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A B S T R A C T   

Air pollution increases the risk of mortality and morbidity. However, limited evidence exists on the very long- 
term associations between early life air pollution exposure and health, as well as on potential pathways. This 
study explored the relationship between fine particle (PM2.5) exposure at age 3 and limiting long-term illness 
(LLTI) at ages 55, 65 and 75 using data from the Scottish Longitudinal Study Birth Cohort 1936, a representative 
administrative cohort study. We found that early life PM2.5 exposure was associated with higher odds of LLTI in 
mid-to-late adulthood (OR = 1.10, 95% CI: 1.06, 1.14 per 10 μg m− 3 increment) among the 2085 participants, 
with stronger associations among those growing up in disadvantaged families. Path analyses suggested that 
15–21% of the association between early life PM2.5 concentrations and LLTI at age 65 (n = 1406) was mediated 
through childhood cognitive ability, educational qualifications, and adult social position. Future research should 
capitalise on linked administrative and health data, and explore causal mechanisms between environment and 
specific health conditions across the life course.   

1. Introduction 

Approximately 99% of the global population breaths air with 
pollutant concentrations exceeding WHO limits (World Health Organi-
zation, 2021). Poor air quality is an established risk factor of all-cause 
and cause-specific mortality (Chen and Hoek, 2020) and of a wide 
range of health conditions, including respiratory, cardiovascular, and 
brain diseases (Dominski et al., 2021; Boogaard et al., 2022; Fu and 
Yung, 2020). Although air pollution affects people across the entire life 
course, due to population ageing and higher prevalence of morbidity, 
older adults bear a disproportionate diseases burden translating into 
higher mortality and large economic costs (Yin et al., 2021). Long-term 
air pollution exposure increases the risk of limiting long-term illness (Al 
Ahad et al., 2022; Ju et al., 2022) and multimorbidity (Ronaldson et al., 
2022), conditions particularly common among older adults. 

Early life circumstances have been associated with functional limi-
tations among older adults (Iveson et al., 2020), and it is plausible that 
air pollution during sensitive pre- and postnatal developmental 

windows, might have long-lasting effects on health (Bettiol et al., 2021; 
Isaevska et al., 2021; Klepac et al., 2018). While existing literature 
suggest high or moderate-to-high level of confidence in the associations 
between contemporary air pollution concentrations and different health 
conditions across the human life course (Boogaard et al., 2022), the very 
long-term impact of poor air quality experienced by older people in their 
earlier life remains relatively unexplored. It is plausible that toxic air 
contributes to age-related disorders through first influencing develop-
ment and health in childhood. Early life air pollution exposure has been 
associated with change in BMI (Kim et al., 2018), lung development 
(Bettiol et al., 2021; Hsu et al., 2023; Yu et al., 2023), and brain 
development and cognition (Lubczyńska et al., 2021; Lopuszanska and 
Samardakiewicz, 2020), as well as cardiometabolic health (Johnson 
et al., 2021) in childhood; key determinants for later life health and 
longevity (e.g. (Calvin et al., 2011)). Although evidence suggests that 
childhood cognitive ability might mediate the association between 
PM2.5 exposure at age 3 and mortality (Baranyi et al., 2023), likely 
acting through socioeconomic status and health literacy in mid-life 
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(Calvin et al., 2011), pathways operating across the life course remain 
relatively unexplored. 

There are two key challenges when addressing the impact of early 
life air pollution exposure on healthy ageing. First, it requires cohort 
data following individuals throughout their life course. Although par-
ticipants in several birth cohorts are now in their late adulthood, there is 
generally a lack of information on geocoded residential addresses, 
especially from birth onwards (Pearce et al., 2018; Desjardins et al., 
2023). Second, national air quality monitoring networks were only 
established during the second half of the 20th century (in the 1950s for 
the United Kingdom) (Fowler et al., 2020); epidemiological studies on 
the long-term impact of toxic air quality on health and mortality rarely 
have a follow-up time stretching over 25 years (Hansell et al., 2016). 
Understanding the life-course impact of bad air quality experienced in 
early life requires historical air pollution estimates going back several 
decades, and only very few investigations were able to address these 
limitations (Baranyi et al., 2023; Hansell et al., 2016; Russ et al., 2021; 
Baranyi et al., 2022; Phillips et al., 2018; von Hinke and Sørensen, 2023; 
Bailey et al., 2018). 

To fill this research gap, we utilised a unique data-linkage study and 
explored the association between early life air pollution exposure and 
limiting long-term illness in mid-to-late adulthood, a valid and widely 
used indicator of morbidity (Manor et al., 2001). Based on a represen-
tative sample of Scottish adults born in 1936, we estimated the associ-
ation between exposure to fine particles with the aerodynamic diameter 
of less than 2.5 μm (PM2.5) in early life and limiting long-term illness 
(LLTI) at age 55, 65 and 75; effect modification by sex and parental 
social position as well as change over time were explored (Objective 1). 
Pathways between early life PM2.5 and LLTI at age 65 were investigated 
including childhood cognitive ability, educational qualifications, and 
occupational social position (Objective 2). Due to availability of resi-
dential addresses, exposure to air pollution was measured at age 3; a 
time important for building up lifelong health and wellbeing. 

2. Methods 

This study utilises data from the Scottish Longitudinal Study Birth 
Cohort of 1936 (SLSBC 1936), a representative administrative sample of 
the Scottish population born in 1936. SLSBC1936 was assembled 
through data linkages across: (i) the 1939 National Identity Register, a 
census survey of the entire UK population on the September 29, 1939; 
(ii) the Scottish Mental Survey 1947 assessing general cognitive ability 
in almost all 1936-born children attending Scottish schools on the June 
4, 1947; (iii) Scotland’s National Health Services Central Register; (iv) 
and the Scottish Longitudinal Study, a 5% sample of the population 
present in any of the 1991, 2001 and 2011 Censuses. The linkage rates 
between the Scottish Mental Survey 1947 and the other sources were 
high (i.e., 97% traced in Scotland’s National Health Services Central 
Register, 95% in the 1939 National Identity Register, and 87% in the 
Scottish Longitudinal Study). Participants tracked but not captured in 
the main SLSBC1936 sample either died or migrated from Scotland 
(Huang et al., 2017). The sample included SLSBC1936 participants with 
residential address and household information from the 1939 National 
Identity Register (age 3), general cognitive ability from the Scottish 
Mental Survey 1947 (age 11), and limiting long-term illness in the 1991 
(age 55), 2001 (age 65) and 2011 (age 75) Censuses from the Scottish 
Longitudinal Study. 

2.1. Early life PM2.5 pollution exposure 

Residential addresses for SLSBC1936 participants were digitised 
from the 1939 National Identity Register. Using the 1939 enumeration 
districts centroid and the 1939 street index datasets, addresses were 
geocoded with the Historical Address Geocoding – GIS software (Daras, 
2015). Coordinates were then intersected with annual average of PM2.5 
concentrations in 1935, estimated using the EMEP4UK version 4.17 

atmospheric chemistry transport model (Vieno et al., 2010, 2014, 2016) 
(see detailed information in (Baranyi et al., 2023)). Briefly, anthropo-
genic emission of pollutants (including PM2.5) was estimated for 1950 
and scaled down to 1935 using activity data research (Russ et al., 2021); 
the meteorological driver came from the Weather Research and Forecast 
model version 3.9.1.1 (Skamarock et al., 2008) used for the year of 
2015. The EMEP4UK model employed a horizontal resolution of 0.037 
× 0.037◦ (~3 km × 4 km) for the UK, nested within a greater European 
domain providing boundary conditions (0.5 × 0.5◦). The EMEP4UK 
model has been evaluated showing good agreement between modelled 
and observed concentrations (Lin et al., 2017). For Scotland, modelled 
1935 PM2.5 concentrations ranged between 4.2 μg m− 3 to 116.9 μg m− 3. 

2.2. LLTI in mid-to-late adulthood 

LLTI was assessed with a question on the presence or absence of 
health problem, illness, or disability, including age-related problems, 
lasting for a longer period, and limiting daily activities and work. LLTI 
often indicate the presence of serious health conditions such as cardio-
vascular, musculoskeletal or mental disorders (Payne and Saul, 2000). 
As questions and answer categories were comparable across the 1991, 
2001 and 2011 Censuses (Supplementary Table 1), information was 
analysed longitudinally across all three censuses (Dearden et al., 2019); 
however, we also provided cross-sectional findings for sensitivity. 

2.3. Mediators 

Potential pathways were chosen based on literature (Iveson et al., 
2020; Baranyi et al., 2023). Childhood general cognitive ability was 
assessed with the Moray House Test No.12 as part of Scottish Mental 
Survey (1947) (Deary et al., 2004). The paper and pencil test included 
71 items with tasks such as following directions, work classification, 
reasoning, spatial items and sypher decoding. The scores ranged be-
tween 0 and 76 and had high correlation with the Stanford-Binet test 
indicating good criterion validity (Deary et al., 2004). 

Highest educational qualification (No qualification, Level 1, Level 2, 
Level 3, and Level 4; see Supplementary Table 2) was derived by the 
census team from a question listing all qualifications held. As the same 
question was asked in the 2001 and 2011 Censuses, we took for each 
participant the earliest available data. 

Occupational social position: Occupations were classified using the 
Standard Occupational Classification 1990 coding system. For each 
participant, we took the earliest reported occupation between 1991 and 
2001 Censuses and converted it into occupational social position using 
the Cambridge Social Interaction and Stratification (CAMSIS) scale. 
CAMSIS is a social interaction distance scale providing a continuous 
measure of social inequality based on occupations (Lambert and Grif-
fiths, 2018). The score mean is 50 with a standard deviation of 15; values 
range between 1 and 99 with greater numbers indicating a higher 
position. 

2.4. Covariates 

Confounders are presented in graphs (Supplementary Figs 1A and 
1B). Age (in years) and sex (male, female) were derived from the Scot-
tish Mental Survey 1947. Mother’s age (in years), mother’s marital 
status (married, not married), and parental occupational social position 
were from the 1939 National Identity Register. Similar to participants’ 
own adult occupational social position, parental occupational codes, 
based on the Historical International Classification of Occupations 
coding system, were transformed into social stratification using the 
Historical CAMSIS (HISCAM) scale created for occupations during the 
19th and early 20th centuries (Lambert et al., 2013). HISCAM has the 
same structure as CAMSIS and is therefore comparable. Father’s (or, if 
not available, mother’s) HISCAM score was taken. Where neither parent 
had a valid score, we calculated average score from all other household 
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members (e.g., siblings, grandparents). 

2.5. Statistical analysis 

For Objective 1, longitudinal associations between early life PM2.5 
exposure and LLTI in mid-to-late adulthood were explored using 
generalised linear mixed effects models with a random intercept for 
participants. Associations were expressed as Odds Ratios (OR) with 95% 
Confidence Intervals (CI) per 10 μg m− 3 PM2.5 increase. Model 1 
controlled for age, sex, and census wave; Model 2 additionally included 
parental occupational social position, mother’s age, and mother’s 
marital status (see equations in Supplementary Table 3). We explored 
effect modification by sex and parental occupational social position by 
adding interaction terms to Model 2. In addition to focussing on the level 
of LLTI across waves, we explored rate of change in LLTI during follow- 
up by adding an interaction term (i.e., exposure interacting with age at 
census wave) to the fully adjusted model. Continuous covariates were 
standardized before entering them in the models. Findings were 
visualised by plotting the predicted values of LLTI, where discrete 
covariates were held constant at their proportions and continuous ones 
at their means. 

Objective 2 investigated pathways between early life PM2.5 exposure 
and LLTI at age 65. Within structural equation modelling framework 
utilising complete cases, we first fitted a probit regression for binary 
outcome to estimate the total effect while controlling for all confounders 
(i.e., age, sex, parental occupational social position, mother’s age, 
mother’s marital status). Then, we added paths leading from early life 
PM2.5 exposure to LLTI through childhood cognitive ability, highest 
educational qualifications and occupational social position (Iveson 
et al., 2020); direct path from PM2.5 to adult occupational social position 
was not specified in the model. Regression coefficients (b) with their 
95% CI were presented in a path diagram. Continuous covariates were 
standardized before entering them in the model, highest educational 
qualification was treated as ordinal, and PM2.5 exposure was expressed 
as 10 μg m− 3 increase. The outcome was LLTI at age 65, as detailed 
educational qualification breakdowns were not available before the 
2001 Census. 

Multiple sensitivity analyses were carried out. As there are differ-
ences in how LLTI was operationalised, we fitted generalised linear 
models separately for the 1991, 2001 and 2011 Censuses (S1). For 
Objective 1, models were also fitted using air pollution quintiles as a 
categorical exposure (S2). To avoid bias towards complete cases, 
missing variables were imputed in 25 datasets based on sex (no missing), 
age (no missing), parental occupational social position, mother’s marital 
status, mother’s age, childhood cognitive ability, highest educational 
qualifications, occupational social position, and limiting long-term 
illness (not imputed). Multiple imputation by chained equations was 
carried out using normal distribution for mother’s age and childhood 
cognitive ability, and predictive mean matching for the other variables; 
for Objective 1, we also considered the multilevel structure of the data. 
Results were pooled by Rubin’s rule (S3). Although LLTI at 65 was 
selected as main outcome for the mediation analysis, we provided path 
models for LLTI at age 55 and 75 (S4). Finally, all models were rerun 
after adjusting for area of residence in 1939, determined as residing in 
urban (i.e., Aberdeen, Dundee, Edinburgh, or Glasgow) versus rural 
council areas (S5). 

Analyses were carried out using lme4 (Bates et al., 2015), lavaan 
(Rosseel, 2012) and mice (van Buuren and Groothuis-Oudshoorn, 2011) 
packages in R4.2.2 (R Core Team. R, 2022). 

3. Results 

The analytical sample for Objective 1 included 2085 individuals with 
93% participating in the 1991, 73% in the 2001 and 66% in the 2011 
Census. The percentage of individuals with LLTI increased during 
follow-up (1991: 40%; 2001: 45%; 2011: 53%). Objective 2 was 

explored in a smaller sample (n = 1406) as all included individuals had 
to be present at the 2001 Census. Characteristics for both samples are 
shown in Table 1. 

3.1. Objective 1: PM2.5 exposure and LLTI 

As shown in Table 2, being exposed to 10 μg m− 3 higher PM2.5 
concentrations in early life was associated with 10% (95% CI: 1.07, 
1.14) higher odds of reporting LLTI during mid-to-late adulthood after 
adjusting for age, sex, and census wave (Model 1). After further 
adjustment for parental occupational social position, mother’s age, and 
mother’s marital status (Model 2) the association remained the same 
(OR = 1.10, 95% CI: 1.06, 1.14). 

There was no interaction between PM2.5 exposure and sex (p =
0.391); confidence intervals were overlapping for males (OR = 1.11, 
95% CI: 1.06, 1.17) and females (OR = 1.08, 95% CI: 1.03, 1.14). We 
found significant effect modification by parental occupational social 
position (p = 0.002): associations between PM2.5 concentrations and 
LLTI in mid-to-late adulthood were smaller among individuals growing 
up in advantaged families (OR = 0.94, 95% CI: 0.90–0.98) (Fig. 1A; 
Supplementary Table 4). 

After adding the interaction term of PM2.5 exposure by age at census 
wave, findings did not suggest different associations at ages 65 (2001 
Census: OR = 1.00, 95% CI: 0.95, 1.06) or 75 (2011 Census: OR = 0.95, 
95% CI: 0.89, 1.01) in comparison to age 55 (i.e., 1991 Census). Despite 
non-significant rate of change at age 75 (p = 0.100), visually inspecting 
the predicted values of the top and bottom 20% PM2.5 exposure groups 
showed converging values (Fig. 1B; Supplementary Table 4). 

Table 1 
Sample characteristics for Objective 1 and Objective 2 using the Scottish Lon-
gitudinal Study Birth Cohort of 1936.  

Characteristics Objective 1a (n =
2085) 

Objective 2b (n =
1406) 

mean ± SD/n 
(%) 

mean ± SD/n 
(%) 

1939 National Identity Register 
PM2.5 exposure (in μg m− 3), mean ± SD 31.5 ± 33.1 29.9 ± 31.4 
Parental occupational social position 

(HISCAM score), mean ± SD 
53.5 ± 9.1 54.1 ± 9.6 

Mother’s marital status, n (%) 
Married 2016 (96.7%) 1359 (96.7%) 
Not married 69 (3.3%) 47 (3.3%) 

Mother’s age in years, mean ± SD 32.2 ± 6.2 32.1 ± 6.1 
Scottish Mental Survey 1947 
Age in years, mean ± SD 11.0 ± 0.2 11.0 ± 0.25 
Sex, n (%) 

Male 1019 (48.9%) 703 (50.0%) 
Female 1066 (51.1%) 703 (50.0%) 

Moray House No.12 test score, mean ± SD NA 38.3 ± 14.8 
1991/2001/2011 Censuses 
Occupational social position (CAMSIS 

score), mean ± SD 
NA 46.0 ± 14.3 

Highest qualifications, n (%) 
No qualification NA 878 (62.5%) 
Level 1  216 (15.4%) 
Level 2  99 (7.0%) 
Level 3  42 (3.0%) 
Level 4  171 (12.2%)  

a Participants were included with valid outcome for at least 2 census waves 
and complete data for covariates. 

b Participants were included with valid outcome for the 2001 Census and 
complete data for covariates. 
Source: Scottish Longitudinal Study. CAMSIS=Cambridge Social Interaction and 
Stratification; HISCAM= Historical CAMSIS; NA=Not applicable as variable not 
used for Objective 1. 

G. Baranyi et al.                                                                                                                                                                                                                                



Health and Place 86 (2024) 103208

4

3.2. Objective 2: mediation via cognitive and socioeconomic factors 

We found a modest positive association between higher early life 
PM2.5 exposure and LLTI at age 65 after adjusting for confounders (b =
0.041 per 10 μg m− 3 increment, 95% CI: 0.019, 0.063). This total 

association was reduced by approximately 15% when adding mediating 
pathways (b = 0.035, 95% CI: 0.015, 0.056) (Fig. 2). First, early life 
PM2.5 exposure decreased childhood general cognitive ability (b =
− 0.021, 95% CI: 0.035, − 0.006), which directly contributed to LLTI (b 
= − 0.129, 95% CI: 0.221, − 0.037). Second, higher childhood general 
cognitive ability was also linked to higher educational qualifications (b 
= 0.599, 95% CI: 0.554, 0.644), and higher occupation social position 
(b = 0.257, 95% CI: 0.198, 0.316); higher occupation social position was 
negatively associated with LLTI at age 65 (b = − 0.107, 95% CI: 0.186, 
− 0.028). Model fit indices suggested good fit to the data (Hu and Ben-
tler, 1999). 

3.3. Sensitivity analysis 

Analysing LLTI cross-sectionally suggested that higher PM2.5 con-
centrations in early life were associated in Model 2 with higher odds of 
LLTI in 1991 (OR = 1.08; 95% CI 1.05–1.11) and 2001 (OR = 1.06; 95% 
CI 1.03–1.10), but not in 2011 (OR = 1.03; 95% CI 1.00–1.07), indi-
cating some converging over time (S1: Supplementary Table 5). Oper-
ationalising PM2.5 exposure in quintiles revealed that there were 
increased odds of LLTI only in the highest (Q5) exposure group (Model 
2: OR = 2.21; 95% CI 1.56–3.14) (S2: Supplementary Table 6). Imputing 
data with multiple imputation did not change the findings for Objective 
1 (S3.1: Supplementary Table 7) and suggested the same indirect 
pathways as in the main model (21% of the total effect was mediated) 
(S3.2: Supplementary Fig. 2). Conducting mediation analysis with LLTI 
measured at different Censuses showed that early life PM2.5 exposure 
was only directly associated with LLTI at age 55, while there was no 
association with LLTI at age 75 (S4: Supplementary Figs. 3–4). Finally, 
after adding area of residence in 1939 (i.e., urban versus rural) to the 
models, findings remained comparable for Objective 1 (S5.1: Supple-
mentary Table 8) and Objective 2 (19% mediated) (S5.2: Supplementary 
Fig. 5). 

Table 2 
Associations between PM2.5 exposure in early life and limiting long-term illness 
in mid-to-late adulthood in the Scottish Longitudinal Study Birth Cohort of 1936.  

Covariates Model 1 Model 2 

OR (95% CI) p-value OR (95% CI) p-value 

PM2.5 in early life (per 
in 10 μg m− 3) 

1.10 (1.07, 
1.14) 

<0.001 1.10 
(1.06–1.14) 

<0.001 

Age (per 1 SD 
increase) 

1.01 (0.90, 
1.13) 

0.826 1.00 
(0.90–1.12) 

0.932 

Sex 
Male ref  ref  
Female 0.66 

(0.53–0.83) 
<0.001 0.66 

(0.53–0.83) 
<0.001 

Census wave 
1991 (age 55) ref  ref  
2001 (age 65) 6.87 

(5.48–8.60) 
<0.001 6.88 

(5.49–8.63) 
<0.001 

2011 (age 75) 13.51 
(10.37–17.61) 

<0.001 13.50 
(10.36–17.59) 

<0.001 

Parental occupational 
social position (per 
1 SD increase)   

0.73 
(0.65–0.82) 

<0.001 

Mother’s marital status 
Married   ref  
Not married   0.78 

(0.42–1.47) 
0.448 

Mother’s age (per 1 SD 
increase)   

1.00 
(0.90–1.12) 

0.992 

Source: Scottish Longitudinal Study. 2085 participants with 4945 observations 
were included in the analysis. Models were fitted with generalised linear mixed- 
effects regression with random intercept for participants. Abbreviation: OR =
adjusted Odds Ratio; SD=Standard Deviation. 

Fig. 1. Early life PM2.5 exposure and predicted probability of limiting long-term illness in mid-to-late adulthood A) by parental occupational social position, and B) 
across the 1991, 2001, and 2011 Censuses. Models were fitted with generalised linear mixed-effects regression with random intercept. 2085 participants with 4945 
observations were included in the analysis. Predicted values are presented in Supplementary Table 4. Source: Scottish Longitudinal Study. Abbreviation: SD =
standard deviation. 
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4. Discussion 

This study based on a representative sample from Scottish adminis-
trative data suggested that higher PM2.5 exposure in early life was 
associated with increased odds of having limiting long-term illness in 
mid-to-late adulthood. First, we found that air pollution at age 3 was 
associated with higher level of LLTI between age 55 and 75; associations 
were stronger among individuals growing up in families with lower 
occupational social position but there were no differences between 
males and females. Change of association over time showed mixed re-
sults. Second, path analyses with different specifications suggested that 
15–21% of the total association between early life PM2.5 exposure and 
LLTI at age 65 was mediated through lower childhood cognitive ability, 
educational qualifications, and occupational social position. 

David Baker’s developmental origins of health and disease hypothesis 
proposes that detrimental exposures during early development may 
have lifelong implications for health (Heindel and Vandenberg, 2015). 
Exposure to air pollution is associated with foetal growth (Clemens 
et al., 2017), respiratory conditions (Bettiol et al., 2021) and cognitive 
development (Chiu et al., 2016) in children. There is also some evidence 
showing different DNA-methylation patterns in genes involved in 
oxidative stress, inflammation, and foetal development in newborns 
(Isaevska et al., 2021; Saenen et al., 2019); biological ageing presents a 
potential pathway between air pollution, early development, and health 
in later life (Isaevska et al., 2021; Baranyi et al., 2022; Saenen et al., 
2019). More recently, studies that followed individuals throughout most 
of their life course found that poor air quality around the time of birth 
was associated with faster biological ageing (Baranyi et al., 2022), lower 
cognitive function (Russ et al., 2021; von Hinke and Sørensen, 2023), 
higher risk of respiratory conditions (von Hinke and Sørensen, 2023) as 
well as increased all-cause and case-specific mortality in late adulthood 
(Baranyi et al., 2023). The scarring effect of air pollution has also been 
shown to impact the physical development of British children growing 
up in the 1890s (Bailey et al., 2018). Our findings expand on this liter-
ature by demonstrating that differences in general morbidity can be 

detected several decades after early-life air pollution exposure, and that 
they are socially patterned. Individuals who grew up in socioeconomi-
cally disadvantaged families were more affected by early life exposure, 
which corresponds with health inequalities in air pollution effects found 
in recent investigations (Di et al., 2017). 

Analysing trajectories of limiting long-term conditions during mid- 
to-late adulthood given different air pollution exposures led to mixed 
findings; although main analyses were not statistically significant, we 
observed converging probability of LLTI between high and low exposed 
groups, which was supported by cross-sectional findings in the sensi-
tivity analyses. This difference might be due to a comparatively smaller 
sample size used in the main analysis, as the longitudinal model required 
at least two measures of LLTI. Change in association over time would be 
in line with the age-as-leveler hypothesis where health differences based 
on previous exposure diminish in older age due to mortality selection 
(Dupre, 2007). While the current investigation suggested declining 
strength of association between age 55 and age 75, a recent study using 
the same sample demonstrates how the risk of mortality increased 
during the same period when exposed to higher early life PM2.5 con-
centrations (Baranyi et al., 2023). These combined findings highlights 
not only the narrowing health inequalities in later life, when the risk of 
mortality starts to increase (Baranyi et al., 2023), but also how mortality 
selection in older ages (after 65) might lead to underestimating the 
impact of early life PM2.5 exposure on health outcomes. Studies with 
longer follow-up time on health (e.g., 2022 Census, NHS health records) 
are required to determine trajectories. Additionally, owing to the nature 
of the Scottish Longitudinal Study (including SLSBC 1936) as a record 
linkage study there is no information on LLTI prior to the 1991 Census, 
which prevents an understanding of when health differences first 
emerged during the life course. 

Children who grow up in areas with poor air quality had lower 
cognitive function at age 11 (Chiu et al., 2016), which is a powerful 
indicator of health and longevity (Calvin et al., 2011; Baranyi et al., 
2023). Part of the association is likely mediated through educational 
attainment and social position (Iveson et al., 2020). Our study found that 

Fig. 2. Direct (A) and indirect (B) pathways between early life PM2.5 exposure (per in 10 μg m− 3) and limiting long-term illness at age 65 year. Probit model was 
fitted within structural equation modelling framework with complete data. Regression coefficients (and their 95% confidence intervals in parentheses) are presented. 
Confounders (i.e., age, sex, parental occupation social position, mother’s age, mother’s marital status) are not shown for simplicity. Black solid lines represent 
significant (p < 0.05), grey dashed lines non-significant associations. The variable ‘highest educational qualifications’ was treated as ordinal in the path analysis; 
childhood general cognitive ability and occupational social position were standardized. Analysis was based on a sample size of 1406. Model fit indices: Root Mean 
Square Error of Approximation = 0.000, Standardized Root Mean Square Residual = 0.032. Source: Scottish Longitudinal Study. 
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around 80–85% of the total association between early life air pollution 
exposure and limiting long-term illness at age 65 could not be explained 
by cognitive and socioeconomic factors, requiring further investigations. 
Accelerated biological ageing may provide a mechanistic link (Baranyi 
et al., 2022); lower physical activity has been also proposed as a medi-
ator (Hautekiet et al., 2022), with health behaviours established during 
childhood as well as childhood general health presenting further 
pathways. 

4.1. Strengths and limitations 

This study is based on an administrative data birth cohort with air 
pollution exposure at age 3 and morbidity assessed between age 55 and 
75, providing an exceptionally long follow-up time. SLSBC1936 is a 
representative study with high quality of data linkages, it is only 
marginally affected by selection and attrition bias, and provides rich 
information on key life-course confounders and mediators (Huang et al., 
2017). However, there are limitations. First, information on early life 
residential addresses was only available in the 1939 National Identity 
Register. Although early life residential mobility for this birth cohort is 
relatively low (Falkingham et al., 2016), we cannot ascertain that age 3 
residential location was the same as in utero or at birth, prohibiting to 
identify sensitive/critical periods. Multiple addresses across the life 
course are required to properly understand the very long-term impact of 
air pollution on healthy ageing and disentangle the effects of earlier 
exposures from later ones. Second, LLTI was self-reported which is 
useful to monitor population health and plan healthcare provision but 
lacks information on specific conditions and is likely affected by 
reporting bias. Third, although we provided sensitivity analysis by 
running analysis separately for the 1991, 2001 and 2011 Censuses, 
differences in the operationalisation of LLTI variables (e.g. from the 
Census questionnaire wording using ‘handicap’ in 1991 versus 
‘disability’ in 2001/2011; adding a 12-month timeframe in 2011) raise 
concerns of comparability (Iveson et al., 2020). Fourth, atmospheric 
chemistry models are routinely validated against present-day observa-
tions, showing good agreement between estimations and observations 
(Lin et al., 2017). However, there are larger uncertainties when esti-
mating historical air pollution levels, especially in terms of their vol-
umes. Nonetheless, their relative distribution can be considered 
sufficiently accurate. Fifth, data was determined by availability of 
administrative records. Socioeconomic variables were either available 
in early life or after the age of 55, with education assessed later 
(2001/2011 Censuses) than occupation social position (1991/2001 
Censuses). Some life-course confounders (e.g., maternal smoking, 
childhood health) were not available in the dataset likely introducing 
bias. 

5. Conclusions 

This study found that early life PM2.5 exposure was associated with 
limiting long-term illness in mid-to-late adulthood, especially among 
people growing up in socioeconomically disadvantaged families, and 
that part of this association was mediated through childhood cognitive 
ability, education, and social position. We demonstrated the feasibility, 
merit and challenges of life-course place and health research using 
administrative data. Future studies should explore the associations in 
larger cohort studies and with specific health conditions by utilising 
linked health service use data. Disentangling the effect of early life 
physical and social environment (e.g., air pollution, population density, 
area deprivation), investigating potential causal mechanisms and un-
derlying pathways requires further attention. High air pollution con-
centrations in early life might have long-term implications for 
population health and healthy ageing despite decades of air pollution 
mitigations; understanding this relationship requires life-course in-
vestigations with representative high-quality datasets. 
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