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Abstract Data plays a central role in data-driven methods, but is not often the subject of focus in
investigations of machine learning algorithms as applied to Earth System Modeling related problems. Here we
consider the problem of eddy-mean interaction in rotating stratified turbulence in the presence of lateral
boundaries, where it is known that rotational components of the eddy flux plays no direct role in the sub-grid
forcing onto the mean state variables, and its presence is expected to affect the performance of the trained
machine learning models. While an often utilized choice in the literature is to train a model from the divergence
of the eddy fluxes, here we provide theoretical arguments and numerical evidence that learning from the eddy
fluxes with the rotational component appropriately filtered out, achieved in this work by means of an object
called the eddy force function, results in models with comparable or better skill, but substantially reduced
sensitivity to the presence of small-scale features. We argue that while the choice of data choice and/or quality
may not be critical if we simply want a model to have predictive skill, it is highly desirable and perhaps even
necessary if we want to leverage data-driven methods to aid in discovering unknown or hidden physical
processes within the data itself.

Plain Language Summary Data-driven methods are increasingly being utilized in various problems
relating to the numerical modeling of the Earth system. While there are many investigations focusing on the
machine learning algorithms or the problems themselves, there have been relative few investigations into the
impact of data choice or quality, given the central role of data. We consider here the impact of the choice of
data for a particular problem relevant to ocean modeling, that of eddy-mean interaction, where it is known that
the training data generically contains a component that plays no role in the eddy-mean interaction, and its
presence in the training phase is expected to degrade the model performance. We provide arguments and
evidence that one choice is preferable over a more standard choice utilized in related research. While the choice
of data choice and/or quality may not be critical if we simply want a data-driven model to be skillful, we
argue it is highly desirable, possibly even a necessity, if we want to leverage data-driven methods as a means to
aid in discovery of unknown or hidden physical processes within the data itself.

1. Introduction

Data-driven methods and machine learning algorithms are increasingly being utilized in problems relating to
Earth system and/or climate modeling, and there is no doubt such methods have a strong potential in greatly
enhancing model skill and/or reducing computation cost in Earth System Modeling. Some examples include
modeling of dynamical processes in the atmosphere (e.g., Brenowitz & Bretherton, 2019; Connolly et al., 2023;
Mooers et al., 2021; Sun et al., 2023; Yuval & O'Gorman, 2020), climate modeling (e.g., Besombes et al., 2021;
Sonnewald & Lguensat, 2021), sea ice prediction (e.g., Andersson et al., 2021; Bolibar et al., 2020), identification
problems in oceanography (e.g., Jones et al., 2019; Sonnewald et al., 2019, 2023; Thomas et al., 2021), and our
primary focus here, ocean mesoscale turbulence parameterizations (e.g., Bolton & Zanna, 2019; Guillaumin &
Zanna, 2021; Zanna & Bolton, 2021). We refer the reader to the works of Reichstein et al. (2019), Irrgang
et al. (2021), Sonnewald et al. (2021), and Camps-Valls et al. (2023) for a more comprehensive review.

One criticism of some data-driven methods and machine learning algorithms is the “black-box” nature of the
resulting models. In general, for a problem with input x and target y, a focus of data-driven methods is to find some
mapping f'such that f(x) = y, where f could be deterministic or probabilistic depending on the deployed algorithm.
It is often not clear how or why the resulting f was returned by the algorithm, or what fis in fact doing in terms of
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known transformations or operations to map x into y. This lack of interpretability for f brings into question several
important issues with the use of data-driven methods. The first is whether the models are skillful in the predictions
for the “right” reasons, or at least not the “wrong” ones? For example, if x and y are related by some known
physical process, does fin fact represent that physical process, or failing that, is the resulting f at least physically
valid, such as not violating conservation laws? Without appropriate constraints on the model, it is perfectly
plausible that resulting models can behave erratically, and given the nonlinear and convoluted nature of the model
itself, the models can generate subtly wrong results that might be close to impossible to check. The second relates
to further utilities of the methods themselves: is it possible to use such methods to aid process discovery from the
data itself? A lack of interpretability would suggest a negative answer to that question. With that in mind, there has
been an increasing focus on physically constrained and/or interpretable/explainable models (e.g., Barnes
et al., 2022; Beucler et al., 2021; Brenowitz et al., 2020; Clare et al., 2022; Guan et al., 2023; Kashinath
etal., 2021; Lopez-Gomez et al., 2022; Sonnewald & Lguensat, 2021; Yuval et al., 2021; Zanna & Bolton, 2021;
Zhang & Lin, 2018). While the tools and algorithms do exist, this is a fundamentally harder problem, since the
training step ultimately becomes one of constrained optimization.

While the algorithms and nature of the resulting model f (e.g., linear vs. nonlinear, generative vs. discriminative,
model complexity) are important details, at the very base level we are really dealing with the problem of data
regression. We would thus expect data choice and/or data quality to critically affect the training, the performance
or the useful information that could be encoded by the model, but are issues that have not received much
investigation. If we simply want models that have skill in whatever metric we think is relevant (e.g., low mismatch
values in the predictions compared to a chosen reference), then the issue of data quality and/or content may not be
critical, since we are simply looking for some optimal fit. If, on the other hand, we are interested in the harder
problem of optimal fit with constraints, such as having a model that is constrained by physical conservation laws,
or using data-driven methods for process discovery from data, then one might expect the choice and quality of
data exposed to the model to be important. Furthermore, certain data may be more accessible for the machine
learning algorithms to extract/predict features from, which has practical consequences for the optimization
procedure at the model training and prediction step.

To demonstrate that not all choices of data are equal, we consider in this work the problem of eddy-mean
interaction in rotating stratified turbulence in the presence of boundaries, of relevance to ocean modeling and
parameterization of geostrophic mesoscale eddies. We assert that the parameterization problem is affected by
presence of what are known as the rotational component of eddy fluxes (e.g., Fox-Kemper et al., 2003; Maddison
et al., 2015; J. C. Marshall & Shutts, 1981) in the training data. We provide some theoretical arguments and
evidence on why learning from the eddy fluxes with the rotational component removed to various degrees is
preferable to the divergence of the eddy fluxes, the latter having been considered in some existing works (Bolton
& Zanna, 2019; Zanna & Bolton, 2021). We will largely leverage the experimental procedure of Bolton and
Zanna (2019), albeit with important differences to be detailed. While the present investigation is largely empirical
and relies on input of external knowledge that is somewhat specific to the problem considered, the current work
serves to open a discussion into data choice and/or quality, as well as probing the available information content in
data in the general case, possibly in a more systematic and objective fashion than one performed here.

The technical problem statement relating to rotational fluxes and its impact on data quality for data-driven
methods is outlined in Section 2. In Section 3 we outline our experimental procedure, numerical model used
and data-driven method. Section 4 summarizes the impact of data choice on the skill of the trained models, and
additionally explores sensitivity to small-scale features in data, and to the amount of data exposed to model. We
close in §5 and provide outlooks, focusing particularly on further experiments to probe the information content of
data being for use in data-driven methods of relevance to the present eddy-mean interaction problem.

2. Rotational Fluxes and the Eddy Force Function
2.1. Formulation

We consider turbulent motion under the influence of strong rotation and stratification. Specifically, we consider
the Quasi-Geostrophic (QG) limit (e.g., Vallis, 2006), which is a widely used and applicable limit for oceanic
mesoscale dynamics where the motion is geostrophic at leading order. If we consider the standard Reynolds
decomposition (e.g., L. Sun et al., 2021; Sun et al., 2023) with
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A=A+A, A+B=A+B, A =0, €))

where the overbar denotes a mean (with the projection operator assumed to commute with all relevant de-
rivatives), and a prime denotes a deviation from the mean, the mean QG Potential Vorticity (PV) equation takes
the form

oG - _
a—(5+V~(ﬁ¢7)=—V-u’q’+Q. ©)

Here, ¢ denotes time, V denotes the horizontal gradient operator, so that the PV ¢ is defined as

o f, ob
=Vi+fy+— 2% —, 3
1 by 9z N3 0z ®

where y is the streamfunction, f = f, + Py is the Coriolis frequency (background value and leading order
meridional variation), &, is the constant background buoyancy frequency related to the imposed background
stratification, b = f,0y/0z is the buoyancy, u = (—dy/dy, oy/ox) is the non-divergent geostrophic velocity, and Q
encapsulates all forcing and dissipation.

Studies of eddy-mean interaction often seek to understand the inter-dependence of the nonlinear eddy flux terms
on the right hand side of Equation 2 and the mean state variables. A particular goal with eddy parameterization is
to relate the eddy flux term u’q’ with some large-scale mean state, normally as

u/—q/~f(q,...;1<,...), 4)

where f is some mapping between mean state variables (such as g) and associated parameters (such as «) to the
eddy fluxes. Once such a relation exists, we take a divergence, from which we obtain the eddy forcing on the mean
state variables. A notable example would be PV diffusion (e.g., Green, 1970; J. C. Marshall, 1981; Rhines &
Young, 1982), where we directly postulate for the form of f as

u'q = —«xVg => - V.u'q =V-(&Vg). ®)

We emphasize the ordering of the operations here: we obtain a functional relation between the mean and eddy
fluxes first, then we take a divergence to obtain the eddy forcing (cf. Fickian diffusion closures).

2.2. The Issue of Rotational Fluxes

The form as given in Equation 4 suggests that data-driven approaches would be useful by either directly
regressing/learning for an empirical mapping f or, when a prescribed mapping f such as Equation 5 is given, to

learn for parameters such as k. Note, however, that a two-dimensional vector field such as u’q’ can be generically
written as

uw'q =V¥Y+e,xVo+H (6)

via a Helmholtz-type decomposition, where &, is the unit vector pointing in the vertical, ¥ and @ are scalar
potentials encoding a divergent (vanishing under a curl) and a rotational (vanishing under a divergence)
component respectively, and H is a vector potential encoding a harmonic component (vanishing under either a
curl and divergence). Since the eddy forcing on the mean state in Equation 2 appears as a divergence, the
rotational (and harmonic) eddy fluxes play no role in the eddy forcing, and questions arise as to whether the
presence of such rotational fluxes is going to be detrimental to the regression/learning by data-driven methods.
Similar issues arise for example, in a diagnostic problem for the PV diffusivity x, where rotational fluxes are
known to severely contaminate the calculation (e.g., Mak et al., 2016; L. Sun et al., 2021). More generally, the
eddy forcing arises from a divergence of the Eliassen—Palm flux tensor, with various eddy fluxes as the tensor

YAN ET AL.

3 of 20

5US01"] SUOWILLIOD BAERID 3 qedl|dde U Aq pauBAcB a1 SO YO ‘88N JO SN 10} Afeiq T 3UIIUO AB]IM UO (SUOTIPUCO-pUB-SWBIALI0Y" A3 1M ARRIq1[BU1UO//Sd1Y) SUOIIPUOD PUE SWi | aU) 885 *[1202/20/92] U0 Areiqiauliuo A8|IM ‘Isa 1 A STEE00S INEZ0Z/620T OT/10p/wiod" A 1w At | pui|uo'sqndnBey/ sdny wou) papeojumod 'z ‘v20e ‘99vzzveT



NI

ADVANCING EARTH
AND SPACE SCIENCES

Journal of Advances in Modeling Earth Systems 10.1029/2023MS003915

components (e.g., Maddison & Marshall, 2013; Young, 2012), and this problem of gauge freedom is generic for
problems relating to eddy-mean interaction.

One way around the issue of rotational fluxes would be to perform a Helmholtz decomposition as above, and
perform learning/regression/diagnoses using only the divergent term VY. This approach is however complicated
by the issue of gauge freedom in the presence of boundaries (e.g., Fox-Kemper et al., 2003; Maddison et al., 2015;
Mak et al., 2016). Since there is generically no inherited natural boundary condition for arbitrary choices of vector

fields (although there may be ones that are physically relevant depending on the problem), the divergent term vy
is defined only up to an arbitrary rotational gauge.

Another possibility might be to utilize the divergence of the eddy flux directly (e.g., V - u’q"). This is somewhat the
approach taken in the works of Bolton and Zanna (2019) and Zanna and Bolton (2021) for example, who consider
applying data-driven methods to learn about sub-grid momentum forcing in an idealized ocean model. While they
report positive results from data-driven methods in their work, there are some points that are worth revisiting,
particularly regarding learning from the divergence of the eddy flux. One issue is the spatial resolution of data itself:
the eddy flux data is characterized by significant small-scale variability, and now we want its divergence, which
further amplifies the relative variance at smaller-scales. Questions arise whether such a choice is unnecessarily
taxing on the machine learning algorithms, which is now trying to find a mapping between very small-scale data and
large-scale mean-state data for the parameterization problem. Following on from this point is the issue of model
sensitivity to small-scale fluctuations in the training data, which could arise from numerical model resolution or the
choice of averaging window. If amodel is sensitive to data variation, one might question its robustness, and whether
the associated degree of uncertainty is acceptable for practical deployment of model. A final point is more subtle
and more speculative, to do with commutativity, that is, ordering of operations. Eddy parameterizations are usually
formulated as in Equation 4: we learn a f(...) = u’q’, from which we take a divergence of the learned f to get the
eddy forcing. If we are learning from V - u’q’, then the ordering is different, because we are seeking a mapping f
such that V-u’q" = f(), where we would hope that f = V- f. There is however no reason to expect such an

equality, since the resulting mappings for f obtained from machine learning algorithms are generically nonlinear.

If we are simply interested in a model that is skillful, then these aforementioned points may not actually matter. If,
on the other hand, we are interested in learning about the underlying physics via data-driven methods, then it is not
clear whether the aforementioned properties (or the lack thereof) become fundamental limitations in the appli-
cability of the procedure.

2.3. The Eddy Force Function

If we consider learning from data at the eddy flux level, then we probably want to filter the rotational component
in some way. Generically, a simple Helmholtz decomposition as in Equation 6 would be one possibility, subject to
the caveat that we have a freedom to choose a boundary condition. However, within a simply connected QG
system as is considered in this work, there is a choice of employing an object called the eddy force function
(Maddison et al., 2015; D. P. Marshall & Pillar, 2011). The eddy force function ‘szf associated with the eddy PV
flux (denoted by the super-script ¢) is obtained by solving the Poisson equation

Veu'qg' = =V (7

subject to homogeneous Dirichlet boundary conditions W, = 0, where the boundary condition is inherited from
the zero normal mean geostrophic flow condition (Maddison et al., 2015). The eddy force function is related to the
Helmbholtz decomposition in Equation 6 where ¥ is replaced by —¥?,;, with Equation 7 obtained from taking a
divergence of Equation 6, and is thus one way of synthesizing the divergent component of the eddy flux. Within a
simply connected QG system, WP, can be shown to be optimal in the sense that VWY, is as small as possible in the
L? norm (see Equation 10 for the definition of the L* norm, as well as Appendix A of Maddison et al., 2015).

Via the linearity assumption of the eddy force function and boundary condition inheritance (Maddison
et al., 2015), we can define an eddy force function for the components that contribute toward the definition of
eddy PV flux. For example, from the definition of PV given in Equation 3, we can define an eddy relative vorticity
and a buoyancy force function as solutions to
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V'l = =V,  Veu'b = -V, (8)

subject also to homogeneous Dirichlet boundary conditions, where { = Vzl// is the relative vorticity. The eddy
relative vorticity and eddy buoyancy fluxes are related to the Reynolds stress (via the Taylor identity, e.g.,
Maddison & Marshall, 2013) and form stress respectively.

Physically, the eddy force function is a quantity that encapsulates momentum tendencies associated with eddy
forcings (Maddison et al., 2015; D. P. Marshall & Pillar, 2011). The eddy force functions have been previously
demonstrated to be a useful quantity for diagnoses problems (e.g., Mak et al., 2016), and we might expect that it
would be a useful quantity for data-driven methods applied to eddy parameterization of rotating stratified tur-
bulence. The gradient of the eddy force function —VWY; removes a portion of the rotational fluxes, suggesting
that —VW?. would serve as a better choice of data compared to training on the full eddy flux u’q", which contains
rotational components. Additionally, given parameterizations are more naturally formulated as a relation between
the eddy fluxes and the mean state (cf. Equation 4), learning from —VW¥?; avoids the possible issue with
commutativity mentioned above.

Given the useful properties of the eddy force function, for the present work, we principally focus on the eddy force
function, although we provide some sample results in calculations that employs a standard Helmholtz decom-
position in Appendix A.

3. Model Details

For a problem y = f(x), the focus here is principally on the skill of the models f; trained on various target data y for
the same inputs x, where skill is to be measured by mismatches between yga¢, and Ypredice = f(Xqara)- We detail here a
set of experiments to test and explore the following hypotheses:

1. Models trained on the filtered eddy flux —VW¥?; would be more skillful than ones trained on the full eddy
flux u'q’,

2. Models trained on the filtered eddy flux —V¥? would possibly be comparable in skill to ones trained on the
divergence of the eddy flux V - u"¢’, but the latter models might be more sensitive to small-scale features in the
training data.

The experimental approach will largely mirror that of Bolton and Zanna (2019). However, one important
fundamental difference of our work is the choice of average, which impacts the definition of eddies from
Equation 1. Where Bolton and Zanna (2019) take a low-pass spatial filter as the projection operator (with A’#0),
we employ a time-average, which has the property that A’ = 0, in line with properties of a Reynolds operator. Our
eddy forcing is then in the more familiar form of a nonlinear eddy flux (e.g., V - u’q’), rather than as a difference
between the spatially averaged quantities (e.g., S = #- Vg — u - Vg, cf. Equation 8 of Bolton & Zanna, 2019).
The existing definition of the eddy force function ¥ assumes a Reynolds average (Maddison et al., 2015), and
while there are likely extensions and relaxation of assumptions possible, we do not pursue this avenue.

3.1. Numerical Ocean Model Setup

The physical setup we consider is essentially the same three-layer QG square double gyre configuration as Bolton
and Zanna (2019) (cf. Berloff, 2005; Karabasov et al., 2009; D. P. Marshall et al., 2012; Mak et al., 2016), but
solved with a pseudo-spectral method instead of the finite difference CABARET scheme of Karabasov
et al. (2009). The numerical model (qgm?2) generating the data presented in this work utilizes the parameters
detailed in Mak et al. (2016), with the stratification parameters chosen such that the first and second Rossby
deformation radii are 32.2 and 18.9 km, with a horizontal grid spacing of Ax = Ay = 7.5 km (which is 512 by 512
in horizontal grid points), a horizontal viscosity value of v = 50 m*s™", and a time-step of A7 = 30 min. A wind
forcing with peak wind stress of 7, = 0.8 N m™2 is used (correcting a typo in Table 1 of Mak et al., 2016). The
model is spun up from rest for 20,000 days, and a further integration period of 5,000 days after this spin up is
performed for computing time-averages.

The accumulated time-averages of the eddy fluxes are used to compute the eddy force function W via solving the
Poisson equation in Equation 7 with homogeneous Dirichlet boundary conditions per layer, although we only
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Figure 1. (a) The divergence of the eddy PV flux (units of s’z), calculated from the diagnosed time-averaged (b) zonal and (c) meridional component of the PV fluxes
(units of m s~2). (d) The associated eddy force function ‘I’;’“ (units of m? s~2) calculated from the data shown in panel (a), and the (e) zonal and (f) meridional component

of —VW¥, (units of m s72), the associated eddy PV fluxes with a rotational component removed. Note the different choices of colorbar limits between the data range in
panels (b, c, e, f).

present the analysis for the top surface layer in this manuscript. We leverage the FEniCS software (Alnas
et al., 2014; Logg & Wells, 2010; Logg et al., 2012) following the previous works of Maddison et al. (2015) and
Mak et al. (2016) to solve the Poisson equation, making use of the high level abstraction, automatic code generation
capabilities and the numerous inbuilt solvers that are particularly suited to elliptic equations. The data from each
grid point of the numerical model are the nodal values on a regular structured triangular mesh, with a projection
onto a piecewise linear basis (CG1). All derivative operations are performed on the finite element mesh, and the
nodal values of the relevant fields are restructured into arrays for feeding into the machine learning algorithms.

Figure 1 shows some sample data in the surface layer. The two horizontal components of the time-averaged eddy
PV fluxes in panels (b, c) are the data sets returned by the pseudo-spectral model, which is sampled onto a finite
element mesh as a vector object. The resulting object's divergence can then be computed in FEniCS, and the result
is given in panel (a). As expected, the divergence of the eddy PV flux has more smaller-scale fluctuations and is
less smooth than the eddy PV fluxes. Solving the relevant Poisson equation in FEniCS, the PV eddy force function
‘I’sz is shown in panel (d). From Maddison et al. (2015), the gradient of the eddy force function V‘ngf has a
physical interpretation when considered together with the time-mean streamfunction ¥ (not shown, but see
Maddison et al., 2015), interpreted as whether eddies are accelerating the mean-flow (if VWY, - V> 0, inter-
preted as an input of energy into the mean by eddies) or decelerating the mean flow (if V¥ - Vig <0, interpreted
as an extraction of energy from the mean by eddies). Here, the eddy force function can be shown to correspond to
the regimes where the eddies are slowing down the mean-flow via baroclinic instability when the Western
Boundary Current first separates (the first positive-negative pattern emanating from the western boundary, which
is anti-correlated with V), while the next dipole pattern (the first negative-positive patterns, which is correlated
with Vi) is an eddy forcing of the mean-flow corresponding to an eddy driven regime (cf. Waterman & Hos-
kins, 2013; Waterman & Jayne, 2011).

From this WY, the horizontal components of the gradient gives an eddy PV flux with a portion of the rotational
component removed, and are shown in panels (e, f). While not obvious at first sight, the divergence of the full
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Figure 2. Model training strategy demonstrated here with a snapshot of the instantaneous PV from model output. The domain is partitioned into small square regions of
size 40 by 40 pixels, overlapping in the x and y direction by 6 pixels, resulting in 6,400 entries of input and output data. Each pair of input and output data is assigned with
equal probability to be in the training set and validation set at the 80:20 ratio, from which a trained model results. An ensemble of models with 20 members is created,
and are tested according to the procedure detailed in text.

eddy PV flux (panels b, ¢) and the divergence of the filtered eddy PV flux (panels e, f) are both equal to V -u"q”
(panel a) up to numerical solver errors (here at least four orders of magnitude smaller than the data). In this
instance, note also that the filtered eddy flux has qualitatively different spatial patterns to the full eddy flux, and
that the filtered eddy flux is around an order of magnitude smaller than the full eddy fluxes. The behavior is
consistent with observations that the rotational eddy fluxes can be large (e.g., Griesel et al., 2009), and suggests
that the presence of rotational fluxes can be expected to have a significant impact on the model training.

3.2. Model Training Procedure

Following Bolton and Zanna (2019) we employ Convolutional Neural Networks (CNNs; e.g., Section 9,
Goodfellow et al., 2016) to map between the inputs and targets. In line with the intended investigation, the choice
of parameters for training the CNNs are kept fixed and chosen as in Bolton and Zanna (2019), and the main
quantity we vary is the choice of training data. The mappings that are returned as a CNN are denoted:

o fi.(...), a mapping between mean state variables to be specified and the divergence of the eddy PV
flux V-u'q’,
o fi,(...), a mapping between mean state variables to be specified and the full eddy PV flux u’q’,

o fI(...), a mapping between mean state variables to be specified and the gradient of the PV eddy force
function —V¥;.

Note that f}f (...) predicts a scalar field, while the ff?lll/eff(' ..) returns a vector field. A possible choice could be to
train a model from the eddy force function, and from the trained model's predicted eddy force function compute its
Laplacian to obtain the divergence of the eddy flux. As mentioned above, this is an extremely difficult test for
model skill since gradient operations amplify mismatches, and we comment on related results and observations in
the conclusions section.

To obtain these mappings in the present time-averaged case, we follow the schematic given in Figure 2, partially
inspired by the approach of Bolton and Zanna (2019). The model domain is partitioned into small overlapping
boxes. The input and target data associated with each of these boxes are paired up, and the pairs are each assigned
an integer number and randomly shuffled (i.e., sampling from a uniform probability distribution function)
depending on a choice of a random seed, and subsequently assigned to the training set (for training up the model)
and validation (for tuning the hyperparameters in order to minimize a specified loss function) at the 80:20 ratio. In
the 512 by 512 pixel domain, we take the small boxes to be 40 by 40 pixels, with a stride of six, resulting in a
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collection of 80% = 6,400 images of the domain. For statistical significance, an ensemble of 20 such models were
trained, each ensemble member only differing in the choice of the random seed, and the same sets of random seeds
are used for all ensembles. The CNNs are built using the PyTorch platform (Paszke et al., 2019), where the CNN
architecture consists of three hidden convolutional layers with square kernels (of size 8, 4 and 4 respectively),
with a two-dimension max pooling layer with square kernel of size 2, and a fully connected linear activation layer
as the output. The CNNss are trained with a batch size of 64, using the Adam optimizer (Kingma & Ba, 2015) with
amean squared error loss function. An early stopping criterion, where the training is stopped if the validation loss
does not decrease by 107° after 20 epochs, is used to monitor the loss function during the training to avoid over-
fitting. For simplification, we use a constant learning rate of 10™* during training. Models that predict scalars are
typically trained for around 200 epochs, taking around three mins with a NVIDIA Tesla T4 GPU in Google Colab;
the number of epochs and training time is doubled for models that predict vector quantities with two components.

In this work, the skill of the model is its ability to be able to predict the global field. We note that while it is
customary to withhold a portion of data that the model has not been exposed to until the testing stage, because of
our choice in partitioning the domain into overlapping boxes, in some sense the model will have “seen” the whole
domain if the percentage of total data exceeds a certain threshold (around 30% of total data). For this work we
make the simplest choice of exposing the model to all the data in a set of control calculations in Sections 4.1 and
4.2, but consider the dependence of our conclusions to decreasing percentage of data exposed to the model during
the training phase in Section 4.4. While it is certainly true our choice leads to the criticism that we may be testing
the model's skill in overfitting in Section 4, our results in Section 4.4 provides some evidence that this is in fact not
the case, and the conclusions we draw are robust.

4. Model Skill

We first evaluate the predictive skill of the various models to the choice of target data. The skill of the models are
judged by its ability to reduce mismatches of the divergence of the eddy PV flux, via repeated predictions of
smaller patches over the whole domain (here taken with a stride of 2 pixels), with averages taken as necessary.
Note that while f7 (...) already predicts the divergence of the eddy PV flux, we will take a divergence of the
outcome of fqu /e (+--) to give the predicted divergence of the eddy PV flux. The normalized mismatch between
data and prediction will be judged as

- q 2
o (Fq )_ IV -u'q" — F(‘)()HLZ )
A v-wq|:

where F(q_) denotes the divergence of the eddy PV flux predicted from the models f(q )(...), and the L* norm is

defined as
|m@=ffm (10)
A

for some scalar field g, where the integration is done over the whole computation domain. Each ensemble member
makes a set of predictions with an associated mismatch, and the associated averages and standard deviations over
the ensemble were computed to judge model skill.

We note that the test for skill chosen here is inherently harder and biased against the models trained on the eddy
PV fluxes (filtered or otherwise), since an extra divergence operation is required. The above choice to compare the
divergence of the eddy PV flux was taken noting that we want a quantity that is comparable across the three sets of
models, and there is a theoretical issue in comparing quantities at the eddy PV flux level since that requires
integrating the relevant predictions, but is then subject to a choice of boundary condition.

One could argue whether it is the L> mismatches we are ultimately interested in, since we may be interested in the
patterns rather than the exact locations of the predicted quantity for example. While a Wasserstein metric (e.g.,
Villani, 2008) would serve that purpose, a simpler and more readily computed quantity is the Sobolev semi-norms
(e.g., Thiffeault, 2012) given by
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Figure 3. Prediction of the divergence of
reference data shown in Figure la.
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eddy PV flux (units of m* s™2) from one of the ensemble member of models. (a) Fl @), ) L, @), (¢) L) . The target

gl = / I(=V3) gl dA= > (K +2)1g., (11)

K+1P#£0

where g, , are the Fourier coefficients of g, (k, [) are the respective wavenumbers, and the link between integral
and sum follows from Parseval's theorem (e.g., if p = O then it is the L? norm above when the k = [ = 0 mode is
included). Sobolev semi-norms with negative p will weigh the lower wavenumbers (i.e., the larger-scale patterns)
more, and in this instance a lower value of the normalized mismatch

o i 2,
>=||V uyq 7()()”11 (12)

e, (F d
AN \di

indicates that the mismatches at the large-scales are smaller. Since we are dealing with finite approximations so

that k* + I* < co, we can perform the computation, even if the formal definition for the H” semi-norms is generally

for fields with zero mean and on a periodic domain and such that the infinite sum converges. For the work here we

will focus on the case of p = —1/2, sometimes referred to as the mix-norm (e.g., Thiffeault, 2012); conclusions

below are qualitatiely the same if p = —1 or p = —2 were chosen (not shown).

4.1. Models Trained on Eddy PV Fluxes

We first focus on models trained on the data based on the eddy PV flux with the time-mean streamfunction ¥ as
the input. Figure 3 shows the predicted divergence of the eddy PV flux Fd‘{v Jiull/er (¥) as an output from one of the
model ensemble members. Compared to the target given in Figure 1a, the predictions are more smooth with fewer
small-scale features, arising from a combination of the fact that CNNs were used, and that our prediction step
leads to some averaging of the overlaping regions. Visually, the predictions Fj (%) and F () are almost
indistinguishable, the latter having a slightly stronger signal downstream of the Western Boundary Current. On
the other hand, the prediction F, (%) shows more fluctuations than the other two cases. The larger amount of
small-scale features in F1, () likely arises because the model is predicting the eddy PV flux first and then having
its numerical divergence computed, so any small fluctuations that arise from the prediction is amplified. In that
regard, the fact that the prediction F () is so visually similar to Fj (%) is rather remarkable.

Figure 4 shows the more quantitative measure of computing the L* and the 1-17_1/2 mismatches given in Equa-
tions 10 and 11 respectively. The results show that the models trained on the filtered eddy PV flux —VW¥?,
outperforms the models trained on the full eddy PV flux u’q’, and have a comparable or even better performance
compared to the models trained on the divergence of the eddy PV flux V -u’q’. The differences in skill are
visually obvious between the models trained on the full eddy flux u’q” and the filtered eddy flux —V‘Pz,\f. The

H 2 mismatch is smaller in the models trained from the filtered eddy flux —V¥Z; compared to the divergence of
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Figure 4. Ensemble average and quartiles of the normalized (a) L* and (b) H -2 mismatches, given by Equations 9 and 12 respectively, for the models predicting the
divergence of the eddy PV flux (Figure 1a). Blue denotes models trained on the divergence of the eddy fluxes, orange denotes models trained on the full eddy fluxes, and
green denotes models trained on the filtered eddy fluxes.

the eddy flux V - u’¢’, but is too close to call in the L? mismatch (e.g., we do not have p < 0.05 using the Student's
t-test (Student, 1908) under the null hypothesis that the means of Fjl, (%) and F () are the same).

The results here lend support to our expectation that the presence of rotational fluxes contaminate and degrade the
accuracy of a trained model, and the eddy force function provides one means of filtering such rotational fluxes that
leads to comparable model performance to the more standard choice of training from the divergence of the eddy
fluxes. The result is all the more remarkable when we note that tests based on the models' ability in reproducing
the divergence of the eddy flux is intrinsically harder and biased against models trained on the filtered flux, since
an additional divergence operation that is expected to amplify errors is required.

4.2. Other Choice of Targets and Inputs

Following the notation outline above, Figure 5 shows the target data V-u’{’ and V -u’b’, and the analogous

predictions of the divergence of the fluxes denoted by di{/l/,full /ety (%) from one of the ensemble members.

The predictions are again more smooth than the diagnosed target data, particularly noticeable for the prediction of
the divergence of the eddy relative vorticity flux in Figures Sb—5d. For the eddy buoyancy flux case, the diagnosed
target data is already relatively smooth. We note that, visually, Ff{’m (w) in Figure 5g seems to be possess extra
features particularly in the downstream region, while Fcl}f (w) and Fcﬁv (¥) in Figures 5f and 5h seems to be capturing
the patterns in the target data well, with some visual hints that the prediction from F5, (%) has slightly sharper
features.

. — =172 . . — .
For a more quantitative measure, we show in Figure 6 the L>and H ~~ mismatches in Fd%%i’n Jeft (1/// q/¢ ) , totaling

the 3° = 27 possible combinations. The conclusions over all these possible choices are largely what was drawn
from before but with minor differences. The models trained on the filtered eddy fluxes outperform those trained
on the full eddy fluxes (except for the case of eddy relative vorticity fluxes), and are comparable or better than
models trained on the divergence of the flux (except in the case of the eddy buoyancy fluxes).

Noting that eddy PV fluxes have contributions from the eddy buoyancy as well as eddy relative vorticity fluxes, it
is curious that models trained on the filtered eddy fluxes compared with models trained on the divergence of the
flux appear to perform worse for the eddy buoyancy flux case (bottom row of Figure 6). However, the perfor-
mance is reasonable in the eddy relative vorticity flux case (middle row of Figure 6), such that the resulting skill in

the eddy PV flux case (top row of Figure 6) still remains comparable, and possibly slightly better in the P'fm
mismatch, indicating better matching in terms of large-scale patterns. One possible explanation for the degra-

dation in performance for eddy buoyancy fluxes is that V-u’b’ is already relatively smooth and larger-scale
(Figure 5e), which might be favorable for direct use as training data. On the other hand, the eddy relative
vorticity fluxes are inherently smaller-scale (Figure 5a), and the presence of small-scale fluctuation might be
unfavorable for direct use as training data, but does not affect models trained on the filtered fluxes as such since
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Figure 5. Target data and predictions associated with (top row, a—d) eddy relative vorticity flux (related to the Reynolds stress, units of m s~2) and (bottom row, eh)
eddy buoyancy flux (related to the form stress, units also of m §72 taking into account of the extra factors). Showing (a, ) the divergence of the time-averaged eddy

relative vorticity and buoyancy flux, and a sample (b, f) F;‘;{,b ). (c, g Féﬁb W), (d, h) Fféb (w) from one of the ensemble members.
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Figure 6. Ensemble average and quartiles of the normalized (a, c, e) L?and (b, d, f) H_l/2 mismatch, given by Equations 9 and 12 respectively, for the models predicting
the divergence of the eddy PV flux (a, b), relative vorticity (cf. momentum) flux (c, d), and buoyancy flux (e, f), over various choices of inputs. Blue denotes models
trained on the divergence of the eddy fluxes, orange denotes models trained on the full eddy fluxes, and green denotes models trained on the filtered eddy fluxes. Top
row is identical to Figure 4. The mismatches in £, () and F, (Z) are out of range in panels (e and f), with values around 1.0 and 1.5 respectively.
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Figure 7. (a, e, i) Target eddy force functions ‘}‘Zt/f/ b and eddy force functions associated with prediction from (b, f, j) divergence of the eddy fluxes, (c, g, k) full eddy

fluxes, and (d, h, i) filtered eddy fluxes, respectively for the PV, relative vorticity and buoyancy variable from one of the ensemble members. All data shown here are in

units of m? s72.

the training data is by definition more smooth. The performance of models based on the full eddy relative vorticity
fluxes is somewhat surprising, but may be to do with the smaller component of the rotational fluxes. On
examining the decomposition into divergent and rotational parts via the eddy force function (cf. Figures 1b, Ic, le,
and 1f, not shown), it is found that the divergent component is smaller by about a factor of 2 in the eddy relative
vorticity flux, but a factor of 10 in the eddy buoyancy and PV flux. The results seem to suggest that the main
benefits of filtering dynamically inert rotational fluxes would be in the eddy buoyancy and PV where the rota-
tional component is large.

For completeness, we show in Figure 7 the analogous eddy force functions associated with the predictions from
the trained models from one of the ensemble members (although observations detailed here are robust upon

examining the outputs from other members); note the analogous mismatches would be closely related to the i
semi-norm as defined in Equation 11, but with a difference in the choice of boundary conditions. The predictions
from models trained on the filtered eddy fluxes (panels d, h, i) have patterns that are largely aligned with the
diagnosed eddy force functions from the data (panels a, e, i) up to minor discrepancies (e.g., downstream patterns
in panel d compared to panel a, and panel | compared to panel i). The predictions from models trained on the full
eddy fluxes (panels c, g, k) show similar patterns although with somewhat more mismatches, particularly in the
PV and buoyancy eddy force functions. By contrast, the predictions from the divergence of the eddy fluxes
(panels b, £, j) show large-scale disagreements in all three variables, the mismatches being visually the gravest in

YAN ET AL.

12 of 20

9SUSD|7 SLOLUWOD BAIERID 3|gedl|dde ) Ag pauienob ke safolie VO 8sn J0 3|1 10j Akeuq173uluO A8]1/MW UO (SUORIPUCD-pLR-SLULB) WD  AB |1 Afe1q 1 U1 |UO//:SONY) SUORIPUOD PUe SWIB | 3U) 39S *[7202/20/92] uo Arigiaunuo Ao|im 1S9 Ad STEE00S INEZ0Z/620T 0T/10p/wiod A8 imAseiq i puluo'sgndnfe//sany wo.y papeoiumoq ‘2 ‘¥20Z ‘99veey6T



NI

ADVANCING EARTH
AND SPACE SCIENCES

Journal of Advances in Modeling Earth Systems 10.1029/2023MS003915

the PV and buoyancy variables. Given that the eddy force function has an interpretation that V% - V7 encodes
the sign of energy exchange between the mean and eddy component (Maddison et al., 2015), the finding here
suggests the predictions from models trained on the divergence of the eddy fluxes are very likely representing
erroneous energy transfers, particularly for processes associated with eddy buoyancy fluxes.

4.3. Model Skill and Sensitivity to Noise

The above observations bring into question of whether the models are sensitive to small-scale features, such as
that arising from the numerical model (e.g., spatial resolution) and/or amount of averaging (e.g., time window in a
time-average, number of ensemble members in an ensemble average). Sensitivity to small-scale features would be
suggestive of large uncertainties in the models, with implications on their possible use in extracting information
from data for example. To explore the sensitivity of skill to noise in the data, we consider a set of experiments
where we add noise 7(x, y) to the data at the training stage, and judge the models' performance on its ability in
predicting the target data without noise. To make sure we are comparing models in a consistent manner, we add an
appropriately scaled Gaussian distributed noise 5(x, y) to the eddy fluxes (u’q’,u’l’,u’D’), from which we
compute the divergence of the eddy flux as well as the eddy force function from the noisy data, and train the
models using the procedure outlined above. In that sense the whole set of models are exposed to the same choice
of noise, since 1 unit of noise at the divergence level is not necessarily the same as 1 unit of noise at the
streamfunction level. The noise level here is measured in units of the standard deviation of the eddy flux data. The
hypothesis is that the models trained on the filtered eddy fluxes are more robust than those trained on the
divergence of the eddy fluxes, and able to maintain model skill with increased levels of noise.

Note the stochastic noise 7(x, y) is formally non-differentiable in space, so that its divergence is not well-defined.
In terms of numerical implementation, however, the random numbers sampled from the appropriately scaled
Gaussian distribution are the nodal values of the finite element mesh used in FEniCS, and there is a projection
onto a linear basis, so that a derivative operation on the projected #(x, y) is allowed within FEniCS, though the
operation may be numerically sensitive. An approach we considered is spatially filtering the noise field. We
consider solving for some #(x,y) satisfying

(1 - 2V?Yii=g (13)

with no-flux boundary conditions, and add the resulting 7j(x, y) to the training data; note that the “noise level” here
refers to the magnitude of #(x, y), and that max|7j(x,y)|< max|s(x,y)| by construction. The resulting 7 is by

construction differentiable at least once so that a divergence is well-defined. For the operator (1 - L2V2)2, the
associated Green's function has a characteristic length-scale L that can be interpreted as a filtering length-scale
where the radial spectral power density decreases significantly after L (closely related to the Matérn auto-
covariance, e.g., Lindgren et al., 2018; Whittle, 1963).

The L? and IL'I_I/2 mismatches of Ifff;bfuu /o (@) to the data as a function of noise level for the ensemble of
models is shown in Figure 8, and consistently we find that the models trained up on the eddy force function out-
perform the models trained upon the divergence of the eddy flux. The former shows a relative insensitivity to noise
level, while the latter shows a rapid degradation in skill with noise level. It would seem that the use of eddy force
function data alleviates the sensitivity to small-fluctuations in data, at least in the present measure and approach.

The reduced sensitivity in the models trained on the filtered fluxes to noise might have been anticipated, since the
eddy force function is a result of an elliptic solve of a Poisson equation, which leads to a smoothing of the data (via
an inverse Laplacian operator). We would however argue that the relative insensitivity to noise level is somewhat
surprising, since there is no guarantee the presence of even reduced fluctuations at the streamfunction level would
stay small after spatial derivatives operations, since we are using the divergence of the eddy flux as the target for
the measure of skill. While one could also argue that the present test is inherently a hard test for models trained
upon the divergence of the eddy flux, we argue the conclusions are robust regardless of whether the noise is added
at the flux, divergence of flux or streamfunction level. In fact, the use of the divergence of a flux as training data is
likely the cause for sensitivity to noise: a inherently small-scale field is sensitive to the presence of small-scale
features, so is likely to lead to issues sensitivity to such features.
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Figure 8. Ensemble average and quartiles of the normalized (a, c, ¢) L* and (b, d, f) I-.I_l/2 mismatch given by Equations 9 and 12 respectively, as a function of noise level
for the models predicting the divergence of the eddy PV flux (a, b), relative vorticity (cf. momentum) flux (c, d), and buoyancy flux (e, f), using the time-mean
streamfunction ¥ as the input. Blue denotes models trained on the divergence of the eddy fluxes, orange denotes models trained on the full eddy fluxes, and green
denotes models trained on the filtered eddy fluxes. Model skill is out of range for Ffﬁn (w) in panel (e).

The conclusions in the above are qualitatively robust for different choices of the filtering length-scale L: with
reduced L, the degradation of skill in models trained on the divergence of the eddy fluxes is more rapid with noise
level, but the skill of models trained on the filtered eddy fluxes is still relatively insensitive to noise level, and
consistently more skillful than models trained on the divergence of the eddy fluxes. The conclusions are also
robust for different choices of inputs (¢ and g), and with sample calculations employing other choices of
smoothing, coarse-graining (e.g., Aluie, 2019) or filtering (e.g., Grooms et al., 2021) of the noise field 5(x, y).

4.4. Model Skill and Dependence on Data Amount

The reported results so far are from models trained upon a 100% of the data (6,400 images) in an 80:20 ratio of
training to validation data, from which the skill is computed for the model's ability to reduce the global mis-
matches throughout the domain. Figure 9 shows the skill of the models as a function of data percentage used as
part of the training, with the time-mean streamfunction as the input, keeping the same 80:20 ratio of training to
validation data in all cases.

As expected, the skill of models decrease with the percentage of training data provided. However, the conclusions
drawn from Sections 4.1 and 4.2 continue to hold. The conclusions in Section 4.3 regarding reduced sensitivity
hold in the models trained on the eddy fluxes (be it filtered or otherwise) in sample calculations at reduced
percentage of training data (not shown). Thus we have evidence in support that the conclusions made thus far are
robust even in the more standard regime where some amount of training data is withheld for testing purposes.

5. Conclusions and Outlooks

Data-driven methods are increasingly being employed in problems of Earth System Modeling. Such methods can
in principle be leveraged to not only improve our modeling efforts, and also deepen our underlying understanding
of the problems. Most works in the literature thus far has focused on demonstrating the computational efficacy
and predictive power of the machine-learning methods and algorithms. Here we take a complimentary line of
investigation in considering the choice and quality of data itself being fed to the algorithms, for a case where we
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Figure 9. Ensemble average and quartiles of the normalized (a, ¢, e) L and (b, d, f) H 2 mismatch given by Equations 9 and 12 respectively, as a function of percentage
of training data exposed to model during training phase (100% = 6,400 frames), for the models predicting the divergence of the eddy PV flux (a, b), relative vorticity (cf.
momentum) flux (c, d), and buoyancy flux (e, ), using the time-mean streamfunction ¥ as the input. Blue denotes models trained on the divergence of the eddy fluxes,
orange denotes models trained on the full eddy fluxes, and green denotes models trained on the filtered eddy fluxes. Model skill is out of range for Ffﬁu (w) in panel (e and f).

have some theoretical understanding to inform our choices. While one could argue this is not entirely necessary if
we just want something that has skill as measured by the relevant metric(s) for the problem, we argue it is
incredibly useful and if not necessary if we want to leverage data-driven methods to learn about the underlying
physical problems, and/or to go beyond “black-box” models. Furthermore, the choice of data can in principle
improve the training and/or the performance of the data-driven models themselves, so there is a need for such an
investigation into data quality and information content.

For this work we focused on the problem of eddy-mean interaction in rotating stratified turbulence in the presence
of boundaries, relevant to the modeling and parameterization of ocean dynamics. In such systems it is known that
the large-scale mean affects and is affected by the small-scale eddy fluxes, and while we might want to leverage
data-driven methods to learn about this relationship, it is known that in the presence of boundaries the eddy
feedback onto the mean is invariant up to a rotational gauge (e.g., Fox-Kemper et al., 2003; Eden et al., 2007; J. C.
Marshall & Shutts, 1981). The rotational component can be quite large (e.g., Griesel et al., 2009, and also Figure 1
here), and its presence might be expected to negatively impact the training and eventual performance of trained
models. One possible way round is to train models based on the divergence of the eddy fluxes (e.g., Bolton &
Zanna, 2019; Zanna & Bolton, 2021). Here we propose that data that filters out rotational component of the eddy
fluxes be used instead. The approach outlined here we argue to have the advantage in that the resulting field is
inherently larger-scale, which would help with model training and sensitivity, and be theoretically more
appropriate to use if we want to learn about the underlying physics of the problem, because we do not expect
commutativity (i.e., given the nonlinearity, learning from the divergence is not guaranteed to be the same as the
divergence of the learned result).

The experimental approach here largely follows that of Bolton and Zanna (2019), where we diagnose the relevant
data from a quasi-geostrophic double gyre model to feed to the machine learning algorithm, and compare the
trained models' performance in their global predictions. For filtering the eddy flux we employ the eddy force
function (e.g., Maddison et al., 2015; Mak et al., 2016; D. P. Marshall & Pillar, 2011), which in the present simply
connected quasi-geostrophic system is optimal in removing the rotational fluxes (see Appendix of Maddison
et al., 2015). We made the choice here to measure a model's skill in its ability to reproduce the divergence of the
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eddy fluxes over an ensemble of models with 20 members and over a variety of inputs. We find that the models
trained on the eddy force function are (a) more skillful than those trained on the full eddy flux (except for the
relative vorticity eddy fluxes), (b) at least comparable (and on occasion better) in skill than models trained on the
divergence of the eddy fluxes (except for the buoyancy eddy fluxes), and (c) the trained models are less sensitive
to small-scale fluctuations in the training data. The conclusions appear to be robust up to the amount of training
data provided (see Figure 9). Furthermore, there is evidence that the conclusions are also robust as long as a
rotational component is filtered out in some sensible way, for example, by the use of a standard Helmholtz
decomposition, up to the caveat that we have to choose a boundary condition (see Figure Al).

The first finding is perhaps not unexpected. The latter two findings we argue are not entirely obvious, given
divergence operations acting at various steps. For example, sample calculations where a model is trained on the
eddy force function directly (and then taking a Laplacian to obtain a prediction of the divergence of eddy flux)
leads to larger mismatches, which we attribute to the fact that any mismatches in the predicted eddy force function
is significantly amplified by the two derivative operations. With that in mind, the fact that models trained on the
filtered flux reported here leads to models with comparable or better skill and less sensitivity to small-scale
features in the data are non-trivial results.

Exceptions to the above conclusions are that models trained on the divergence of the eddy buoyancy flux are more
skillful (bottom row of Figure 6), and models trained on the eddy relative vorticity flux appear comparable
whether the rotational component is filtered out or not (middle row of Figure 6). The former might be rationalized
in that the eddy buoyancy flux is already relatively smooth and somewhat larger-scale, so that training on its
divergence is not such an issue; however, we also note that the buoyancy eddy force functions associated with the
predictions of models trained on the divergence of the eddy buoyancy flux seem to perform the worse (bottom of
Figure 7), implying erroneous predictions of eddy energy pathways. The latter observation is possibly to do with
the fact that in the eddy relative vorticity flux, the rotational component is comparable in size to the divergent
component, as opposed to the rotational component being a factor of 10 smaller in the eddy PV and buoyancy flux
(see Figures 1b, 1c, 1d, andle for eddy PV flux), and the effect of filtering is somewhat marginal. One saving
grace is that, in the quasi-geostrophic system, the potential vorticity (with contributions from relative vorticity and
buoyancy) is the master variable, and that while models trained up on the relative vorticity or buoyancy fluxes
perform better separately, the models trained up on the filtered eddy flux have skill in the PV eddy flux, where PV
is the master variable in the quasi-geostrophic system.

One thing we caution here is drawing a one-to-one comparison of the present work with that of Bolton and
Zanna (2019) and Zanna and Bolton (2021). While it is true those works utilize a similar model, experimental
procedure and data to this work, the choice of averages are different. Their work utilizes a spatial average, and the
eddy flux data there is defined as the difference between the filtered divergence and the divergence of the filtered
field. Here we utilize a time average, which is in line with the definition of the eddy force function in Maddison
et al. (2015) via a Reynolds average. While we have not attempted a similar investigation in the case of spatial
averaging or the more general case beyond the quasi-geostrophic setting, the eddy force function presumably can
be similarly defined going back to the original definition in D. P. Marshall and Pillar (2011), even if optimality
cannot be shown as in Maddison et al. (2015). Failing that, a Helmholtz decomposition might suffice, again on the
caveat that boundary conditions need to be chosen. This part is beyond the scope of the present work and left as a
future investigation.

Because of the choice of time average, we have limited data in time, and one could wonder whether our con-
clusions are simply to do with the limited data availability. This is unlikely the case: we also carried out an
analogous investigation with rolling time averages as well as ensemble averages (not shown), and the conclusions
drawn from those results are essentially identical to those here. This is perhaps not surprising noting that the
rolling time averages for a long enough window and the ensemble averages shown no strong deviations from each
other in the present system, but we note this is likely only true for a sufficiently simple system with no strong
evidence of internal modes of variability.

The main intention of the present work is to demonstrate that not all data choices are equal for machine learning in
the Earth System Modeling setting. For the case of rotating stratified turbulence, the eddy force function is a
potentially useful quantity if we aim to leverage data-drive methods for model skill or for learning about the
underlying physics of the problem, given the various theoretical expectations highlighted in this work. Other
choices such as a standard Helmholtz decomposition could be used to solve for the divergent component may be
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useful, although the eddy force could still be used for physical interpretation. We note that while skill in
reproducing eddy forcing is one target, we have not examined here on the ability of the model to reproduce the
mean state, and the present procedure might be termed an “offline” approach. Learning “online” (e.g., Frezat
et al., 2022) may be more appropriate for parameterization purposes to improve on the mean response, and it
would be of interest to see whether filtering of the eddy flux as discussed here would confer any benefits to model
learning. We note that the computation of the Helmholtz decomposition should be relatively quick in a periodic
domain via transformations into Fourier spectral space.

The present work also highlights questions relating to information content of data. While quantifying absolute
data information content is likely quite difficult, it should be at least possible to compute a relative measure, even
if empirically. One might ask an analogous question of the input data. The work of Bolton and Zanna (2019)
suggests that training with data from regions with higher eddy kinetic energy leads to better model performance in
terms of accuracy for example, suggestive of higher information content in said region. Within the present
experimental framework, we could consider training based on a biased sampling that favor regions with higher
eddy energy content, with the hypothesis that the latter case leads to models with higher accuracy from a statistical
point of view. Further, we could investigate the case of multiple inputs, where we hypothesize that eddy energy
and a mean state variable as inputs might lead to improved performance compared to say two mean state vari-
ables: in the current quasi-geostrophic setting, the mean state variables are functionally related to each other,
possibly leading to redundant information, while the eddy energy might be dependent on the mean state, but
captures eddy statistics instead and providing complementary information. This investigation is ongoing and will
be reported elsewhere in due course.

Appendix A: Training From Data Beyond the Eddy Force Function

Here provide sample results from an analogous investigation into using data from a standard Helmholtz
decomposition, as in Equation 6. In this case we have to make a choice on the imposed boundary condition, and
we take this to be a homogeneous Neumann condition, which corresponds to zero normal eddy flux. This is in
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Figure Al. Ensemble average and quartiles of the normalized (a, ¢, ¢) L* and (b, d, f) H -2 mismatch given by Equations 9 and 12 respectively, for the models predicting
the divergence of the eddy PV flux (a, b), relative vorticity (cf. momentum) flux (c, d), and buoyancy flux (e, f), using the time-mean streamfunction i as the input. Blue
denotes models trained on the divergence of the eddy fluxes, orange denotes models trained on the full eddy fluxes, green denotes models trained on the filtered eddy fluxes
by means of an eddy force function (cf. Figure 6), and red denotes the models trained on the filtered eddy flux by means of a standard Helmholtz decomposition in
Equation 6 using a homogeneous Neumann condition (i.e., zero normal eddy flux). The figure is to be directly compared with Figure 4, but noting the use of a different y-
axis limit.
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contrast to the homogeneous Dirichlet condition used for the eddy force function, which corresponds to the zero
normal mean geostrophic flow condition (related to the momentum tendency; Maddison et al., 2015).

Figure A1 shows the results analogous to Figure 4 (but note the change in the y-axis limits) for varying model data
but for a fixed input of the time-mean streamfunction. It can be seen that while the performance of models trained
on the filtered fluxes by means of eddy force functions are generally more skillful, the conclusions drawn in this
work appear to also hold for the case where filtering is performed using a Helmholtz decomposition. The results
would suggest that some degree of rotational flux removal is desirable. Whether this continues to hold in the non-
simply connected quasi-geostrophic setting or the more general primitive equation setting remains to be
investigated.

Data Availability Statement

This work utilizes FEniCS (2019.1.0) that is available as a Python package. The qgm?2 source code, sample
model data and scripts used for generating the plots in this article from the processed data are available through the
repository at Yan and Mak (2023).
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