exclusively applied to pixels in the ViSual_IceD out-
puts corresponding to areas of low incidence angle in the SAR image. 
Low incidence angle is defined here as <25

◦

which corresponds to the 
maximum incidence angle found in the first swath of each of the SAR test 
images. 

All output images from the four networks contained values [0,1], 
corresponding to the confidence of the network that a particular pixel 
should be classified as ice. To apply the validation metrics, a threshold 
was first applied to all output imagery to generate a binary ice (1) and 
water (0) mask. Sensitivity analysis of the threshold value used was 
conducted by applying every threshold value between 0.1 and 0.9 with 
0.1 intervals. 

When applying the trained networks to images larger than the 720 ×
720 pixel patch size, the original test images were split into patches of 
this size, with an overlap of 120 pixels between each adjacent patch. The 
trained network was then applied to each patch and the patches were 
subsequently merged to reconstruct an output image with the same di-
mensions as the original image. To mitigate edge effects when applying 
the trained tool, each patch was cropped by 60 pixels at each boundary, 

Table 1 
Hyperparameter tuning values.    

Hyperparameter values used within each architecture 

Hyperparameter Value Range SAR network MSI network FuseNet ViSual_IceD 

Batch size {1,2,4,8,16,32} 32 32 32 32 
Transfer learning applied Yes [1], No [0] 0 1 1 SAR encoder = 0, MSI encoder = 1 
Learning rate [0.0001, 0.1] 0.009 0.008 0.009 0.007 
Dataset {Equal images, Edge images, All images} Equal images All images All images All images 
Class imbalance constant [0.1, 10] 1 0.85 0.92 0.91 
Decoder upsample method {Bilinear, Gaussian, Nearest} Bilinear Bilinear Bilinear Bilinear  

M.S.J. Rogers et al.                                                                                                                                                                                                                             



Remote Sensing of Environment 305 (2024) 114073

7

also meaning there was no overlap with adjacent prediction patches. 
The non-parametric McNemar test was applied to determine whether 

there was a statistically significant difference between the locations 
where ViSual_IceD and the other three networks incorrectly classified 
the test images (Eq. 5). For each test image, the outputs from ViSual_-
IceD and the other networks were compared to the reference image to 
generate binary True/False maps, corresponding to locations where the 
networks correctly or incorrectly classified that pixel. 

M =
(TV − FV)

2

(TV + FV)
(5)  

where Tv corresponds to locations where the ViSual_IceD classification 
was correct and the other network was incorrect, and Fv corresponds to 
locations where the ViSual_IceD classification was incorrect and the 
classification from the other network was correct. A higher value cor-
responds to larger disagreements in the locations where the networks 
were incorrect. The null hypothesis states that there is no difference in 
the locations where the two networks incorrectly classify the image. The 
null hypothesis was rejected when a p-value <0.05 was produced, 
meaning there is a statistically significant difference in the locations 
where ViSual_IceD and the other networks incorrectly classified the 
image. 

3.7. Permute and predict 

The permute and predict method was employed to ascertain infor-
mation on the relative importance of the MSI and SAR image for the 
multi-image networks. The purpose of permute and predict is not to 
generate viable network outputs, but to improve understanding of how 
the trained network derives its ice-water charts. Initially, the pre-trained 
multi-image network was applied to a concurrent MSI-SAR image pair. A 
different SAR image, acquired from a different date and location, was 
then paired with the original MSI scene. A binary ice-water mask was 
then generated when the multi-image network was applied to the 
original MSI - permuted SAR pair (permuted output). 

To calculate the impact of permuting the SAR image, the permuted 
output was subtracted from the original output using pixel-wise calcu-
lations. A value close to 0 (1) corresponds to small (large) changes in the 
original and permuted outputs respectively. To determine whether 
cloud cover affected the relative importance of the two image types, the 
above-mentioned pixel-wise calculations were compared in locations 
where cloud was and was not present in the MSI scene. Cloud locations 
were identified by applying a threshold to the SWIR band to generate a 
cloud mask after permuted image segmentation. The magnitude of 
change between the original and permuted outputs was subsequently 
compared for pixels in and out of cloud cover. This process was carried 
out on 10 different original MSI-SAR pairs using 10 permuted images 
each time, meaning this permute and predict experiment was conducted 
a total of 100 times. 

3.8. Comparing CNN outputs to passive microwave data 

The best performing network, ViSual_IceD, was subsequently applied 
to a time series of images of the Carroll Inlet, South Bellingshausen Sea, 
to detect the reduction in sea ice during the austral summer 2018–2019 
(see inset Fig. 1). This site was selected because it is of navigational 
importance as the coastal topography of Stange Sound allows offload of 
fuel and science equipment by ship for onward transport into the Ant-
arctic continent. Sea ice conditions are highly variable and accurate sea 
ice information is an important part of planning and ship operations. 

ViSual_IceD outputs were compared to concurrent sea ice concen-
tration (SIC) maps previously derived from applying the ARTIST Sea Ice 
(ASI) algorithm to microwave radiometer data captured by the 
Advanced Microwave Scanning Radiometer 2 sensor (AMSR2 product) 
(Spreen et al., 2008). The AMSR2 product provides daily, pan-Antarctic 

SIC layers at a 6.25 km spatial resolution. To allow direct comparison 
between the two data products, ViSual_IceD outputs were downscaled to 
6.25 km resolution by convolving a mean kernel filter over the initial 
ViSual_IceD binary ice-water output. This kernel had a spatial footprint 
and stride of 6.25 km that enabled the network to calculate the pro-
portion of pixels classified as ice by ViSual_IceD in each AMSR2 product 
grid square, equating to SIC. A land mask was applied to the ViSual_IceD 
data, setting all land pixels to Not a Number (NaN), enabling the mean 
filter kernel to only consider ocean pixels when calculating the pro-
portion of pixels classified as ice. 

4. Results 

4.1. Relative network performance 

Figs. 5, 6 and 7 provide a visual comparison of outputs produced by 
the four networks tested within this project that were trained using the 
hyperparameters defined in Table 1. Figs. 5 and 6 provide examples of 
the original outputs from the networks scaled [0,1] and Fig. 7 shows 
network outputs after a threshold has been applied to generate a binary 
ice-water mask. The outputs from the networks show the confidence of 
the pixel corresponding to ice. A value close to 1 (0) corresponds to the 
network classifying the pixel with a high confidence as ice (water) 
respectively. Pixel values close to 0.5 correspond to locations where the 
network has a low confidence that the pixel is either ice or water. 

Binary accuracy, UA, PA and F1 scores produced by the four networks 
on the 40 test images are provided in Table 2. ViSual_IceD had the 
highest mean binary accuracy (0.942), UA (0.983) and F1 score (0.972) 
of the four networks whilst FuseNet had a higher mean PA (0.961). The 
higher UA and F1 score achieved by ViSual_IceD shows that the network 
produces a low number of false positive results where water is mis-
classified as ice. The higher false positive rate of FuseNet meant the 
network did not detect many in-ice water features like ViSual_IceD. The 
lower PA score of ViSual_IceD corresponds to a higher number of false 
negatives results, where the network misclassifies ice as water. ViSu-
al_IceD performance was consistent between the West Weddell and 
Amundsen and Bellingshausen Sea test areas where F1 scores of 0.972 
and 0.979 respectively were recorded, but the network produced infe-
rior PA and F1 values in the East Weddell Sea and Antarctic Peninsula 
test area (F1 = 0.931). Further, ViSual_IceD UA was lower in areas 
corresponding to low incidence angle in the SAR image (μ = 0.901) 
compared with results for entire images (μ = 0.983). 

The multi-image networks outperformed the networks trained 
exclusively on MSI or SAR imagery for all four validation metrics. The 
MSI network achieved UA scores similar to ViSual_IceD (0.955 and 0.983 
respectively) but had an inferior PA (0.913 compared to 0.951). The SAR 
network achieved the lowest validation metric scores of the four net-
works (F1 = 0.927). The SAR network also achieved the lowest UA 
(0.898), commonly generating many false positive results as can be seen 
at the bottom of Fig. 7 (f). The McNemar test revealed a statistically 
significant difference between the locations where ViSual_IceD and the 
other models incorrectly classified the test image (p-value range 
0.001–0.04). 

An important finding was that the networks trained on concurrent 
MSI and SAR imagery produced outputs that classify pixels as ice or 
water with greater confidence. Across all test images, the proportion of 
output pixels with a value 0.05 < y < 0.95 was 8% for ViSual_IceD, 12% 
for FuseNet, 21% for the MSI network, and 29% for the SAR network. It 
is desirable to have a low proportion of pixels valued 0.05 < y < 0.95, as 
this corresponds to a high proportion of pixels being confidently clas-
sified as either ice or water by the network. Concordantly, the perfor-
mance metrics of ViSual_IceD was the least affected by the choice of 
threshold value applied to generate a binary ice-water mask. The binary 
accuracy changed by <4% when using a threshold of 0.1 verses 0.9, but 
interestingly the changes were greater for the other networks (see Ap-
pendix 1 for full analysis of the impact of threshold value selection on 
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network performance). The best threshold value to use for ViSual_IceD 
and FuseNet was 0.9, whereas it was 0.7 for the MSI network and 0.6 for 
the SAR network. 

An example of low confidence in the classification made by the MSI 
network is shown in the blue box in Fig. 5 (e), whereas ViSual_IceD can 
resolve sea ice coverage with high network confidence in the same 

Fig. 5. Network outputs for the East Weddell Sea test area. (a) Original MSI scene, (b) Original SAR image, outputs from (c) ViSual_IceD, (d) FuseNet, (e) MSI 
network and (f) SAR network respectively. Colour ramp for panels (c) to (f) shows relative confidence of pixel corresponding to ice. Values close to 1 correspond to a 
high confidence of ice (yellow), values close to 0 correspond to a high confidence of water (black) and values close to 0.5 correspond to areas of low classification 
confidence (orange, pink and purple). Blue and green boxes denote areas where ViSual_IceD classifies the image with higher confidence than the MSI or SAR network. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Network outputs for Stancomb Wills test area. (a) Original MSI scene, (b) Original SAR image, outputs from (c) ViSual_IceD, (d) FuseNet, (e) MSI network and 
(f) SAR network respectively. Colour ramp for panels (c) to (f) described in Fig. 5. 
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location (Fig. 5 (c)). The SAR and MSI networks both have low confi-
dence when classifying the boundary between the iceberg and open 
water in the green square in the bottom left of the image (Fig. 5 (e) & 
(f)). In comparison, the ViSual_IceD network discriminates between the 
location of the iceberg and open water with high confidence (Fig. 5 (c)). 

4.2. Relative importance of different data sources 

To test the relative importance of the MSI scene verses SAR image, 
the SAR image was permuted and the magnitude of difference in ViSu-
al_IceD output using the original SAR image (original output) and 
permuted SAR image (permuted output) calculated (Fig. 8). Positive 
(negative) values correspond to the original output having a higher 
(lower) confidence than the permuted output of the pixel being sea ice. 
The mean change in pixel value across all permuted image outputs was 
μ = 0.17 with a standard deviation, σ = 0.28. In both cloudy and clear 
conditions, the difference between original and permuted output tended 
to be positive, meaning that permuted outputs values were lower, and 
permuting the SAR image increased the number of pixels classified as 
water (Fig. 8). The lower proportion of change values between − 0.75 < 
y < − 0.25 and 0.25 < y < 0.75 is the result of a high proportion of 
ViSual_IceD output pixels being close to 0 or 1, meaning change values 
would be closer to − 1, 0 or 1. 

In the ViSual_IceD network, cloud cover affected the magnitude of 
change in the pixel value when permuting the SAR image. Greater dif-
ferences in permuted and original ViSual_IceD output values were 

recorded under cloudy than clear conditions (Fig. 8). Mean pixel value 
differences between permuted and original ice marks were μ = 0.32 and 
μ = 0.07 under cloudy and clear conditions respectively. The standard 
deviation of differences in pixel values was also greater in cloudy con-
ditions, σ = 0.42, than in clear conditions, σ = 0.15. The greater use of 
the SAR scene during image segmentation when the MSI scene is 
occluded by cloud is also demonstrated visually in Fig. 9, where sea ice 
conditions are completely occluded by cloud in the MSI scene, and the 
sea ice coverage classified by ViSual_IceD closely resembles that con-
tained within the SAR image. In comparison, cloud cover had less of an 

Fig. 7. Binary ice-water masks derived from each network for the Antarctic Peninsula test area. (a) Original MSI scene, (b) Original SAR image, outputs from (c) 
ViSual_IceD, (d) FuseNet, (e) MSI network and (f) SAR network respectively. 

Table 2 
Comparison of network performance.  

Network ViSual_IceD FuseNet MSI Network SAR Network 

Binary Accuracy 0.942 0.903 0.909 0.892 
User Accuracy 0.983 0.974 0.955 0.898 
Producer Accuracy 0.951 0.961 0.913 0.916 
F1 score 0.972 0.959 0.956 0.927  

Fig. 8. Difference in output classification pixel values when ViSual_IceD used 
the original and permuted SAR image as input. Positive (negative) values 
correspond to the original classification having a higher (lower) confidence of 
being ice. Pixel values are split by those in cloudy (grey) and clear sky (blue) 
conditions. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

M.S.J. Rogers et al.                                                                                                                                                                                                                             



Remote Sensing of Environment 305 (2024) 114073

10

impact on the magnitude of change in pixel value when permuting the 
SAR image in the FuseNet network. For this network, mean pixel value 
differences between permuted and original ice marks were μ = 0.11 and 
μ = 0.09 under cloudy and clear conditions respectively. 

4.3. Sea ice variability in Carroll Inlet 

Fig. 10 provides a comparison of a time series of sea ice conditions in 
the Carroll Inlet depicted by the AMSR2 product at 6.25 km, binary ice- 

water masks produced by ViSual_IceD, and SIC values generated by 
downscaling ViSual_IceD outputs to 6.25 km resolution. The AMSR2 
product and ViSual_IceD datasets both show similar global patterns in 
sea ice condition over this period, including a consistent reduction in sea 
ice coverage between each time stamp and the Stange Sound coastline 
first becoming ice free in the same location in late January 2019 (Fig. 10 
(d), (i) and (n)). 

ViSual_IceD provides more detailed information on the ice-water 
boundary and identifies the location of individual floes that have 

Fig. 9. Zoomed-in subset of (a) original MSI scene from the South Bellingshausen Sea test area where the ocean surface is not discernible due to cloud cover, (b) 
corresponding SAR image and (c) ViSual_IceD output. 

Fig. 10. Comparison of sea ice conditions derived from various sources in the Carroll Inlet between December 2018 and February 2019. (a) - (e) AMSR2 SIC product 
values, (f) - (j) ViSual_IceD binary ice-water classification, and (k) - (o) ViSual_IceD outputs downscaled to the same resolution as the AMSR2 product and converted 
to SIC values. 
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detached from the main region of sea ice adjacent to Stange Sound. The 
finer resolution of the ViSual_IceD outputs enables the network to detect 
in-ice water features adjacent to Stange Sound that are not detectable 
within the AMSR2 product. Downscaled ViSual_IceD consistently show 
sea ice extent and concentration to be lower in the Carroll Inlet than in 
the concurrent AMSR2 product. 

5. Discussion 

5.1. ViSual_IceD performance 

ViSual_IceD is the first example of a CNN trained to detect sea ice 
coverage in concurrent MODIS multispectral imagery (MSI) and Sentinel 
1 synthetic aperture radar (SAR) imagery. A comparison of evaluation 
metrics show that networks trained on multiple image sources can 
outperform analogous networks trained on individual image types 
(Table 2). This study investigated different methods via which a CNN 
could be trained on concurrent MSI and SAR imagery:  

(i) concatenate or fuse both image types prior to input into the CNN 
with single encoder (FuseNet); and  

(ii) create a new CNN architecture, ViSual_IceD, with dual encoder 
(Fig. 4). 

ViSual_IceD was shown to outperform FuseNet, with higher binary 
accuracy, UA and F1 scores (Table 2), and the results from the McNemar 
test showed a statistically significant difference in the location of 
incorrectly classified pixels between the ViSual_IceD and FuseNet net-
works (Eq. 5). The superior performance of ViSual_IceD is primarily 
attributed to the network's ability to utilise the most informative image 
type in different circumstances. In cloud free conditions, ViSual_IceD 
almost exclusively uses the MSI scene to detect sea ice conditions. This is 
shown by the small differences between original and permuted outputs 
classification values indicating that the image is classified independent 
of ice conditions depicted within the SAR image (μ = 0.07, Fig. 8). 
Larger differences between the original and permuted output values 
under cloudy conditions indicates that changes in sea ice conditions in 
the SAR image influences network segmentation (μ = 0.32). In com-
parison, FuseNet permuted and original output values were more 
similar, indicating that the network primarily classifies using the MSI 
scene in all situations (μ = 0.11). This inability for FuseNet to select the 
most informative image type during segmentation is disadvantageous 
and provides reasoning for its inferior performance compared to ViSu-
al_IceD. It is noted that permuted output values could be caused by the 
generation of unrealistic combinations of pixel values that the network 
has not had exposure to during training (Fisher et al., 2019). Further, it 
was not possible to derive meaningful results from permuting the MSI 
scene and retaining the same SAR image, as permuting the MSI scene 
affected both the cloud and sea ice conditions present, overriding any 
observable effects on ViSual_IceD outputs caused by the presence of 
noise and ambiguous signal in the SAR image. These considerations 
mean the permute and predict methods indicate, but do not prove, this 
selective use of imagery by ViSual_IceD. 

Visual inspection of outputs from ViSual_IceD provide further evi-
dence of the selective use of SAR imagery by ViSual_IceD in cloudy 
conditions (e.g. Fig. 9). ViSual_IceD outputs closely resemble the sea ice 
coverage in SAR images when cloud completely occludes the ocean 
surface in the corresponding MSI scene. Further, in the blue box in Fig. 5 
(c), ViSual_IceD provides a high confidence output that closely re-
sembles the sea ice conditions contained within the SAR. In comparison, 
the MSI network classifies this part of the image with low confidence 
because the network has no information pertaining to the ocean surface 
(blue box Fig. 5 (e)). The visual comparison of network outputs further 
support assertions deduced from the permute and predict outputs that 
the ViSual_IceD network can selectively choose to use the MSI or SAR 
scene dependent upon cloud conditions. 

The detection of sea ice in locations occluded by haze and cloud by 
ViSual_IceD is a key advancement on previous work. Previous studies 
have used concurrent optical and radar satellite imagery to detect sea ice 
extent or concentration but have applied a cloud mask prior to network 
training and application (Han et al., 2021; Konig et al., 2021). The 
extent of cloud masks is dependent upon the algorithm used and diffi-
culties persist in robustly identifying some cloud types such as thin 
cirrus clouds or haze from land signatures (Lee et al., 2020). As such, 
partial cloud occlusion remains a limitation even when cloud masks are 
applied. Further, a cloud mask can occlude a substantial proportion of 
the ocean's surface meaning information of sea ice coverage in many 
areas remain unobtainable. This highlights the potential advantages of 
training ViSual_IceD to have exposure to many cloud conditions to make 
it transferable to many new test circumstances. 

Where the SAR image contained ambiguous signal, noise, or higher 
backscatter due to lower incidence angle, ViSual_IceD used the MSI 
scene during image segmentation [Fig. 5 (c) and (f) and Fig. 7 (c), (e) 
and (f)]. The SAR-only network incorrectly classified water as ice at the 
bottom of Fig. 7 (f), where wind-roughened water and a low incidence 
angle were present, whereas ViSual_IceD and FuseNet networks 
correctly identified these areas as ocean. The mean UA of ViSual_IceD 
was lower at areas of low incidence angle (UA = 0.901), compared to the 
entire test image set (UA = 0.983). This is attributed to both cloud and 
low incidence angle in some MSI-SAR image pairs; however, visual in-
spection of the outputs demonstrate an accurate segmentation of ice 
from water in most situations, despite the lower UA (Fig. 5 (c) and 6 (c)). 
Whilst the combination of MSI and SAR imagery shows promise in 
overcoming unavoidable noise and ambiguous signal, efforts to make 
the network more robust to all circumstances remains necessary. 

Correct image preprocessing methods are key to overcome noise and 
ambiguous signals in SAR imagery. These impacts have previously been 
mitigated by increasing the receptive field of the network, altering the 
SAR image preprocessing chain (Stokholm et al., 2022), running 
ensemble models (Wang and Li, 2021), or modifying the CNN archi-
tecture (De Gelis et al., 2021). Noise and ambiguous signals are dis-
cussed as persistent limitations in SAR-only networks. This paper 
investigates the impact of incidence angle normalisation (Evans et al., 
2023) and radiometric terrain flattening to mitigate the effects of these 
features. Both methods reduced the overall performance of ViSual_IceD, 
attributed to a reduction in contrast in backscatter values for water and 
ice (Appendix 2). Future research is required to identify the best SAR 
image preprocessing techniques to handle the effects of low incidence 
angle in the input SAR image. 

This study produced a comprehensive training set consisting of 
80,000 image patches containing a diverse range of sea ice, cloud, and 
wind conditions across the West Antarctic. Alongside increasing the size 
of the reference dataset via manual digitisation, future work should 
investigate the use of semi-supervised methods and bootstrapping 
methods that have shown great promise in detecting features in SAR 
images such as sea ice and glacial crevasses (Surawy-Stepney et al., 
2023; Han et al., 2021) despite being trained on a relatively small 
training dataset. Both methods train deep learning tools using both 
labelled and unlabelled data, leveraging the vast amount of information 
contained within unlabelled imagery to improve the performance of the 
networks (Han et al., 2021). Future research should investigate the 
potential of using these methods for detecting sea ice extent when using 
multiple concurrent image sources. 

5.2. Considerations of using concurrent imagery for sea ice detection 

A key consideration when training a machine learning tool using 
multiple image types to detect sea ice coverage is the drift in sea ice 
position between the acquisition of the two images. Contemporary ice 
drift models have determined that mean austral summer ice drift ve-
locity in most parts of the Weddell Sea, Western Antarctic Peninsula, and 
along many coastlines are 1–6 cm/s or 36–216 m/h (Kimura, 2004; 
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Farooq et al., 2020). Conversely, ice drift rates can exceed 15 cm/s or 
540 m/h in the Drake Passage, the North Weddell Sea and Ross Sea, 
particularly where sea ice concentrations are lower, and wind has a 
greater influence on ice drift velocity (Farooq et al., 2020). This study 
defined 480 m or two ViSual_IceD output pixels as an acceptable drift 
distance between image acquisition. Using this information, only images 
acquired within 1 h of each other are suitable in the more dynamic re-
gions, but lag times between image capture can exceed 2–8 h in the 
Weddell Sea or Western Peninsula. This is analogous to the findings of 
Konig et al. (2021), who determined 3–5 h to be acceptable time lag 
when using combined Sentinel-3 multispectral and Sentinel-1 SAR im-
agery to map sea ice concentration. Further work could investigate 
whether providing information on image time lag during model training 
provides benefit, although within-image heterogeneity in ice-drift ve-
locities may limit the information the model gains from this. 

The continued increase in the spatio-temporal coverage of MSI and 
SAR imagery in both polar regions will act to reduce the circumstances 
where MSI and SAR imagery with an acceptable time lag is not available. 
MODIS MSI scenes are captured daily, and the Visible Infrared Imaging 
Radiometer Suite (VIIRS) instrument observes the earth's surface twice 
per day, providing imagery that is radiometrically similar to MODIS. In 
favourable locations along the Antarctic Peninsula and Western Weddell 
Sea, SAR imagery is acquired more than weekly from the Sentinel-1 
satellite platforms (Liang et al., 2022). Coverage in polar regions will 
increase with the impending launch of Sentinel 1C and the Sentinel-1 
high level operation plan contains objectives to revisit all Antarctic 
sea ice every three days (Wilson et al. Wang and Li, 2021). Radarsat 
satellites capture radar imagery at the same resolution, C-band fre-
quency, and polarisation as Sentinel 1 (Morena et al., 2004), and further 
investigation could look at the performance of a tool trained using both 
image types. Other existing or planned missions, such as the SAR 
Observation and Communications Satellite (SAOCOM), and the NASA- 
ISRO Synthetic Aperture Radar (NISAR), provide radar imagery with 
different frequencies and polarisation. Future work could investigate the 
training of a CNN for sea ice detection using multi-frequency and 
polarimetric radar imagery as inputs. Future improvements in the 
coverage of both MSI and SAR imagery in polar regions will increase the 
likelihood of obtaining concurrent imagery acquired within an accept-
able time lag. This will help to reduce the limitations and potentially 
support the benefits of training machine learning tools on multiple 
image types to detect sea ice conditions. 

Despite the benefits that using concurrent imagery provides, some 
limitations in the ViSual_IceD network persist due to using two image 
types. For example, the lower PA value, corresponding to ice mis-
classified as water is attributed to the combined presence of complex 
cloud boundaries in locations where temperatures near 0 ◦C. The cloud 
boundaries and associated cloud shadows reduce surface reflectance 
making sea ice more spectrally similar to water in MSI scenes (Fig. 6 (c); 
Lee et al., 2020), as identified in previous studies applying CNN to sea 
ice detection in MSI scenes (Hoffman et al., 2021). If cloud boundaries 
coincide with locations where temperatures near 0 ◦C, discrimination of 
ice and water in the corresponding SAR image is made problematic due 
to modifications in the backscatter properties of sea ice as the snow layer 
on top of the ice become saturated, which can lead to the formation of 
brine-influenced snow-ice on the sea ice surface when new snow or rain 
is added (Casey et al., 2016; Paul et al., 2015, Massom et al., 2001). The 
lower PA values recorded in the East Weddell Sea and Antarctic Penin-
sula are attributed to these snow and ice properties that exist in warmer 
conditions that are more prevalent in these regions of lower latitude. 
The challenges of segmenting an image containing heterogeneous ice 
conditions and complex cloud boundaries could be further addressed by 
increasing the size and diversity of the training dataset to reduce the risk 
of overfitting, and investigating the use of other image sources, 
including altimetry data or SAR imagery with HV polarisation, which 
are less susceptible to these limitations. 

5.3. Future applications of ViSual_IceD 

The automated nature of ViSual_IceD provides potential to conduct 
extensive comparisons of SIC values derived from this tool and those 
acquired from passive microwave (PMW) data. Despite the widescale 
use of PMW data to derive SIC values, limitations remain in the algo-
rithms used to convert the PMW brightness measurements into SIC 
values (Andersen et al., 2006; Kern et al., 2019). This study compared a 
time series of SIC values derived from microwave radiometer data 
captured by the Advanced Microwave Scanning Radiometer 2 sensor 
(AMSR2) and downscaled ViSual_IceD outputs in the Carroll Inlet 
(Fig. 10). Both timeseries show the same dominant pattern of persistent 
sea ice retreat, but in many locations, SIC values were higher in the 
AMSR2 product than the ViSual_IceD outputs. This is attributed to the 
footprint of the coarse pixels from the AMSR2 product spanning coastal 
water and adjacent snow-covered land that is characterised by larger 
PMW emissions (Maa and Kaleschke, 2010). This land contamination 
artificially increases the SIC value derived by the PMW dataset, whereas 
more robust SIC values are derived from ViSual_IceD in coastal regions 
where a fine detailed land mask can be applied. There is potential to use 
ViSual_IceD or similar tools trained on finer resolution imagery at a 
larger scale to refine algorithms used to derive SIC values from PMW 
radiometer data in these coastal regions. More broadly, comparisons of 
PMW SIC values and those derived from finer resolution imagery have 
been conducted in the Arctic, identifying underestimations in SIC 
derived from PMW data, particularly in summer months (Heinrichs et al. 
2006; Wang and Li, 2021; Shi et al., 2021). This highlights the potential 
to conduct this type of research in the Antarctic. The average processing 
time required to generate a new ViSual_IceD output is 4.5 min, providing 
promise that this type of analysis could be conducted at large spatio- 
temporal scales, as well as making ViSual_IceD a viable tool for gener-
ating sea ice charts for operational purposes. 

The availability of MSI imagery is dependent upon lighting condi-
tions during the winter and polar nights. Image availability varies across 
the Southern Ocean, although lighting conditions have a lower effect on 
image availability in the Antarctic than the Arctic because sea ice exists 
at lower latitudes. Daily imagery of the entire Southern Ocean is 
captured via the MODIS sensor between September–April. At lower 
latitudes (< 64

◦

), primarily along the Antarctic Peninsula, Weddell Sea, 
and Ross Sea, MSI scenes are available every other day in May, early 
June, late July and August, with no imagery available between mid-June 
and mid-July. At higher latitudes, one image is captured every three 
days in May and August and no imagery is available in June or July. 
ViSual_IceD provides promise in being a useful tool to supplement pre- 
existing PMW-derived SIC images between the Austral Spring-Autumn, 
coinciding with periods when the greatest uncertainties in PMW- 
derived SIC values exist and virtually all Antarctic marine navigation 
takes place. 

Alongside downscaling the outputs of ViSual_IceD to make direct 
comparisons with PMW data, there is also opportunity to produce finer 
spatial resolution SIC charts. Detailed SIC derived from applying deep 
learning tools to finer resolution imagery has been conducted in the 
Arctic (Wang and Li, 2021), but little investigation into this in the 
Antarctic has been achieved. Finer resolution SIC charts would be 
particularly useful in coastal regions to inform coastal habitat mapping 
(Stroeve et al., 2016), to aid in-ice navigation when polar vessels need 
access to research stations and other land-based features (Smith et al., 
2022), and for aiding the activities of local communities in the Arctic. 
SAR imagery does not have the same spatio-temporal coverage as PMW 
data, as such there is potential to use PMW data to understand sea ice 
dynamics in both the Arctic and Antarctic, and use ViSual_IceD outputs 
to provide more detailed information for specific areas of interest when 
data is available. Additionally, it is noted that ViSual_IceD aggregates 
the classification of sea ice and icebergs into one class. The outputs of 
this network could be combined with models that focus exclusively on 
distinguishing between sea ice and icebergs to provide a more 
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comprehensive depiction of sea ice conditions (Evans et al., 2023; Koo 
et al., 2023). 

6. Conclusion 

This study trained and applied a convolutional neural network with 
novel dual-encoder architecture, ViSual_IceD, to detect sea ice coverage 
using concurrent multispectral and synthetic aperture radar (SAR) im-
agery. The use of concurrent imagery as model input was found to 
improve network performance compared with networks trained exclu-
sively on one image type. The results of the explainable AI technique 
permute and predict also indicate that ViSual_IceD selects the most 
informative image type during image segmentation. Concretely, the 
network primarily utilises the multispectral scene, which is less sus-
ceptible to noise, but uses the corresponding SAR image when the 
multispectral image is occluded by cloud. 

ViSual_IceD outputs from the Carroll Inlet, South Bellingshausen Sea, 
were converted to sea ice concentration (SIC) layers and compared to 
SIC values derived from the AMSR2 passive microwave sensor. ViSu-
al_IceD was shown accurately derive SIC values in coastal regions, 
whereas the AMSR2 product overestimated SIC where the footprint of 
the pixel overlapped ocean and snow-covered land. This provides 
promise that this tool or similar could be applied at large scales in 
conjunction with PMW derived SIC charts for operational and scientific 
purposes. 
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