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A B S T R A C T

Seabed cover of organisms is an established metric for assessing the status of many vulnerable marine
ecosystems. When deriving cover estimates from seafloor imagery, a source of uncertainty in capturing the true
distribution of organisms is introduced by the inherent variability and bias of the annotation method used to
extract ecological data. We investigated variability and bias in two common annotation methods for estimating
organism cover, and the role of size selectivity in this variability. Eleven annotators estimated sparse cold-
water coral cover in the same 96 images with both grid-based and manual segmentation annotation methods.
The standard deviation between annotators was three times greater in the grid-based method compared to
segmentation, and grid-based estimates from annotators tended to overestimate coral cover. Size selectivity
biased the manual segmentation; the minimum size of colonies segmented varied between annotators fivefold.
Two modelling techniques (based on Richard’s selection curves and Gaussian processes) were used to impute
areas where annotators identified colonies too small for segmentation. By imputing small coral sizes in
segmentation estimates, the coefficient of variation between annotators was reduced by approximately 10%,
and method bias (compared to a reference dataset) was reduced by up to 23%. Therefore, for sparse, low
cover organisms, manual segmentation of images is recommended to minimise annotator variability and bias.
Uncertainty in cover estimates may be further reduced by addressing size selectivity bias when annotating
small organisms in images using a data-driven modelling technique.
1. Introduction

Ecological monitoring is critical to the conservation of habitats that
are susceptible to anthropogenic impacts (Lindenmayer and Likens,
2010), and monitoring of ocean health is recognised as internation-
ally important for environmental sustainability strategy (Danovaro
et al., 2020; IOC-UNESCO, 2020). Monitoring has revealed significant
changes to important seabed habitats: a three-decade decline in coral
cover on the Great Barrier Reef (De’ath et al., 2012); a coral bleaching
and disease event resulting in a 13% decline in coral cover in the
Caribbean (Miller et al., 2009); ocean acidification weakening coral
framework (Hennige et al., 2015); the destruction of sponge aggrega-
tions by bottom trawling (Vieira et al., 2020; Kazanidis et al., 2019);
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the slow recovery of cold-water corals from trawling (Clark et al.,
2019; Huvenne et al., 2016); and the ingestion of plastics across the
marine food web, even in remote areas such as the deep sea (Taylor
et al., 2016). Such monitoring outcomes are important to conservation
decision-making and environmental management, including the evalu-
ation of Vulnerable Marine Ecosystems (VMEs) (Obura et al., 2019), the
designation of Marine Protected Areas (MPAs) (Almany et al., 2009),
and the management of industrial activities (Levin et al., 2020).

To be effective, monitoring data must be collected over ecologically-
relevant spatial and temporal scales, and to commonly-agreed metrics.
The spatial repeatability, larger areal coverage and greater flexibility
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of underwater imaging compared to traditional sample-return based
survey methods has lead to the increased use of photographic and
video surveys in seabed monitoring programmes (Morris et al., 2014;
Brown et al., 2004; Williams et al., 2016). Image based surveys also
provide more opportunity for better understanding deep-sea (>200 m
water depth) VMEs, which often need to be monitored over large
spatial and temporal scales due to their composite organisms hav-
ing sparse distributions and long life histories (Clark et al., 2019;
Vieira et al., 2020). Essential Ocean Variables have been developed
as an international standard to establish baseline conditions and assess
change (Constable et al., 2016; Miloslavich et al., 2018; Levin et al.,
2019), with percentage cover as an established metric for assessing
the state of habitats with colonial or seafloor-covering biota, including
hard coral (Brown et al., 2004; Hill and Wilkinson, 2004; Obura, 2018).
Methods for manually estimating percentage cover from images include
grid-based and manual segmentation-based methods (Leujak and Or-
mond, 2007), in which researchers annotate, that is, locate, identify
and size the target organisms. These methods are often contrasted by
their efficiency, with manual segmentation considered to require more
time than grid-based cover estimation, but with the accuracy and time
efficiency of grid-based estimates being strongly linked to the grid size
selected (Trygonis and Sini, 2012; Dethier et al., 1993).

The reliability of cover estimates is in part determined by the
bias and variability associated with the image capture and annota-
tion method (Sayer and Poonian, 2007). Variability in image-derived
ecological data can result from the chosen image acquisition and pro-
cessing techniques (Jones et al., 2007; Schoening et al., 2020), and from
the annotation process. Annotation to produce robust cover estimates
requires the correct detection and identification of target organisms,
and the correct evaluation of size, each of which is subject to variation
and bias. Annotation method choice may impact this variation; for
example, Leujak and Ormond (2007) compared six different in situ
and visual imaging survey methods resulting in coral cover estimates
ranging from 34%–46% in a high cover coral reef in the Red Sea.
Purser et al. (2009) estimated cold-water coral and sponge cover us-
ing multiple annotation techniques including an automated analysis
technique and a manual point assessment technique at two different
resolutions (15 points versus 100 points). They found the lower res-
olution technique (15 points) struggled to accurately detect sparsely
distributed coral colonies and the autoanalysis technique underesti-
mated abundant coral cover. Sponge cover estimates varied between
methods, with both the 15 points technique and the autoanalysis pro-
ducing inaccurate cover estimates. Perkins et al. (2022) also found that
image annotation technique impacted the statistical power to monitor
change in target organisms (such as sponge bleaching). Annotators
vary in both detecting and identifying organisms. A comparison of
eight annotators identifying dinoflagellate species found agreement
from 43%–95%, with self-consistency levels on repeat annotations as
low as 67% (Culverhouse et al., 2003). Beijbom et al. (2015) found both
intra- and inter-annotator variability in identifying different substrata
found in images captured at four Pacific coral reefs, and that annotator
experience with the study site impacted annotator error. A study of
fauna in seafloor images found that the majority of variability in the
three annotators’ faunal composition estimates derived from varying
detection rather than disagreements of identity (Durden et al., 2016).
In a dive survey, seabed cover estimates were found to vary between
observers, with precision in estimates of seabed cover found to be
related to quadrat size (Benedetti-Cecchi et al., 1996). The magnitude
of such variability in cover estimates may be significant to the ecologi-
cal conclusions drawn, particularly for sparsely-distributed organisms.
Annotator variability may also obscure real environmental change, with
implications for the designation of protected areas or implementation
of policy measures.

Efforts have been made to provide guidance on and establish thresh-
olds for the identification of VMEs from images. High density VMEs can
2

at times be identified from a single image, however, when VME forming l
taxa are present at lower densities, their distribution at larger spatial
scales is required to identify the VME (Baco et al., 2023). Cold-water
coral habitat density is highly dependent on the composite taxa and
the abiotic conditions found at sites, making it challenging to define a
threshold for reefs and gardens (OSPAR Commission, 2008; Bullimore
et al., 2013). Rogers et al. (2013) provide a coral colony density
threshold of greater than 10 times the background densities (usually
0.1 m−2 but scale dependent) as their definition of coral gardens,
however, Bullimore et al. (2013) found this criteria to exclude too many
coral garden habitats due to the broad range of comprising biotopes.
Price et al. (2019) and Rowden et al. (2020) both suggested a threshold
of approximately 30% living or dead coral framework cover to establish
a reef habitat, over spatial scales of 2 m2 to 50 m2. The designation of

PAs and other policy measures can also occur when VME forming
axa (such as cold-water corals) are present in unique environmental
onditions (Huvenne et al., 2016). When density or cover estimates are
sed to define VMEs and influence management actions, uncertainty
n estimates derived from seabed images due to annotator error and
ariability can impact the protection of these ecosystems.

We investigate uncertainty in cover estimates derived from seafloor
hotographs taken at a site with sparse coral cover, by comparing
he annotation results of 11 annotators using two methods of cover
stimation and additionally proposing two techniques to reduce annota-
or variability based on data-driven annotator modelling. We compare
rid-based and manual segmentation image annotation methods, and
ssess the inter-annotator and method-based variability and bias in
stimating sparse cold-water coral cover. We further explore inter-
nnotator variability in the manual segmentation method by assessing
nnotator bias in relation to coral colony size. To address the revealed
nter-annotator size bias, we apply and evaluate two different mod-
lling techniques for imputing missing coral size data. We discuss the
cological implications of the observed annotator variability, and the
eneralisable implications for routine monitoring of seafloor covering
iota.

. Methods

.1. Study site and image collection

This study investigates annotator variability using seabed images
athered in the Western Darwin Mounds area in 2019 (Table 1; Hu-
enne and Thornton (2020)). The Darwin Mounds are a field of
parsely-distributed cold-water coral mounds, each up to approximately
5 m in diameter and 5 m in height. The mounds are unusual in hosting
cleractinian corals, Desmophyllum pertusum and Madrepora oculata, in

sedimentary rather than rocky environment (similar to the Moira
ounds in the Porcupine Seabight; Wheeler et al. (2011)). The mounds

re thought to have initially formed in the early Holocene, as a result of
old-water corals baffling sandy sediments from the prevailing contour
urrent (Victorero et al., 2016). Although being sparse in cover, the
oral framework on the mounds still provides habitats for commercially
mportant fish species and various invertebrates (Bett, 2001; Costello
t al., 2005). The Darwin Mounds effectively became the UK’s first off-
hore MPA in August 2003 when the area was closed to bottom fisheries
nder the EU Common Fisheries Policy (Council of the European Union,
004; De Santo and Jones, 2007). Since 2015, it has been designated
s a Special Area of Conservation and the area remains a target of
ontinued monitoring (Huvenne et al., 2016; Chaniotis et al., 2020).

Vertical still images were collected with a combined stereo cam-
ra and double laser line scanner system known as BioCam (West
t al., 2020), mounted to the Autosub6000 autonomous underwater
ehicle. See Thornton et al. (2021) for details of the acquisition sys-
em. The survey over the Western Darwin Mounds captured 21,279
mages in an area of approximately 29 hectares (Table 1). The images
ere processed to correct for colour, illumination beam pattern and
ens distortion (Bodenmann et al., 2017), and were clustered into 11
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Table 1
Western Darwin Mounds cold-water coral cover study image collection and
annotation dataset preparation information. SD = standard deviation.

Study dates 16–17/09/2019
Study area (centre) 59.81◦N 7.36◦W
Water depth (m) 957–970
AUV mean altitude ± SD (m) 5.05 ± 0.67
Seabed area covered (m2) 288 000
Mean image seabed area ± SD (m2) 42.1 ± 12.0
Image mean spatial resolution ± SD (mm/pixel) 2.7 ± 0.4
Number of images collected 21 279
Number of images annotated 96
Total seabed area of annotated images (m2) 3950
Number of annotators 11

visually similar groupings using unsupervised features extracted by
a deep-learning location guided autoencoder (Yamada et al., 2020).
Eight non-overlapping images were randomly selected from within each
cluster to generate a cluster-stratified selection of seafloor images to
function as the annotation dataset. To increase the number of corals
present in our dataset, 16 rather than eight non-overlapping images
were selected from the image cluster known to contain coral, creating
an annotation dataset of 96 images in total.

2.2. Image annotation and cover estimation

Eleven annotators annotated the images in random order using the
online annotation platform Squidle+ (Bewley et al., 2015). Manual
annotation was repeated using two different methods: grid-based per-
centage estimation and manual segmentation. Each method was used
to estimate the percentage cover of living scleractinian coral (defined
as coral framework with living polyps, hereafter referred to as coral
colonies) in each image. Prior to annotation, annotators received in-
structions on the chosen annotation methods and corals of interest, with
practice on a smaller tutorial dataset containing 15 images captured
in the same deployment but not included in the annotation dataset.
Guidance included a minimum coral colony size to annotate, example
annotations on the tutorial dataset and opportunities for feedback and
to confer with other annotators. This work was carried out using
annotators’ own workspace setups.

In grid-based annotation, images were divided into 56 cells with
an eight by seven grid to produce cell sizes of approximately 1 m2

seabed area (320 × 308.6 pixel cell size). Annotators estimated the
summed percentage cover of living and dead coral colonies found
within each cell (Fig. 1a; 1b). Percentage cover estimates were given
in 10% ranges (Jokiel et al., 2015). For example, if the annotator
estimated around 10% of the annotated cell to be covered by living
coral, the cell would be annotated with the following tags: live, 5 <
x ≤ 15%. The lowest and highest cover ranges that could be reported
were 0 < 𝑥 ≤ 5 and 95 < 𝑥 ≤ 100% respectively. If no scleractinian coral
was present in a cell, the cell would be labelled as sediment only. Coral
cover percentages for each cell were made proportional to the image
by dividing the cover values by 56 and summed to produce a living
coral cover estimate for the whole image. For manual segmentation,
annotators drew polygons around all living coral colonies detected
in each image (Fig. 1c; 1d). The areas of the drawn segments were
summed to produce image cover estimates. Where colonies were too
small for manual segmentation, annotators assigned a point indicating
the presence of live coral, but did not provide a drawn segment from
which colony size could be calculated from (‘‘point label’’; Fig. 1d). For
both methods, annotators could add an additional ‘‘uncertain’’ label
when they were not fully confident in their annotations. Uncertain
annotations without a live or dead label were removed before analyses.
For an example of the Squidle+ interface used for both annotation
methods, see the supplementary material (Supplement 1).

Annotators were instructed to complete their annotations within
one month, in as many sessions as required. The time taken for each
3

Fig. 1. Illustration of the image annotation methods used to estimate coral cover:
grid-based (a; b) and manual segmentation (c; d). A whole image is presented in (a)
and (c), and a single grid cell (b) and (d). Coral colonies are shown approximately to
scale.

annotator to fully annotate the 96 images with each method was
recorded.

The pixel dimensions and seabed area of each image were calcu-
lated using Autosub6000’s altitude and the camera acceptance angles
(69.5◦ and 60.7◦), following Jones et al.’s (2007) approach for verti-
cal seabed images scaling calculation (Jamieson et al., 2013; Durden
et al., 2015; Piechaud and Howell, 2022). Image coral cover estimates
were converted into real-world spatial cover estimates assuming a flat-
world scenario. Any protrusion of coral and other three dimensional
structures from the surface of the seabed was assumed to be negligible,
as the AUV’s mean flying altitude during image acquisition was large
(approximately 5 m) in comparison to the relatively small height of
the coral structures (estimated to be < 1 m and likely < 0.5 m for the
coral colonies included in the present study) in the Darwin Mounds
area (Huvenne and Thornton, 2020).

2.3. Analyses of variability in annotator cover estimation

Annotator variability was assessed between annotation methods
by comparing the cover estimates per image. Differences between
annotators in coral cover estimates for each annotation method were
assessed using the Friedman rank-sum tests adjusted for ties, where
the annotator identity (1–11) was the treatment condition and the
image identifier (1–96) was the blocking condition, (Hollander et al.,
2013; Vallat, 2018). Differences in coral cover estimates per image
between annotators and between the grid-based annotation method and
segmentation were also assessed by a Friedman test (identifier combin-
ing annotator identity and annotation method used as 1–22 treatment
condition, image identifier 1–96 blocking condition). Post-hoc pairwise
Conover tests on the method-annotator cover estimates were performed
using a false discovery rate 𝑝-value adjustment method (Conover, 1999;
Benjamini and Hochberg, 1995; Terpilowski, 2019).

Coral percentage cover was estimated across all the images used
in this study for each annotator and annotation method. To generate
confidence intervals for the annotator cover estimates, image cover
estimates made by each annotator with each annotation method were
pooled separately and randomly resampled with replacement to create
image sets with total imaged seabed areas near equal to the original
total image seabed area photographed (3950.44 m2). The measured
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areas of coral colonies present in the sampled image sets were summed
to give a total living coral area, which was divided by the total imaged
area to create standardised living coral percentage cover estimates.
Resampling was repeated 1000 times to determine the area-weighted
mean of coral percentage cover and 95% confidence intervals. Confi-
dence intervals were calculated using the bias corrected and accelerated
method to account for bias and skew present in the resampled coral
cover distributions (Roff, 2001). Percentage cover was estimated both
for each annotator and across all annotators. For comparisons across
all annotators, image estimates made by all annotators were pooled
together for each annotation method and resampled with replacement.
Annotator bias within each method were evaluated by calculating the
percentage difference between the area-weighted mean cover estimate
for each annotator and the mean cover estimate across all annotators.

Coral percentage cover estimates and annotation speed were com-
pared between methods with Wilcoxon signed-rank tests. Annotation
time, number of detected colonies and number of drawn segments
in the manual segmentation method was tested for correlation with
Kendall rank correlations.

2.4. Analyses of method bias

Method bias was evaluated with the area-weighted mean coral cover
estimated across all annotators for each annotation method. A reference
dataset combining all 11 annotators’ drawn segments was used to
compare each annotation method against. To create this reference
dataset, the mean area of drawn segments around any coral colony
segmented by at least one annotator was used (note, this is likely a
slight overestimate of coral cover; Chalana and Kim (1997), Tong et al.
(1998)). The difference between the area-weighted mean coral cover
estimated by the reference dataset and by each annotation method were
then standardised to give the percentage differences from the reference
dataset. One sample Wilcoxon signed rank tests were performed to
evaluate whether annotators’ area weighted mean coral cover estimates
were significantly different to the coral cover estimated by the refer-
ence dataset. Combining all annotators also produced the number of
coral detections made by at least one annotator, which was then used
to estimate apparent detection success in segmentation (Durden et al.,
2016).

2.5. Reducing uncertainty in manual segmentation image annotation

To create more complete coral cover estimates and reduce variabil-
ity between annotators in the segmentation method, we employed two
techniques to model the colony size distributions of each annotator and
impute the missing coral area data. The first is based on established
sample selection relationships used in fishery studies (Richard’s selec-
tion curves), with bootstrapping to characterise uncertainty within each
annotator’s model. The second employed constrained Gaussian pro-
cesses regressions (GP; Agrell (2019)), which make model predictions
together with uncertainty estimates.

Each annotators’ segmented coral sizes were plotted against their
relative cumulative frequencies (see Supplement 2 for examples of these
plots) and both modelling techniques were applied separately. The
techniques were implemented with a defined minimum size for the
modelled area, set to a circular area with the diameter of a single
corallite (10 mm; Gass and Roberts (2011); three times the resolu-
tion of the acquisition system). To remove potential outliers from
the modelled data, in cases where the smallest colony area drawn
by an annotator was inconsistent with the general distribution trend
of the larger colonies drawn, those values were reset to point labels
and the corresponding area estimated by the imputation process. For
more information on the removal process, refer to the supplementary
material (Supplement 2).
4

2.5.1. Imputing coral sizes - modelling using a known relationship
Selection curves are often used in fishery studies to provide the

probability that a fish of a certain length is retained if they make
contact with trawl gear (Wileman et al., 1996; Millar and Fryer, 1999).
Following the logic that larger organisms have a greater probability
of being retained (or here, detected) in a trawl (in an image), the
selection curve tends to resemble an S-shape (Millar and Fryer, 1999;
Stepputtis et al., 2016). To impute the point labelled coral sizes, the
relative cumulative frequencies of coral colonies and colony areas were
modelled using the inverse of a selection curve. Inverse Richard’s
selection curves (IRC) were chosen to describe the coral areas drawn
by each annotator, where 𝑟(𝑙) was the relative cumulative frequency
of a coral colony with a natural logarithm of real-world area 𝑙 being
detected by an annotator:

𝑙 =
𝑙𝑛( 𝑟(𝑙)𝛿

1−𝑟(𝑙)𝛿 ) − 𝑎

𝑏
(1)

The equation is specified by the parameters 𝑎 and 𝑏 and includes an
additional parameter, 𝛿, to account for varying degrees of asymmetry
in the distribution (Millar and Fryer, 1999). The natural logarithm
of colony areas were used to ensure only positive values of colony
sizes were predicted. The natural logarithm of colony areas from each
annotator and the minimum corallite area with a relative cumulative
frequency of zero were combined and bootstrapped 1000 times to
generate parameter estimates using the curve_fit function in the Scipy
Python module (Virtanen et al. (2020); Supplement 3). The resulting
bootstrapped parameter estimates for the IRCs (𝑎, 𝑏 and 𝛿) were used
to estimate point label sizes by providing randomly selected relative
cumulative proportion 𝑟(𝑙) values between the inverse of the total
number of labels an annotator made, and the proportion of point labels
for each annotator. These values were used along with the bootstrapped
parameters to generate a range of possible coral colony areas.

2.5.2. Imputing coral sizes - non-parametric modelling
The relative cumulative frequencies of each annotator’s segmented

coral colonies were modelled with respect to their real-world sizes
using non-parametric Bayesian inference known as GPs (Rasmussen
and Williams, 2006). Whilst GPs do not require a known relationship
prior to modelling, some initial hyper-parameters are needed which
influence the resulting modelled data. The scleractinian coral taxa
in this study show linear colony growth (Orejas et al. (2011); less
than 4 cm yr-1; Buscher et al. 2019) and due to there being little
to no size selective pressure in the study area (the Western Darwin
Mounds did not have major trawling damage; Huvenne et al. (2016)),
the size population of imaged coral colonies was expected to show a
smooth distribution. Function estimation was achieved using GPs with
the radial basis function kernel, a common choice in ecological and
growth studies to model smooth and stationary functions and easy to
optimise (Rasmussen and Williams, 2006; Schulz et al., 2018). The
radial basis function kernel has two hyper-parameters; the length-scale
𝜆 and the signal variance 𝜎2𝑓 . Length-scales and signal variances values
were chosen based on each annotator’s data:

Length-scale 𝜆 = 0.25 × 𝑝𝑟𝑜𝑝𝑝𝑜𝑖𝑛𝑡 (2)

Signal variance 𝜎2𝑓 = (
𝑚𝑎𝑥𝑐 − 𝑚𝑖𝑛𝑐

4
)2 (3)

Where 𝑝𝑟𝑜𝑝𝑝𝑜𝑖𝑛𝑡 was the proportion of identified coral colonies with
a point label, 𝑚𝑎𝑥𝑐 was the maximum size of drawn coral colonies
by an annotator and 𝑚𝑖𝑛𝑐 was the minimum possible size of a coral
colony. An additional parameter, noise variance 𝜎2𝑛 was included in
the GP to represent the variance in coral area due to the difference in
resolution when images were captured at different altitudes above the
seabed, and was the same for all annotators (Supplement 4). Boundary
constraints were used to improve GP predictions and produce more

realistic estimates of model uncertainty (Agrell, 2019). In addition
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Fig. 2. Area-weighted mean coral cover over total study area estimated by each annotator (left) and across all annotators (right), using the grid-based and manual segmentation
methods. Box plots show means and standard deviations (solid lines and boxes) with 95% confidence interval whiskers and points representing outliers.
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to the minimum boundary for coral colony size of a single corallite,
the maximum size of a coral colony segmented by each annotator
was used as the corresponding upper bound for predicted values. The
model function was also forced to monotonically increase so that the
coral colony size increased with the relative cumulative frequency of
annotated corals. The constrained GPs were implemented using the
GPConstr Python package (Agrell, 2019), and to limit computational
resource use, 𝜆 was constrained to be greater than or equal to 0.10.

2.5.3. Model validation and cover analyses
Model validation was performed by removing the smallest seg-

mented colonies from each annotator’s dataset in 5% increments in an
iterative process until only 25% of each annotator’s colony area data
remained in the training subset. The removed size data was used to
validate model predictions at each iteration. Both modelling techniques
were evaluated based on the amount and proportion of data they
required for training to consistently predict the size of each annotator’s
removed drawn coral colonies.

Analyses of annotator cover estimation variability were repeated
as described in sections 2.3 and 2.4 including the imputed areas for
each technique, and were compared to the manual segmentation results
before the imputation of point labelled coral colonies.

3. Results

3.1. Darwin mounds coral cover

Total coral cover was estimated from the reference dataset as 0.13%
(95% CI, 0.07 – 0.23%), made up by a total of 313 detected coral
colonies distributed over the 3950.44 m2 photographed seabed area.
Living coral was detected in 22 of the 96 seabed images of the Western
Darwin Mounds, with five of the images containing more than 1% coral
and the maximum recorded image coral cover being 2.68%. Where live
coral was detected in an image, the number of detected coral colonies
ranged from 1–55, the largest colony recorded covering approximately
821 cm2 seabed area.

3.2. Grid-based annotation and manual segmentation cover estimates

3.2.1. Annotator variability and bias within grid-based estimates
Annotator area-weighted mean cover estimates had a coefficient

of variation of 33%, with the largest annotator estimate being three
times the smallest (Fig. 2). Area-weighted mean coral cover across all
annotators was 0.19% (95% CI, 0.09–0.33%). The maximum individual
annotator bias for the grid method overestimated coral cover by 74%
relative to the grid cover estimate across all annotators (Table 2). Image
coral cover estimates were significantly different between annotators
5

using the grid method, with annotators’ maximum recorded image coral a
covers ranging from 2.14% to 5.85% (Friedman 𝑄 = 106.76, 𝑝 <0.001;
Table 3).

Where annotators detected live coral in image cells, 10 out of the 11
most commonly estimated 0 < 𝑥 ≤ 5% coral cover, the last annotator
stimating 5 < 𝑥 ≤ 15% most frequently. Four annotators estimated
5% or more coral cover with a grid cell and no annotators estimated
ore than 45% coral cover being present within a grid cell.

.2.2. Annotator variability and bias within manual segmentation estimates
Annotator area-weighted mean cover estimates using manual seg-

entation ranged between 0.04% and 0.12%, and the coefficient of
ariation between annotator cover estimates was 28% (Fig. 2). Area-
eighted mean coral cover across all annotators was 0.08% (95% CI,
.04–0.14%). The annotator with the greatest bias in the segmentation
ethod underestimated coral cover by 52% relative to the segmen-

ation estimate across all annotators (Table 2). Image coral cover
stimates were significantly different between annotators using manual
egmentation and maximum recorded image coral cover ranged from
.38% to 2.61% across annotators (Friedman 𝑄 = 79.21, 𝑝 <0.001;
able 3).

Compared to the reference dataset, the number of colonies detected
y a single annotator ranged from 172 to 273, and 113 colonies
ere detected by all annotators. The mean apparent detection success
cross all annotators was 72%. The proportion of point labelled coral
olonies ranged from 8%–82%, with seven annotators not providing
n associated area for more than 50% of the colonies they detected in
mages.

.2.3. Annotator variability and bias between annotation methods
For image examples of annotator variability between annotation

ethods, refer to the supplementary material (Supplement 5). There
as significant disagreement between annotators and annotation
ethod in coral cover estimates per image (Friedman 𝑄 = 328.85,
<0.001; Table 3). Ten of the 11 annotators estimated significantly

igher image cover estimates with the grid-based method compared
o segmentation, with seven annotators producing grid image cover
stimates at least two times greater than their estimates made with
egmentation (Supplement 6). Image cover estimates by the grid-based
ethod showed more within method annotator disagreement than

egmentation (Table 3; Supplement 6).
Greater inter-annotator variability in cover estimates occurred with

he grid method compared to the segmentation of the same colony,
nd grids tended to overestimate colony size. Overestimation was more
ignificant for small colonies (Fig. 3; Supplement 7). This systematic
ias resulted in significant differences in whole dataset cover estimates

nd annotator variability between annotation methods (Fig. 2).
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Table 2
Bias in annotator coral cover estimates, as the difference between individual annotators’ coral estimates and the average across all annotators
for each method. Presented as a percentage of the average cover estimate. Negative values indicate the annotator underestimated compared to
the annotator average. IRC = Inverse Richard’s selection curves, GP = Gaussian processes).

Annotator Grids (%) Segments
without point
labels (%)

Segments IRC
modelled (%)

Segments GP
modelled (%)

1 −30 5.0 19 22
2 39 34 14 7.2
3 −17 −22 −2.6 2.7
4 −4.2 −30 −23 −17
5 −0.2 9.8 −13 −19
6 −30 6.3 −2.7 −2.5
7 5.1 −52 −27 −29
8 −47 −7.3 4.6 12
9 74 15 18 18
10 −7.9 −5.7 −7.3 −6.9
11 19 46 21 11

Range −30 −52 −27 −29
74 46 21 22
Table 3
Variability between annotators and methods in average coral cover estimates per image. IRC = Inverse
Richard’s curves, GP = Gaussian processes.

Annotation method Coral cover per image (%) Friedman 𝑄

Grids 0.14–0.41 106.76***
Segments:
Without point labels 0.06–0.15 79.21***
IRC modelled 0.10–0.16 58.72***
GP modelled 0.10–0.18 71.76***

Grids and segments without point labels 0.04–0.33 328.85***

*** 𝑝-values <0.001; see also Supplement 6.
Fig. 3. Examples of method and annotator variability in cold-water coral image annotation on individual colony (a; b) scales. Images cropped to represent one grid cell. Coral
colony sizes estimated by 11 annotators using both grid (red) and segment (blue) annotation methods. For the individual colonies — the union of the drawn colonies during
manual segmentation was scaled to the mean size estimated by each method and overlaid to visualise trends. Adjacent are the mean sizes (solid line with shading) plus or minus
the standard deviation (dotted lines) for each annotation method and the estimated areas.
For the study area, the standard deviation in grid-based coral cover
estimates across annotators was three times the equivalent standard de-
viation using segmentation (0.06% compared to 0.02%, respectively).
The area-weighted mean coral percentage cover across all annotators
using the grid-based method was more than double that obtained using
the segmentation method (Wilcoxon 𝑇 = 0.0, 𝑝 <0.001).

3.2.4. Annotation method bias and effort
For both annotation methods, annotators’ area weighted mean coral

cover estimates were significantly different to the coral cover estimated
by the reference dataset (Wilcoxon, grids 𝑇 = 4.0, 𝑝 <0.01; segments
𝑇 = 0.0, 𝑝 <0.001). The grid-based annotation method generated the
greatest method bias, overestimating coral cover by 45% (95% CI, -
34%–144%; Fig. 4). Manual segmentation under-estimated coral cover
by 38% (95% CI, −72 – 4.03%) compared to the reference dataset.

Annotators varied in mean time spent annotating per image both
within and between annotation methods, with some annotators being
twice as fast as other annotators using the same method (Supplement
8). Total annotation time was not significantly different between anno-
tation methods (mean ± SE, grids = 179.39 ± 15.13 min; segments =
217.64 ± 21.97 min, Wilcoxon 𝑇 = 13.0, 𝑝 = 0.08).
6

For manual segmentation, there were no significant correlations
between the coral detection success of annotators and the total time
spent annotating (Kendall 𝜏 = 0.07, 𝑝 = 0.75), the proportion of
point labels annotators had and the total time spent annotating (𝜏 =
−0.13, 𝑝 = 0.65), nor the number of colonies annotators detected and
the number of colonies annotators segmented (𝜏 = 0.18, 𝑝 = 0.43;
Supplement 9).

3.3. Imputing missing cover data in manual segmentation

3.3.1. Model validation and performance
Model validation showed that, for both techniques, prediction per-

formance of coral sizes improved as larger proportions of colony size
observations were included in the training data. Most model itera-
tions needed at least 20% of the annotator’s detected coral colonies
(approximately 50 colonies) to have a drawn segment to train with
to predict realistic trends in colony size. The IRCs under-predicted
known coral sizes whereas the GPs over-predicted them (Fig. 5). In
model validation, the extrapolation performance of both models varied
between annotators, achieving more accurate predictions of known
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Fig. 4. Relative error of annotation methods and imputation techniques for annotating
cold-water coral cover. Errors (coloured bars and solid black lines) are presented as the
percentage differences between each annotation approach’s respective area-weighted
mean cover estimate across all annotators and the area-weighted mean cover estimated
from a reference dataset generated from all 11 annotators’ manual segmentation results.
Error bars are annotation approaches’ 95% confidence intervals. IRC = Inverse Richard’s
curves, GP = Gaussian processes.

colony size with annotators that had greater numbers of segmented
colonies (Fig. 6).

Imputing the test coral colony sizes with either modelling technique
significantly improved the accuracy of coral cover estimates compared
to ignoring the removed colony sizes (Fig. 6; Wilcoxon signed rank test
for significant coral cover difference when predicting the known sizes
of at least 25 coral colonies compared to ignoring them 𝑇 = 0.0, 𝑝
<0.001).

Segmented colony sizes were directly used for cover estimation and
so only model extrapolation of the small point labelled coral colony
sizes are of interest in this study (Fig. 7). The IRC models estimated
smaller colony sizes than the GPs, with colony sizes gradually declining
with decreasing cumulative frequency (Fig. 7). In the GP models, the
decline in colony size with decreasing cumulative frequency was ini-
tially less than in the IRC models, increasing just before reaching zero
cumulative frequency (Fig. 7). The GP modelled colony sizes had larger
associated uncertainties, which increased when fewer segmented coral
colony sizes were provided. The uncertainty in the coral sizes predicted
with IRCs depended on both the proportion of segment annotations
used in model training and the distribution of colony sizes provided
by the annotator (Fig. 7a; 7b). The uncertainty in IRC modelled colony
sizes first increased and then decreased again as imputed colony size
reduced, tapering near zero. Both models agreed best with observed
coral colony sizes for annotators with higher proportions of drawn
segments (Fig. 7).

3.3.2. Annotator variability and bias after cover imputation
Coral cover estimates per image were increased and showed less

inter-annotator variability after point labelled colony sizes were im-
puted and contributing to cover estimates (Table 3).

Imputing colony sizes increased segmentation coral cover estimates
(Fig. 8). Area weighted mean cover estimates were 0.10% (95% CI,
0.05 – 0.17%) and 0.11% (95% CI, 0.05 – 0.19%), with colony sizes
imputed by IRC models and GPs respectively . The coefficient of vari-
ation between annotators was reduced from 28% before imputation to
17% and 16% after imputing with IRC models and GPs respectively.
The maximum annotator bias was reduced from an underestimate of
52% compared to the average cover estimate across all annotators, to
underestimates of 27% and 29% (with IRC and GP imputed colony
sizes, respectively; Table 2).
7

3.3.3. Annotation method bias after cover imputation
Annotator’s area weighted mean coral cover estimates were still

significantly different to the coral cover estimated by the reference
dataset (Wilcoxon, IRC imputed 𝑇 = 0.0, 𝑝 <0.001; GP imputed 𝑇 =
2.0, 𝑝 <0.01). However, imputing point-labelled colony sizes with IRCs
and GPs reduced segmentation underestimation from 38% compared to
the reference dataset to 23% (95% CI, −65%–29%) and 15% (95% CI,
−59%–40%) respectively (Fig. 4).

4. Discussion

We found that coral cover estimates made using both manual seg-
mentation and grid-based annotation methods varied between anno-
tators, with some annotator cover estimates being three times that of
others using the same annotation method. Manual segmentation pro-
duced lower coral cover estimates with lower annotator variability and
bias compared to the grid-based estimation method in our sparse coral
cover dataset. The results also show that the use of modelling tech-
niques to impute unmeasured coral sizes in the manual segmentation
method can reduce size selectivity bias, annotator variability and coral
cover underestimation. Based on these findings, we provide generalised
recommendations for planning image annotation and for accounting
for annotator variability in datasets when evaluating percentage cover
from seabed images. These recommendations can be applied both to
multi-annotator and single annotator studies.

4.1. The impact of variability and bias in cover estimates for monitoring
programmes

The observed variability in cover estimates within and between
annotation methods may raise concerns for the effectiveness of mon-
itoring. For example, where low seabed cover values are employed to
both define and monitor the status of VMEs, even modest variations
could substantially influence interpretations and outcomes.

The almost unique case of scleractinian coral growing on sandy
substrata at the Darwin Mounds makes the on-mounds cold-water
coral habitat an important deep-sea VME for conservation (De Santo
and Jones, 2007). Considering on-mound images only (38 m2 aver-
age seabed area), live coral cover was 0.57% (95% CI, 0.00–2.40%).
Rowden et al. (2020) provide data on live coral colony numerical
density and associated species richness that they use to define objective
cold-water coral VME thresholds in studies based on 25 and 50 m2

video transects. We have used those data to establish coral colony
density thresholds at the points where 90% of the asymptotic associated
species richness were achieved for the two sample unit sizes, both
approximately 0.1 live colonies 𝑚−2. In the Darwin Mounds case, that
ensity threshold corresponds to 0.22% live coral cover. Our on-mound
ive coral cover estimate made from the reference dataset meets that
ME threshold, as do the estimates made with each annotation and

mputation technique when estimated across all annotators. However,
hen considering individual annotator estimates, one segmentation
ithout imputation value fails to reach the threshold (Supplement 10).

Semi- and fully automated image analysis techniques are increas-
ngly being used in seabed monitoring studies to support the evaluation
f marine imaging data at effective timescales. Some examples in-
lude automated point count annotation methods for estimating coral
eef substrate cover (Beijbom et al., 2015); automated semantic seg-
entation of coral, sponges (Purser et al., 2009) and poly-metallic
odules (Schoening et al., 2016) from seafloor images; automated
old-water coral reef classification from photogrammetric reconstruc-
ions (de Oliveira et al., 2021); real-time detection and segmentation of
itter from seafloor images (Corrigan et al., 2023); artificial intelligence
ssisted semantic segmentation of corals from orthophotos (Pavoni
t al., 2021) and machine learning assisted detection and segmentation
f seafloor organisms within online annotation platforms (Zurowietz
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Fig. 5. Model validation for imputing coral colony sizes with inverse Richard’s selection curves (IRC; solid lines) and constrained Gaussian processes (GP; dashed lines), using data
from the annotator with the greatest number of drawn segments as an illustrative example. Models extrapolated mean and 95% confidence intervals (coloured lines and shaded
bands) of small coral colony sizes, including colonies moved from training (black markers) to test datasets (coloured markers).
Fig. 6. Total error for imputation model validations, measured as absolute differences between modelled small coral colony sizes and drawn colony sizes, shown for three annotators.
The three annotators selected had either a low (‘Low’, pink), medium (‘Mid’, green), or high (‘High’, brown) proportion of drawn segments compared to the total number of coral
colonies each detected. (a) Inverse Richard’s selection curve modelled (IRC); (b) Gaussian process modelled (GP).
Fig. 7. Coral colony sizes modelled with inverse Richard’s selection curves (IRC; solid lines) and constrained Gaussian processes (GP; dashed lines) to extrapolate small coral
colony sizes for three example annotators.
et al., 2018) . These non-manual image annotation methods can com-
pensate for some of the limitations in manual annotations highlighted
in this study, such as the minimum mask size human annotators are
reliably able to draw, and error attributable with fatigue or other effects
not experienced by machines (Culverhouse, 2007). Manual annotation
techniques are, however, still being used to assess the state of ecosys-
tems and automated techniques either rely on manually generated
training data or use manually annotated data as ground truthing to
8

evaluate model performance against. Therefore, accurate manual anno-
tations are still required as we move towards more automated image
analysis techniques.

The variability in cover estimates between annotators, both on-
mound and across the whole study, suggests that studies monitoring
low seabed cover VMEs could potentially encounter times three vari-
ation in estimated cover between monitoring timepoints attributable
to annotation method or annotator variability alone. The impact of
variability on cover estimates will not be of the same magnitude in high
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Fig. 8. Area-weighted mean coral cover over total study area estimated by each annotator (left) and across all annotators (right), using the manual segmentation annotation
ethod and considering identified corals with no associated area in three ways. Box plots show mean and standard deviations (solid line and box) with whiskers as 95% confidence

ntervals and outliers as points. IRC = Inverse Richard’s curves, GP = Gaussian processes.
seabed cover habitats (e.g., tropical coral reefs) but likely still exists
and should also be considered in corresponding monitoring studies,
particularly in cases monitoring gradual decline. With increasing reuse
of image annotation data, reporting potential annotator bias and vari-
ability is critical to enabling meaningful comparisons between studies
and timepoints. Therefore, whether in a one-off survey or in repeat
surveys, formal assessments of potential bias, inter-annotator and inter-
survey sources of variability should be carried out as a matter of best
practise.

4.2. Annotation method choice influence on cover estimates

Estimates of percentage coral cover from grid-based seabed image
annotations had higher annotator variability and bias than manual
segmentation. Annotator variability and bias in the grid-based method
was largely a result of annotators differing in their evaluations of colony
sizes rather than in their detection of the colonies.

Grid estimates are more subjective than segmentation, as it requires
annotators to judge the percentage of cover present in each grid cell.
Human perception of percentage cover can be prone to overestimation
and has a higher likelihood of varying between annotators (Olmstead
et al., 2004; Finn et al., 2010). This bias and variability is especially
evident when the subjects of interest are much smaller than the cell
size (Benedetti-Cecchi et al., 1996; Trygonis and Sini, 2012); the coral
colonies in this study were all smaller than 0.1 m2 in size, in comparison
to a mean grid cell size of 0.73 m2. To aid in reducing bias associated
with the chosen cell size, Dethier et al. (1993) recommended using
many small subdivisions in quadrats to aid censusing scattered and low-
coverage biota. However, while a reduction in cell size may reduce
bias, it has previously been found to reduce the time efficiency of
generating cover estimates (Benedetti-Cecchi et al., 1996; Deter et al.,
2012; Trygonis and Sini, 2012). Annotators were instructed to estimate
cell cover in ten percent increments. As most annotators modal cell
cover category was 0 < 𝑥 ≤ 5%, cover estimate precision may have been
improved by annotators using smaller cover increments or providing a
continuous estimate instead, so as to remove decision rules as a source
of annotator variability (Dethier et al., 1993).

The sparse distribution and small size of many of the coral colonies
recorded in this study meant the grid-based estimations overestimated
the size of coral colonies and the annotation method was not signif-
icantly faster than manual segmentation, which produced estimates
with lower annotator bias and uncertainty. Unlike grid-based esti-
mates, manual segmentation can also provide additional information
on colony shape, orientation and size distributions, giving insight into
coral condition and recovery (De Clippele et al., 2018). Furthermore,
drawn segments can be used to train machine learning algorithms for
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automated image analyses (Buškus et al., 2021; Piechaud and Howell,
2022). However, manual segmentation showed a similar magnitude
of method bias to grid-based estimates (45% with grids, 38% with
segmentation) but underestimated coral cover compared to the refer-
ence annotation set. This underestimation was in part caused by size
selectivity bias.

4.3. Size selectivity bias in manual segmentation

High inter-annotator variability in cover by the segmentation
method occurred as a result of differences in the smallest segmented
colony and the proportion of identified coral assigned only point labels.
Annotator coral colony detection success was not related to annotator
segmented colony proportions, so differences in cover estimates were
related to the lack of area assignment rather than coral detection.
The proportion of point labels did not correlate with total time spent
annotating, suggesting that differences were not a function of anno-
tator effort. Personal differences may have contributed to annotator
variability in coral colony segmentation, including personal work-
space setups, screen resolutions and equipment, dexterity and visual
perception (Van Coillie et al., 2014). Trends towards big-data studies
and the use of shared image repositories and multi-user annotation
platforms (Bewley et al., 2015; Langenkämper et al., 2017), indicate
that these differences should be expected, emphasising the need for
studies to set realistic bounds on their expected impact.

For the purposes of coral monitoring, the detection of coral recruit-
ment and new colony formations can provide evidence for potential
recovery of a site after disturbance events such as trawling or bleach-
ing (Connell et al., 1997; Beazley et al., 2021). These new colonies
are likely to be small in size, depending on coral growth rates and
time after disturbance. Failure to detect or provide a size estimate for
small colonies due to size selection bias can restrict our monitoring
outputs and insight into habitat recovery (Perkins et al., 2022), and so
annotators should strive to provide size estimates for as many detected
colonies as possible.

Size selectivity bias can occur both in visual surveys and in physical
sampling techniques such as trawling and is likely a source of uncer-
tainty for studies of small target species, or those examining a broad
spectrum of organism sizes. This has been reported in both marine and
terrestrial ecological studies, where imperfect detection leads to small,
difficult to detect species being falsely absent or under-detected (Issaris
et al., 2012; Kellner and Swihart, 2014; Breton et al., 2013; Warwick
and Clarke, 1996). Size selectivity bias has been reported in a study
of individual megafauna in seabed images (Schoening et al., 2020),
where apparent faunal density increased and the median dimensions
of annotated fauna decreased with increasing image resolution. This
effect needs to be considered for long-term monitoring where image
acquisition equipment and deployment strategies can be expected to

vary over time (Clark et al., 2019).
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4.4. Modelling colony size to impute missing data

The models used to impute missing coral colony sizes successfully
reduced inter-annotator variability by 10% and increased coral cover
estimates (Fig. 8), but differed in some practical aspects and some
details of results that may be important to consider. The IRC models
were entirely data-driven, requiring only a single end-point for the
minimum colony size to be defined for all annotators. By contrast, the
constrained GPs required a larger number of parameters to define the
model, related to coral morphology, image acquisition properties and
attributes of each annotator’s data. Care should be taken to choose
appropriate initial parameters for GP’s that are representative of the
modelled data’s underlying characteristics or there is a risk of the
model over- or under-fitting (Rasmussen and Williams, 2006). Both
models performed well in validation tests when extrapolated sizes were
compared to drawn segment area estimates (Fig. 5).

Both models followed a smooth size distribution of coral colonies
and would not account for large changes within a single annotation
set, created from a change in annotation setup for example. Since
model performance related to both the proportion of observed colony
sizes and the total number of area assigned annotations, annotators
should aim to annotate small specimens or colonies in images as much
as possible to improve model performance, where noise related to
error in size assignment of small targets can be identified and rejected
prior to training. Most notably, model validation showed that both
models represented the test coral colony sizes more accurately than
if these colonies were ignored. Therefore, use of either technique is
recommended when segmented annotations have known size selectivity
bias.

Reducing size selection bias and variability (through imputation or
annotating smaller specimens) improves the ability (statistical power)
to detect change in coral cover. Additionally, the modelling techniques
addressed some of the method bias present in the manual segmenta-
tion method, reducing the underestimation of coral cover caused by
point labelled colonies not being accounted for in cover estimates. The
reference annotation set created by combining all annotators manual
segmentation outputs represents the upper-bound number of coral
colonies present in the annotation set. Imperfect detection was still
present after imputing small coral colony sizes, and further error likely
still existed, in the form of misclassified colonies. Despite these re-
maining issues, imputing missing coral colony sizes increased annotator
averaged cover estimates by a relative 25%–37%, suggesting that it is
a worthwhile endeavour.

5. Conclusions and recommendations

This study highlights the potential bias and variability in annotator
cover estimates from seabed images. These have a significant influence
when deriving cover estimates of organisms with sparse, patchy dis-
tributions, such as the Darwin Mounds cold-water corals considered
in this study. To reduce inter-annotator variability and bias when
estimating biota cover from seafloor images, we provide the following
recommendations:

1. Before starting image annotation, the method should be cho-
sen based on the distribution of biota: for small/sparsely dis-
tributed biota, manual segmentation may reduce inter-annotator
variability and bias.

2. Impute missing data: where annotators can detect but not mea-
sure any fraction of the target population, post-process these
data via imputation for improved cover estimates.

3. Annotators should provide measurement estimates for as much
of the target population as feasibly possible, not only to improve
imputation model robustness, but also to provide population size
structure data which can be used to evaluate habitat recovery.
10
4. Studies should report potential annotator bias and variability for
quality control purposes and to allow for meaningful compar-
isons between annotators, annotations methods, and time points.
A common subset of images should randomly be repeatedly
annotated and from it, annotator variability, bias, and detection
success can be estimated and if possible, accounted for.

These recommendations should reduce both annotator bias and
variability and consequently improve the monitoring of seabed cover
by VMEs and other targets of interest.
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Automated quantification of brittle stars in seabed imagery using computer vision
techniques. Sensors 21 (22), 1–15. http://dx.doi.org/10.3390/s21227598.

halana, V., Kim, Y., 1997. A methodology for evaluation of boundary detection algo-
rithms on medical images. IEEE Trans. Med. Imaging 16 (5), 642–652. http://dx.
doi.org/10.1109/42.640755, URL http://ieeexplore.ieee.org/document/640755/.

haniotis, P.D., Robson, L.M., Lemasson, A.J., Cornthwaite, A.L., Howell, K.L., 2020. UK
deep-sea conservation: Progress, lessons learned, and actions for the future. Aquat.
Conserv. Mar. Freshw. Ecosyst. 30 (2), 375–393. http://dx.doi.org/10.1002/aqc.
3243.

lark, M.R., Bowden, D.A., Rowden, A.A., Stewart, R., 2019. Little evidence of benthic
community resilience to bottom trawling on seamounts after 15 years. Front. Mar.
Sci. 6 (63), 1–16. http://dx.doi.org/10.3389/fmars.2019.00063.

onnell, J.H., Hughes, T.P., Wallace, C.C., 1997. A 30-year study of coral abundance,
recruitment, and disturbance at several scales in space and time. Ecol. Monograph
67 (4), 461–488. http://dx.doi.org/10.1890/0012-9615(1997)067[0461:AYSOCA]
2.0.CO;2.

onover, W.J., 1999. Practical Nonparametric Statistics, third ed. vol. 350, John Wiley
& Sons, p. 608. http://dx.doi.org/10.2307/2284744, URL https://www.jstor.org/
stable/2284744?origin=crossref.
11
Constable, A.J., Costa, D.P., Schofield, O., Newman, L., Urban, E.R., Fulton, E.A.,
Melbourne-Thomas, J., Ballerini, T., Boyd, P.W., Brandt, A., de la Mare, W.K.,
Edwards, M., Eléaume, M., Emmerson, L., Fennel, K., Fielding, S., Griffiths, H.,
Gutt, J., Hindell, M.A., Hofmann, E.E., Jennings, S., La, H.S., McCurdy, A.,
Mitchell, B.G., Moltmann, T., Muelbert, M., Murphy, E., Press, A.J., Raymond, B.,
Reid, K., Reiss, C., Rice, J., Salter, I., Smith, D.C., Song, S., Southwell, C.,
Swadling, K.M., Van de Putte, A., Willis, Z., 2016. Developing priority variables
(‘‘ecosystem Essential Ocean Variables’’ - eEOVs) for observing dynamics and
change in Southern Ocean ecosystems. J. Mar. Syst. 161, 26–41. http://dx.doi.
org/10.1016/j.jmarsys.2016.05.003.

Corrigan, B.C., Tay, Z.Y., Konovessis, D., 2023. Real-time instance segmentation for
detection of underwater litter as a plastic source. J. Mar. Sci. Eng. 11 (8), http:
//dx.doi.org/10.3390/jmse11081532.

Costello, M.J., McCrea, M., Freiwald, A., Lundälv, T., Jonsson, L., Bett, B.J., van
Weering, T.C.E., de Haas, H., Roberts, J.M., Allen, D., 2005. Role of cold-water
Lophelia pertusa coral reefs as fish habitat in the NE Atlantic. Cold-Water Corals
Ecosyst. (1), 771–805. http://dx.doi.org/10.1007/3-540-27673-4_41.

Council of the European Union, 2004. Council REgulation (EC) No 602/2004 of 22
2004 amending Regulation (EC) No 850/98 as regards the protection of deepwater
coral reefs from the effects of trawling in an area North West of Scotland. Off. J.
Eur. Union L 97 (1.4.2004), 30–31.

Culverhouse, P.F., 2007. Human and machine factors in algae monitoring performance.
Ecol. Inform. 2 (4), 361–366. http://dx.doi.org/10.1016/j.ecoinf.2007.07.001.

Culverhouse, P.F., Williams, R., Reguera, B., Herry, V., González-Gil, S., 2003. Do
experts make mistakes? A comparison of human and machine identification
of dinoflagellates. Mar. Ecol. Prog. Ser. 247, 17–25. http://dx.doi.org/10.3354/
meps247017.

Danovaro, R., Fanelli, E., Aguzzi, J., Billett, D., Carugati, L., Corinaldesi, C.,
Dell’Anno, A., Gjerde, K., Jamieson, A.J., Kark, S., McClain, C., Levin, L.,
Levin, N., Ramirez-Llodra, E., Ruhl, H., Smith, C.R., Snelgrove, P.V., Thomsen, L.,
Van Dover, C.L., Yasuhara, M., 2020. Ecological variables for developing a global
deep-ocean monitoring and conservation strategy. Nat. Ecol. Evol. 4 (2), 181–192.
http://dx.doi.org/10.1038/s41559-019-1091-z.

De Clippele, L.H., Huvenne, V.A., Orejas, C., Lundälv, T., Fox, A., Hennige, S.J.,
Roberts, J.M., 2018. The effect of local hydrodynamics on the spatial extent and
morphology of cold-water coral habitats at Tisler Reef, Norway. Coral Reefs 37 (1),
253–266. http://dx.doi.org/10.1007/s00338-017-1653-y.

de Oliveira, L.M.C., Lim, A., Conti, L.A., Wheeler, A.J., 2021. 3D classification of cold-
water coral reefs: A comparison of classification techniques for 3D reconstructions
of cold-water coral reefs and seabed. Front. Mar. Sci. 8 (March), 1–19. http:
//dx.doi.org/10.3389/fmars.2021.640713.

De Santo, E., Jones, P., 2007. The Darwin Mounds: From undiscovered coral to the
development of an offshore marine protected area regime. Bull. Mar. Sci. 81
(Supplement 1), 147–156, URL http://discovery.ucl.ac.uk/149542/.

De’ath, G., Fabricius, K.E., Sweatman, H., Puotinen, M., 2012. The 27-year decline
of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci.
109 (44), 17995–17999. http://dx.doi.org/10.1073/pnas.1208909109, URL http:
//www.pnas.org/cgi/doi/10.1073/pnas.1208909109.

Deter, J., Descamp, P., Boissery, P., Ballesta, L., Holon, F., 2012. A rapid photographic
method detects depth gradient in coralligenous assemblages. J. Exp. Mar. Biol. Ecol.
418–419, 75–82. http://dx.doi.org/10.1016/j.jembe.2012.03.006.

Dethier, M.N., Graham, E.S., Cohen, S., Tear, L.M., 1993. Visual versus random-point
percent cover estimations: ‘‘objective’ is not always better. Mar. Ecol. Prog. Ser. 96
(1), 93–100. http://dx.doi.org/10.3354/meps096093.

Durden, J.M., Bett, B.J., Jones, D.O.B., Huvenne, V.A.I., Ruhl, H.A., 2015. Abyssal hills
– hidden source of increased habitat heterogeneity, benthic megafaunal biomass
and diversity in the deep sea. Prog. Oceanogr. 137, 209–218. http://dx.doi.org/10.
1016/j.pocean.2015.06.006.

Durden, J.M., Bett, B., Schoening, T., Morris, K., Nattkemper, T., Ruhl, H., 2016.
Comparison of image annotation data generated by multiple investigators for
benthic ecology. Mar. Ecol. Prog. Ser. 552, 61–70. http://dx.doi.org/10.3354/
meps11775, URL http://www.int-res.com/abstracts/meps/v552/p61-70/.

Finn, P.G., Udy, N.S., Baltais, S.J., Price, K., Coles, L., 2010. Assessing the quality
of seagrass data collected by community volunteers in Moreton Bay Marine
Park, Australia. Environ. Conserv. 37 (1), 83–89. http://dx.doi.org/10.1017/
S0376892910000251.

Gass, S.E., Roberts, J.M., 2011. Growth and branching patterns of Lophelia pertusa
(Scleractinia) from the North Sea. J. Mar. Biol. Assoc. United Kingdom 91 (4),
831–835. http://dx.doi.org/10.1017/S002531541000055X.

Hennige, S.J., Wicks, L.C., Kamenos, N.A., Perna, G., Findlay, H.S., Roberts, J.M., 2015.
Hidden impacts of ocean acidification to live and dead coral framework. Proc. R.
Soc. B: Biol. Sci. 282 (1813), http://dx.doi.org/10.1098/rspb.2015.0990.

Hill, J., Wilkinson, C., 2004. Methods for Ecological Monitoring of coral reefs, 1 (9).
Australian Institute of Marine Science, pp. 1–10.

Hollander, M., Wolfe, D.A., Chicken, E., 2013. Nonparametric Statistical Methods. John
Wiley & Sons, Incorporated, Somerset, UNITED STATES.

Huvenne, V.A., Bett, B.J., Masson, D.G., Le Bas, T.P., Wheeler, A.J., 2016. Effectiveness
of a deep-sea cold-water coral Marine Protected Area, following eight years of
fisheries closure. Biol. Cons. 200, 60–69. http://dx.doi.org/10.1016/j.biocon.2016.
05.030.

http://dx.doi.org/10.48550/arXiv.1901.03134
http://dx.doi.org/10.1007/s00338-009-0484-x
http://dx.doi.org/10.7717/peerj.16024
http://dx.doi.org/10.7717/peerj.16024
http://dx.doi.org/10.7717/peerj.16024
https://peerj.com/articles/16024
http://dx.doi.org/10.1016/j.gecco.2021.e01485
http://dx.doi.org/10.1016/j.gecco.2021.e01485
http://dx.doi.org/10.1016/j.gecco.2021.e01485
http://dx.doi.org/10.1371/journal.pone.0130312
http://dx.doi.org/10.1371/journal.pone.0130312
http://dx.doi.org/10.1371/journal.pone.0130312
https://dx.plos.org/10.1371/journal.pone.0130312
http://dx.doi.org/10.3354/meps138093
http://dx.doi.org/10.3354/meps138093
http://dx.doi.org/10.3354/meps138093
http://www.jstor.org/stable/2346101
http://dx.doi.org/10.1016/S0278-4343(00)00119-9
http://dx.doi.org/10.1016/S0278-4343(00)00119-9
http://dx.doi.org/10.1016/S0278-4343(00)00119-9
https://linkinghub.elsevier.com/retrieve/pii/S0278434300001199
https://linkinghub.elsevier.com/retrieve/pii/S0278434300001199
https://linkinghub.elsevier.com/retrieve/pii/S0278434300001199
http://dx.doi.org/10.1038/sdata.2015.57
http://dx.doi.org/10.1002/rob.21682
http://dx.doi.org/10.1002/rob.21682
http://dx.doi.org/10.1002/rob.21682
http://dx.doi.org/10.1080/02755947.2013.829141
http://dx.doi.org/10.1353/psc.2004.0013
http://dx.doi.org/10.1093/icesjms/fss195
http://dx.doi.org/10.1093/icesjms/fss195
http://dx.doi.org/10.1093/icesjms/fss195
https://academic.oup.com/icesjms/article/70/3/511/914657
https://academic.oup.com/icesjms/article/70/3/511/914657
https://academic.oup.com/icesjms/article/70/3/511/914657
http://dx.doi.org/10.3390/s21227598
http://dx.doi.org/10.1109/42.640755
http://dx.doi.org/10.1109/42.640755
http://dx.doi.org/10.1109/42.640755
http://ieeexplore.ieee.org/document/640755/
http://dx.doi.org/10.1002/aqc.3243
http://dx.doi.org/10.1002/aqc.3243
http://dx.doi.org/10.1002/aqc.3243
http://dx.doi.org/10.3389/fmars.2019.00063
http://dx.doi.org/10.1890/0012-9615(1997)067[0461:AYSOCA]2.0.CO;2
http://dx.doi.org/10.1890/0012-9615(1997)067[0461:AYSOCA]2.0.CO;2
http://dx.doi.org/10.1890/0012-9615(1997)067[0461:AYSOCA]2.0.CO;2
http://dx.doi.org/10.2307/2284744
https://www.jstor.org/stable/2284744?origin=crossref
https://www.jstor.org/stable/2284744?origin=crossref
https://www.jstor.org/stable/2284744?origin=crossref
http://dx.doi.org/10.1016/j.jmarsys.2016.05.003
http://dx.doi.org/10.1016/j.jmarsys.2016.05.003
http://dx.doi.org/10.1016/j.jmarsys.2016.05.003
http://dx.doi.org/10.3390/jmse11081532
http://dx.doi.org/10.3390/jmse11081532
http://dx.doi.org/10.3390/jmse11081532
http://dx.doi.org/10.1007/3-540-27673-4_41
http://refhub.elsevier.com/S0079-6611(24)00020-X/sb23
http://refhub.elsevier.com/S0079-6611(24)00020-X/sb23
http://refhub.elsevier.com/S0079-6611(24)00020-X/sb23
http://refhub.elsevier.com/S0079-6611(24)00020-X/sb23
http://refhub.elsevier.com/S0079-6611(24)00020-X/sb23
http://refhub.elsevier.com/S0079-6611(24)00020-X/sb23
http://refhub.elsevier.com/S0079-6611(24)00020-X/sb23
http://dx.doi.org/10.1016/j.ecoinf.2007.07.001
http://dx.doi.org/10.3354/meps247017
http://dx.doi.org/10.3354/meps247017
http://dx.doi.org/10.3354/meps247017
http://dx.doi.org/10.1038/s41559-019-1091-z
http://dx.doi.org/10.1007/s00338-017-1653-y
http://dx.doi.org/10.3389/fmars.2021.640713
http://dx.doi.org/10.3389/fmars.2021.640713
http://dx.doi.org/10.3389/fmars.2021.640713
http://discovery.ucl.ac.uk/149542/
http://dx.doi.org/10.1073/pnas.1208909109
http://www.pnas.org/cgi/doi/10.1073/pnas.1208909109
http://www.pnas.org/cgi/doi/10.1073/pnas.1208909109
http://www.pnas.org/cgi/doi/10.1073/pnas.1208909109
http://dx.doi.org/10.1016/j.jembe.2012.03.006
http://dx.doi.org/10.3354/meps096093
http://dx.doi.org/10.1016/j.pocean.2015.06.006
http://dx.doi.org/10.1016/j.pocean.2015.06.006
http://dx.doi.org/10.1016/j.pocean.2015.06.006
http://dx.doi.org/10.3354/meps11775
http://dx.doi.org/10.3354/meps11775
http://dx.doi.org/10.3354/meps11775
http://www.int-res.com/abstracts/meps/v552/p61-70/
http://dx.doi.org/10.1017/S0376892910000251
http://dx.doi.org/10.1017/S0376892910000251
http://dx.doi.org/10.1017/S0376892910000251
http://dx.doi.org/10.1017/S002531541000055X
http://dx.doi.org/10.1098/rspb.2015.0990
http://refhub.elsevier.com/S0079-6611(24)00020-X/sb38
http://refhub.elsevier.com/S0079-6611(24)00020-X/sb38
http://refhub.elsevier.com/S0079-6611(24)00020-X/sb38
http://refhub.elsevier.com/S0079-6611(24)00020-X/sb39
http://refhub.elsevier.com/S0079-6611(24)00020-X/sb39
http://refhub.elsevier.com/S0079-6611(24)00020-X/sb39
http://dx.doi.org/10.1016/j.biocon.2016.05.030
http://dx.doi.org/10.1016/j.biocon.2016.05.030
http://dx.doi.org/10.1016/j.biocon.2016.05.030


Progress in Oceanography 222 (2024) 103214E.J. Curtis et al.
Huvenne, V.A., Thornton, B., 2020. Discovery Cruise DY108-109, 6 Sept - 2 Oct 2019.
CLASS – Climate-linked Atlantic System Science Darwin Mounds Marine Protected
Area habitat monitoring, BioCAM - first equipment trials. BLT- Recipes: Pilot study.
In: National Oceanography Centre Cruise Report, (no. 66), National Oceanography
Centre, Southampton, p. 224, URL http://nora.nerc.ac.uk/id/eprint/526682/.

IOC-UNESCO, 2020. Global Ocean Science Report 2020 - Charting Capacity for Ocean
Sustainability. UNESCO Publishing, Paris, p. 250, URL https://unesdoc.unesco.org/
ark:/48223/pf0000375147,

Issaris, Y., Katsanevakis, S., Salomidi, M., Tsiamis, K., Katsiaras, N., Verriopoulos, G.,
2012. Occupancy estimation of marine species: Dealing with imperfect detectability.
Mar. Ecol. Prog. Ser. 453, 95–106. http://dx.doi.org/10.3354/meps09668.

Jamieson, A.J., Boorman, B., Jones, D.O., 2013. Deep-sea benthic sampling. In: Eleft-
heriou, A. (Ed.), In: Methods for the Study of Marine Benthos, (no. i), John Wiley
& Sons, Ltd, Oxford, UK, pp. 285–347. http://dx.doi.org/10.1002/9781118542392.
ch7, URL http://doi.wiley.com/10.1002/9781118542392.ch7.

Jokiel, P.L., Rodgers, K.S., Brown, E.K., Kenyon, J.C., Aeby, G., Smith, W.R., Farrell, F.,
2015. Comparison of methods used to estimate coral cover in the Hawaiian Islands.
PeerJ 2015 (5), http://dx.doi.org/10.7717/peerj.954.

Jones, D.O.B., Bett, B.J., Tyler, P.A., 2007. Megabenthic ecology of the deep Faroe–
Shetland channel: A photographic study. Deep Sea Res. I: Oceanogr. Res. Pap. 54
(7), 1111–1128. http://dx.doi.org/10.1016/j.dsr.2007.04.001.

Kazanidis, G., Vad, J., Henry, L.A., Neat, F., Berx, B., Georgoulas, K., Roberts, J.M.,
2019. Distribution of deep-sea sponge aggregations in an area of multisectoral
activities and changing oceanic conditions. Front. Mar. Sci. 6 (163), 1–15. http:
//dx.doi.org/10.3389/fmars.2019.00163.

Kellner, K.F., Swihart, R.K., 2014. Accounting for imperfect detection in ecology:
A quantitative review. PLoS One 9 (10), http://dx.doi.org/10.1371/journal.pone.
0111436.

Langenkämper, D., Zurowietz, M., Schoening, T., Nattkemper, T.W., 2017. BIIGLE 2.0
- Browsing and annotating large marine image collections. Front. Mar. Sci. 4 (83),
1–10. http://dx.doi.org/10.3389/fmars.2017.00083.

Leujak, W., Ormond, R.F., 2007. Comparative accuracy and efficiency of six coral
community survey methods. J. Exp. Mar. Biol. Ecol. 351 (1–2), 168–187. http:
//dx.doi.org/10.1016/j.jembe.2007.06.028.

Levin, L.A., Amon, D.J., Lily, H., 2020. Challenges to the sustainability of deep-
seabed mining. Nat. Sustain. 3 (10), 784–794. http://dx.doi.org/10.1038/s41893-
020-0558-x.

Levin, L.A., Bett, B.J., Gates, A.R., Heimbach, P., Howe, B.M., Janssen, F., McCurdy, A.,
Ruhl, H.A., Snelgrove, P., Stocks, K.I., Bailey, D., Baumann-Pickering, S., Beaver-
son, C., Benfield, M.C., Booth, D.J., Carreiro-Silva, M., Colaço, A., Eblé, M.C.,
Fowler, A.M., Gjerde, K.M., Jones, D.O.B., Katsumata, K., Kelley, D., Le Bris, N.,
Leonardi, A.P., Lejzerowicz, F., Macreadie, P.I., McLean, D., Meitz, F., Morato, T.,
Netburn, A., Pawlowski, J., Smith, C.R., Sun, S., Uchida, H., Vardaro, M.F.,
Venkatesan, R., Weller, R.A., 2019. Global observing needs in the deep ocean.
Front. Mar. Sci. 6 (241), 1–32. http://dx.doi.org/10.3389/fmars.2019.00241.

Lindenmayer, D.B., Likens, G.E., 2010. The science and application of ecological
monitoring. Biol. Cons. 143 (6), 1317–1328. http://dx.doi.org/10.1016/j.biocon.
2010.02.013.

Millar, R.B., Fryer, R.J., 1999. Estimating the size-selection curves of towed gears,
traps, nets and hooks. Rev. Fish Biol. Fish. 9, 89–116. http://dx.doi.org/10.1023/A:
1008838220001.

Miller, J., Muller, E., Rogers, C., Waara, R., Atkinson, A., Whelan, K.R., Patterson, M.,
Witcher, B., 2009. Coral disease following massive bleaching in 2005 causes 60%
decline in coral cover on reefs in the US Virgin Islands. Coral Reefs 28 (4), 925–937.
http://dx.doi.org/10.1007/s00338-009-0531-7.

Miloslavich, P., Bax, N.J., Simmons, S.E., Klein, E., Appeltans, W., Aburto-Oropeza, O.,
Garcia, M.A., Batten, S.D., Benedetti-Cecchi, L., Checkley, D.M., Chiba, S.,
Duffy, J.E., Dunn, D.C., Fischer, A., Gunn, J., Kudela, R., Marsac, F., Muller-
Karger, F.E., Obura, D., Shin, Y.J., 2018. Essential ocean variables for global
sustained observations of biodiversity and ecosystem changes. Global Change Biol.
24 (6), 2416–2433. http://dx.doi.org/10.1111/gcb.14108.

Morris, K.J., Bett, B.J., Durden, J.M., Huvenne, V.A.I., Milligan, R., Jones, D.O.B.,
McPhail, S., Robert, K., Bailey, D.M., Ruhl, H.A., 2014. A new method for ecological
surveying of the abyss using autonomous underwater vehicle photography. Limnol.
Oceanogr.-Methods 12, 795–809. http://dx.doi.org/10.4319/lom.2014.12.795.

Obura, D., 2018. Essential Ocean Variables (EOV) for Biology and Ecosystems: Hard
coral cover and composition. URL https://oceanexpert.org/downloadFile/41062.

Obura, D.O., Aeby, G., Amornthammarong, N., Appeltans, W., Bax, N., Bishop, J.,
Brainard, R.E., Chan, S., Fletcher, P., Gordon, T.A., Gramer, L., Gudka, M.,
Halas, J., Hendee, J., Hodgson, G., Huang, D., Jankulak, M., Jones, A., Kimura, T.,
Levy, J., Miloslavich, P., Chou, L.M., Muller-Karger, F., Osuka, K., Samoilys, M.,
Simpson, S.D., Tun, K., Wongbusarakum, S., 2019. Coral reef monitoring, reef
assessment technologies, and ecosystem-based management. Front. Mar. Sci. 6
(SEP), 1–21. http://dx.doi.org/10.3389/fmars.2019.00580.

Olmstead, M.A., Wample, R., Greene, S., Tarara, J., 2004. Nondestructive measurement
of vegetative cover using digital image analysis. HortScience 39 (1), 55–59. http:
//dx.doi.org/10.21273/hortsci.39.1.55.

Orejas, C., Ferrier-Pagès, C., Reynaud, S., Gori, A., Beraud, E., Tsounis, G., Allemand, D.,
Gili, J.M., 2011. Long-term growth rates of four Mediterranean cold-water coral
species maintained in aquaria. Mar. Ecol. Prog. Ser. 429, 57–65. http://dx.doi.org/
10.3354/meps09104.
12
OSPAR Commission, 2008. Case Reports for the OSPAR List of threatened and/or
declining species and habitats. In: Biodiversity Series, URL https://qsr2010.ospar.
org/media/assessments/p00358_case_reports_species_and_habitats_2008.pdf.

Pavoni, G., Corsini, M., Ponchio, F., Muntoni, A., Edwards, C., Pedersen, N., Sandin, S.,
Cignoni, P., 2021. TagLab: AI-assisted annotation for the fast and accurate semantic
segmentation of coral reef orthoimages. J. Field Robotics (August), http://dx.doi.
org/10.1002/rob.22049.

Perkins, N., Zhang, Z., Monk, J., Barrett, N., 2022. The annotation approach used for
marine imagery impacts the detection of temporal trends in seafloor biota. Ecol.
Indic. 140 (June), 109029. http://dx.doi.org/10.1016/j.ecolind.2022.109029.

Piechaud, N., Howell, K.L., 2022. Fast and accurate mapping of fine scale abundance
of a VME in the deep sea with computer vision. Ecol. Inform. 71 (August), 101786.
http://dx.doi.org/10.1016/j.ecoinf.2022.101786.

Price, D.M., Robert, K., Callaway, A., Lo lacono, C., Hall, R.A., Huvenne, V.A., 2019.
Using 3D photogrammetry from ROV video to quantify cold-water coral reef
structural complexity and investigate its influence on biodiversity and community
assemblage. Coral Reefs 38 (5), 1007–1021. http://dx.doi.org/10.1007/s00338-
019-01827-3.

Purser, A., Bergmann, M., Lundälv, T., Ontrup, J., Nattkemper, T.W., 2009. Use
of machine-learning algorithms for the automated detection of cold-water coral
habitats: A pilot study. Mar. Ecol. Prog. Ser. 397, 241–251. http://dx.doi.org/10.
3354/meps08154.

Rasmussen, C.E., Williams, C.K.I., 2006. Gaussian Processes for Machine Learning, vol.
7, (no. 5), The MIT Press, Massachusetts Institute of Technology, p. 266, URL
http://www.gaussianprocess.org/gpml.

Roff, D.A., 2001. The bootstrap. In: Introduction to Computer-Intensive Methods of
Data Analysis in Biology. Cambridge University Press, Cambridge, pp. 66–101.
http://dx.doi.org/10.1017/CBO9780511616785.005, URL https://www.cambridge.
org/core/product/identifier/CBO9780511616785A009/type/book_part.

Rogers, A.D., Laffoley, D., Polunin, N., Tittensor, D.P., 2013. Ocean conservation:
Current challenges and future opportunities. In: Key Topics in Conservation Biology,
vol. 2, pp. 161–183. http://dx.doi.org/10.1002/9781118520178.ch10.

Rowden, A.A., Pearman, T.R., Bowden, D.A., Anderson, O.F., Clark, M.R., 2020.
Determining coral density thresholds for identifying structurally complex vulnerable
marine ecosystems in the deep sea. Front. Mar. Sci. 7 (February), 1–11. http:
//dx.doi.org/10.3389/fmars.2020.00095.

Sayer, M.D., Poonian, C., 2007. The influences of census technique on estimating indices
of macrofaunal population density in the temperate rocky subtidal zone. Underw.
Technol. 27 (3), 119–139. http://dx.doi.org/10.3723/175605407783360053.

Schoening, T., Kuhn, T., Jones, D.O., Simon-Lledo, E., Nattkemper, T.W., 2016. Fully
automated image segmentation for benthic resource assessment of poly-metallic
nodules. Methods Oceanogr. 15–16, 78–89. http://dx.doi.org/10.1016/j.mio.2016.
04.002.

Schoening, T., Purser, A., Langenkämper, D., Suck, I., Taylor, J., Cuvelier, D., Lins, L.,
Simon-Lledó, E., Marcon, Y., Jones, D.O.B., Nattkemper, T., Köser, K., Zurowi-
etz, M., Greinert, J., Gomes-Pereira, J., 2020. Megafauna community assessment
of polymetallic-nodule fields with cameras: Platform and methodology comparison.
Biogeosciences 17 (12), 3115–3133. http://dx.doi.org/10.5194/bg-17-3115-2020.

Schulz, E., Speekenbrink, M., Krause, A., 2018. A tutorial on Gaussian process
regression: Modelling, exploring, and exploiting functions. J. Math. Psych. 85, 1–16.
http://dx.doi.org/10.1016/j.jmp.2018.03.001.

Stepputtis, D., Santos, J., Herrmann, B., Mieske, B., 2016. Broadening the horizon of
size selectivity in trawl gears. Fish. Res. 184, 18–25. http://dx.doi.org/10.1016/j.
fishres.2015.08.030.

Taylor, M.L., Gwinnett, C., Robinson, L.F., Woodall, L.C., 2016. Plastic microfibre
ingestion by deep-sea organisms. Sci. Rep. 6 (May), 1–9. http://dx.doi.org/10.
1038/srep33997.

Terpilowski, M.A., 2019. scikit-posthocs: Pairwise multiple comparison tests in Python.
J. Open Source Softw. 4 (36), 1169. http://dx.doi.org/10.21105/joss.01169.

Thornton, B., Bodenmann, A., Yamada, T., Stanley, D., Massot-Campos, M., Hu-
venne, V., Durden, J., Bett, B., Ruhl, H., Newborough, D., 2021. Visualizing
multi-hectare seafloor habitats with BioCam. Oceanography 34 (4), 92–93. http:
//dx.doi.org/10.5670/oceanog.2021.supplement.02-34.

Tong, S., Cardinal, H.N., McLoughlin, R.F., Downey, D.B., Fenster, A., 1998. Intra-
and inter-observer variability and reliability of prostate volume measurement via
two-dimensional and three-dimensional ultrasound imaging. Ultrasound Med. Biol.
24 (5), 673–681. http://dx.doi.org/10.1016/S0301-5629(98)00039-8.

Trygonis, V., Sini, M., 2012. PhotoQuad: A dedicated seabed image processing software,
and a comparative error analysis of four photoquadrat methods. J. Exp. Mar. Biol.
Ecol. 424–425, 99–108. http://dx.doi.org/10.1016/j.jembe.2012.04.018.

Vallat, R., 2018. Pingouin: Statistics in Python. J. Open Source Softw. 3 (31), 1026.
http://dx.doi.org/10.21105/joss.01026.

Van Coillie, F.M., Gardin, S., Anseel, F., Duyck, W., Verbeke, L.P., De Wulf, R.R., 2014.
Variability of operator performance in remote-sensing image interpretation: The
importance of human and external factors. Int. J. Remote Sens. 35 (2), 754–778.
http://dx.doi.org/10.1080/01431161.2013.873152.

Victorero, L., Blamart, D., Pons-Branchu, E., Mavrogordato, M.N., Huvenne, V.A., 2016.
Reconstruction of the formation history of the Darwin Mounds, N Rockall Trough:
How the dynamics of a sandy contourite affected cold-water coral growth. Mar.
Geol. 378, 186–195. http://dx.doi.org/10.1016/j.margeo.2015.12.001.

http://nora.nerc.ac.uk/id/eprint/526682/
https://unesdoc.unesco.org/ark:/48223/pf0000375147
https://unesdoc.unesco.org/ark:/48223/pf0000375147
https://unesdoc.unesco.org/ark:/48223/pf0000375147
http://dx.doi.org/10.3354/meps09668
http://dx.doi.org/10.1002/9781118542392.ch7
http://dx.doi.org/10.1002/9781118542392.ch7
http://dx.doi.org/10.1002/9781118542392.ch7
http://doi.wiley.com/10.1002/9781118542392.ch7
http://dx.doi.org/10.7717/peerj.954
http://dx.doi.org/10.1016/j.dsr.2007.04.001
http://dx.doi.org/10.3389/fmars.2019.00163
http://dx.doi.org/10.3389/fmars.2019.00163
http://dx.doi.org/10.3389/fmars.2019.00163
http://dx.doi.org/10.1371/journal.pone.0111436
http://dx.doi.org/10.1371/journal.pone.0111436
http://dx.doi.org/10.1371/journal.pone.0111436
http://dx.doi.org/10.3389/fmars.2017.00083
http://dx.doi.org/10.1016/j.jembe.2007.06.028
http://dx.doi.org/10.1016/j.jembe.2007.06.028
http://dx.doi.org/10.1016/j.jembe.2007.06.028
http://dx.doi.org/10.1038/s41893-020-0558-x
http://dx.doi.org/10.1038/s41893-020-0558-x
http://dx.doi.org/10.1038/s41893-020-0558-x
http://dx.doi.org/10.3389/fmars.2019.00241
http://dx.doi.org/10.1016/j.biocon.2010.02.013
http://dx.doi.org/10.1016/j.biocon.2010.02.013
http://dx.doi.org/10.1016/j.biocon.2010.02.013
http://dx.doi.org/10.1023/A:1008838220001
http://dx.doi.org/10.1023/A:1008838220001
http://dx.doi.org/10.1023/A:1008838220001
http://dx.doi.org/10.1007/s00338-009-0531-7
http://dx.doi.org/10.1111/gcb.14108
http://dx.doi.org/10.4319/lom.2014.12.795
https://oceanexpert.org/downloadFile/41062
http://dx.doi.org/10.3389/fmars.2019.00580
http://dx.doi.org/10.21273/hortsci.39.1.55
http://dx.doi.org/10.21273/hortsci.39.1.55
http://dx.doi.org/10.21273/hortsci.39.1.55
http://dx.doi.org/10.3354/meps09104
http://dx.doi.org/10.3354/meps09104
http://dx.doi.org/10.3354/meps09104
https://qsr2010.ospar.org/media/assessments/p00358_case_reports_species_and_habitats_2008.pdf
https://qsr2010.ospar.org/media/assessments/p00358_case_reports_species_and_habitats_2008.pdf
https://qsr2010.ospar.org/media/assessments/p00358_case_reports_species_and_habitats_2008.pdf
http://dx.doi.org/10.1002/rob.22049
http://dx.doi.org/10.1002/rob.22049
http://dx.doi.org/10.1002/rob.22049
http://dx.doi.org/10.1016/j.ecolind.2022.109029
http://dx.doi.org/10.1016/j.ecoinf.2022.101786
http://dx.doi.org/10.1007/s00338-019-01827-3
http://dx.doi.org/10.1007/s00338-019-01827-3
http://dx.doi.org/10.1007/s00338-019-01827-3
http://dx.doi.org/10.3354/meps08154
http://dx.doi.org/10.3354/meps08154
http://dx.doi.org/10.3354/meps08154
http://www.gaussianprocess.org/gpml
http://dx.doi.org/10.1017/CBO9780511616785.005
https://www.cambridge.org/core/product/identifier/CBO9780511616785A009/type/book_part
https://www.cambridge.org/core/product/identifier/CBO9780511616785A009/type/book_part
https://www.cambridge.org/core/product/identifier/CBO9780511616785A009/type/book_part
http://dx.doi.org/10.1002/9781118520178.ch10
http://dx.doi.org/10.3389/fmars.2020.00095
http://dx.doi.org/10.3389/fmars.2020.00095
http://dx.doi.org/10.3389/fmars.2020.00095
http://dx.doi.org/10.3723/175605407783360053
http://dx.doi.org/10.1016/j.mio.2016.04.002
http://dx.doi.org/10.1016/j.mio.2016.04.002
http://dx.doi.org/10.1016/j.mio.2016.04.002
http://dx.doi.org/10.5194/bg-17-3115-2020
http://dx.doi.org/10.1016/j.jmp.2018.03.001
http://dx.doi.org/10.1016/j.fishres.2015.08.030
http://dx.doi.org/10.1016/j.fishres.2015.08.030
http://dx.doi.org/10.1016/j.fishres.2015.08.030
http://dx.doi.org/10.1038/srep33997
http://dx.doi.org/10.1038/srep33997
http://dx.doi.org/10.1038/srep33997
http://dx.doi.org/10.21105/joss.01169
http://dx.doi.org/10.5670/oceanog.2021.supplement.02-34
http://dx.doi.org/10.5670/oceanog.2021.supplement.02-34
http://dx.doi.org/10.5670/oceanog.2021.supplement.02-34
http://dx.doi.org/10.1016/S0301-5629(98)00039-8
http://dx.doi.org/10.1016/j.jembe.2012.04.018
http://dx.doi.org/10.21105/joss.01026
http://dx.doi.org/10.1080/01431161.2013.873152
http://dx.doi.org/10.1016/j.margeo.2015.12.001


Progress in Oceanography 222 (2024) 103214E.J. Curtis et al.
Vieira, R.P., Bett, B.J., Jones, D.O., Durden, J.M., Morris, K.J., Cunha, M.R., True-
man, C.N., Ruhl, H.A., 2020. Deep-sea sponge aggregations (Pheronema carpenteri)
in the Porcupine Seabight (NE Atlantic) potentially degraded by demersal fishing.
Prog. Oceanogr. 183, 102189. http://dx.doi.org/10.1016/j.pocean.2019.102189.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M.,
Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R., Jones, E., Kern, R., Larson, E.,
Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perk-
told, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M.,
Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A.P., Roth-
berg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C.N.,
Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D.A., Hagen, D.R.,
Pasechnik, D.V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wil-
helm, F., Young, G., Price, G.A., Ingold, G.L., Allen, G.E., Lee, G.R., Audren, H.,
Probst, I., Dietrich, J.P., Silterra, J., Webber, J.T., Slavič, J., Nothman, J.,
Buchner, J., Kulick, J., Schönberger, J.L., de Miranda Cardoso, J.V., Reimer, J., Har-
rington, J., Rodríguez, J.L.C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M.,
Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N.J.,
Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P.A., Lee, P., McGibbon, R.T.,
Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S.,
Pudlik, T., Oshima, T., Pingel, T.J., Robitaille, T.P., Spura, T., Jones, T.R., Cera, T.,
Leslie, T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y.O., Vázquez-Baeza, Y.,
2020. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature
Methods 17 (3), 261–272. http://dx.doi.org/10.1038/s41592-019-0686-2.
13
Warwick, R.M., Clarke, K.R., 1996. Relationships between body-size, species abundance
and diversity in marine benthic assemblages: Facts or artefacts? J. Exp. Mar. Biol.
Ecol. 202 (1), 63–71. http://dx.doi.org/10.1016/0022-0981(96)00031-7.

West, G., Bodenmann, A., Newborough, D., Thornton, B., 2020. Resolution and coverage
- The best of both worlds in the BioCam 3D visual mapping project. J. Ocean
Technol. 15 (3), 67–76, URL https://www.thejot.net/article-preview/?show_article_
preview=1186.

Wheeler, A.J., Kozachenko, M., Henry, L.A., Foubert, A., de Haas, H., Huvenne, V.A.,
Masson, D.G., Olu, K., 2011. The Moira Mounds, small cold-water coral banks in
the Porcupine Seabight, NE Atlantic: Part A-an early stage growth phase for future
coral carbonate mounds? Mar. Geol. 282 (1–2), 53–64. http://dx.doi.org/10.1016/
j.margeo.2010.08.006.

Wileman, D.A., Ferro, R.S.T., Fonteyne, R., Millar, R.B., 1996. Manual of Methods of
Measuring the Selectivity of Towed Fishing Gears. In: ICES Cooperative Research,
(no. 215), ICES, p. 126. http://dx.doi.org/10.17895/ices.pub.4628.

Williams, S.B., Pizarro, O., Steinberg, D.M., Friedman, A., Bryson, M., 2016. Reflections
on a decade of autonomous underwater vehicles operations for marine survey
at the Australian Centre for Field Robotics. Annu. Rev. Control 42, 158–165.
http://dx.doi.org/10.1016/j.arcontrol.2016.09.010.

Yamada, T., Prügel-Bennett, A., Thornton, B., 2020. Learning features from georefer-
enced seafloor imagery with location guided autoencoders. J. Field Robotics 38
(1), 52–67. http://dx.doi.org/10.1002/rob.21961.

Zurowietz, M., Langenkämper, D., Hosking, B., Ruhl, H.A., Nattkemper, T.W., 2018.
MAIA—A machine learning assisted image annotation method for environmental
monitoring and exploration. PLoS One 13 (11), http://dx.doi.org/10.1371/journal.
pone.0207498.

http://dx.doi.org/10.1016/j.pocean.2019.102189
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1016/0022-0981(96)00031-7
https://www.thejot.net/article-preview/?show_article_preview=1186
https://www.thejot.net/article-preview/?show_article_preview=1186
https://www.thejot.net/article-preview/?show_article_preview=1186
http://dx.doi.org/10.1016/j.margeo.2010.08.006
http://dx.doi.org/10.1016/j.margeo.2010.08.006
http://dx.doi.org/10.1016/j.margeo.2010.08.006
http://dx.doi.org/10.17895/ices.pub.4628
http://dx.doi.org/10.1016/j.arcontrol.2016.09.010
http://dx.doi.org/10.1002/rob.21961
http://dx.doi.org/10.1371/journal.pone.0207498
http://dx.doi.org/10.1371/journal.pone.0207498
http://dx.doi.org/10.1371/journal.pone.0207498

	Improving coral monitoring by reducing variability and bias in cover estimates from seabed images
	Introduction
	Methods
	Study site and image collection
	Image annotation and cover estimation
	Analyses of variability in annotator cover estimation
	Analyses of method bias
	Reducing uncertainty in manual segmentation image annotation
	Imputing coral sizes - Modelling using a known relationship
	Imputing coral sizes - Non-parametric modelling
	Model validation and cover analyses


	Results
	Darwin Mounds coral cover
	Grid-based annotation and manual segmentation cover estimates
	Annotator variability and bias within grid-based estimates
	Annotator variability and bias within manual segmentation estimates
	Annotator variability and bias between annotation methods
	Annotation method bias and effort

	Imputing missing cover data in manual segmentation 
	Model validation and performance
	Annotator variability and bias after cover imputation
	Annotation method bias after cover imputation


	Discussion
	The impact of variability and bias in cover estimates for monitoring programmes
	Annotation method choice influence on cover estimates
	Size selectivity bias in manual segmentation
	Modelling colony size to impute missing data

	Conclusions and recommendations
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A. Supplementary data
	References


