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Integrated distribution models (IDMs), in which datasets with different properties 
are analysed together, are becoming widely used to model species distributions and 
abundance in space and time. To date, the IDM literature has focused on technical and 
statistical issues, such as the precision of parameter estimates and mitigation of biases 
arising from unstructured data sources. However, IDMs have an unrealised potential 
to estimate ecological properties that could not be properly derived from the source 
datasets if analysed separately. We present a model that estimates community alpha 
diversity metrics by integrating one species-level dataset of presence–absence records 
with a co-located dataset of group-level counts (i.e. lacking information about species 
identity). We illustrate the ability of community IDMs to capture the true alpha diver-
sity through simulation studies and apply the model to data from the UK Pollinator 
Monitoring Scheme, to describe spatial variation in the diversity of solitary bees, bum-
blebees and hoverflies. The simulation and case studies showed that the proposed IDM 
produced more precise estimates of the community diversity than the single models, 
and the analysis of the real dataset further showed that the alpha diversity estimates 
from the IDM were averages of the single models. Our findings also revealed that 
IDMs had a higher prediction accuracy for all the insect groups in most cases, with 
this performance linked to the information provided by a data source into the IDM.

Keywords: alpha diversity, Bayesian models, Markov chain Monte Carlo methods, 
multispecies distribution models, UK Pollinator Monitoring Scheme

Introduction

Biodiversity monitoring programs generate disparate data types that are used to infer 
and make predictions about species distributions, dynamics and diversity (Bird et al. 
2014, Kéry and Royle 2015, 2020, Isaac et al. 2020). From the various datasets avail-
able, there is now a plethora of modelling approaches to deal with various aspects of 
the ecological and observational processes in response to the availability of large and 
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varied data from different sources and survey and sampling 
protocols. The vast majority of these modelling approaches 
were developed with one particular data type in mind, such as 
count data or presence-only records. In recent years, the grow-
ing heterogeneity of data types has made integrated distribu-
tion models (IDMs) an emerging development in ecological 
statistics and species distribution modelling (Pacifici  et  al. 
2017, Koshkina et  al. 2017, Miller  et  al. 2019, Isaac et  al. 
2020). IDMs involve integrating datasets of different types 
into one model that explicitly captures the features of each or 
leverages the information in one dataset to improve the infer-
ences and predictions from models fitted to other datasets.

There are different approaches to developing an integrated 
model. One data set can be used as a fixed effect to model 
the other (covariate structure), or datasets can share infor-
mation through their correlation in space and possibly time 
(correlation structure; Pacifici et al. 2017, Miller et al. 2019). 
The most common implementation of IDMs uses a joint 
likelihood in a hierarchical Bayesian framework (Miller et al. 
2019). In the joint likelihood framework, each dataset is 
conceptualised as an independent realisation of the same 
underlying ecological state variables (e.g. abundance or occu-
pancy). The strength of the joint likelihood approach comes 
from sharing information between datasets through common 
parameters and/or by sampling the same locations in mul-
tiple datasets.

Most studies on IDMs are either case studies of particular 
applications (Doser et al. 2022) or explorations of statistical 
challenges that data integration brings (Simmonds et al. 2020, 
Ahmad Suhaimi et al. 2021). Typically, these have addressed 
the degree to which spatial biases in unstructured data can 
be overcome, and the precision of the parameters being esti-
mated (Koshkina et al. 2017, Simmonds et al. 2020, Ahmad 
Suhaimi et al. 2021). These studies have shown that IDMs 
have improved predictive performance and higher precision 
and accuracy of estimated parameters than single-dataset 
models or models developed from a subset of all the datasets 
(Koshkina et al. 2017, Pacifici et al. 2017, Miller et al. 2019, 
Isaac et al. 2020, Simmonds et al. 2020, Zulian et al. 2021).

Initial developments of IDMs have been developed for 
single species (Koshkina  et  al. 2017, Pacifici  et  al. 2017, 
Miller et al. 2019). In recent years, however, much focus has 
been on integrated community models (Doser  et  al. 2022, 
Lauret et al. 2023, Zipkin et al. 2023), that take advantage 
of data integration and hierarchical community modelling 
framework to combine multi-species datasets. These inte-
grated community models allow parameter estimation for all 
species (irrespective of their sample sizes; Zipkin et al. 2009) 
by producing estimates of community-level parameters such 
as variance among species (Zipkin et al. 2023). The commu-
nity-level parameters are then used to make inferences about 
the effects of covariates and other environmental stressors in 
a community (Zipkin et al. 2023).

An unrealised benefit of such integrated community 
models is the potential to estimate parameters that would 
be challenging to estimate (unless strong model assump-
tions are made; Royle and Nichols 2003) from either of the 

data sets if analysed separately. Usually, community alpha 
diversity measures such as Shannon and Simpson indices 
are estimated using abundance-based diversity metrics and 
these indices need species-level abundance information (Hill 
1973, Gatti  et  al. 2020). The vast majority of biodiversity 
data available, such as presence–absence, capture–recap-
ture, and presence-only data, do not contain information on 
abundance but may have information on the species identity. 
Alpha diversity indices can be estimated from the presence–
absence data when imperfect detection has been accounted 
for in a multi-species occupancy model, as has been done 
in some studies (Gotelli and Chao 2013, Broms et al. 2015, 
Guillera-Arroita  et  al. 2019). These species-level presence–
absence data, however, are less informative than count data 
(Broms et al. 2015), and the diversity indices estimated can 
be strongly affected by the model structure such as parametric 
assumptions, prior specifications and prior choices (Guillera-
Arroita et al. 2019).

Additionally, it is not always possible to identify individu-
als to their species level. This is often true for insect monitor-
ing, where counts may be resolved to a coarser taxonomic 
level. This can arise for a number of reasons, such as: the 
cryptic nature of some species (requiring microscopic exami-
nation to separate similar species), the need for specialised 
taxonomy skills and organisms being observed only briefly 
(e.g. on the wing). These broader taxonomically resolved 
count data do not contain species-level information and are 
not used in estimating metrics that require species-level infor-
mation such as alpha diversity.

In this study, we combine two data types (count data 
resolved to a broader taxonomical level and species-level pres-
ence–absence data) in an IDM – specifically an integrated 
community model – to estimate community alpha diver-
sity parameters that could not be ‘properly’ estimated from 
the datasets when analysed separately. To date, no studies 
we are aware of have attempted to demonstrate this poten-
tial from IDMs, but it is something that integrated popula-
tion models (IPMs) have used for a long time (Besbeas et al. 
2002, Schaub et al. 2007, Abadi et al. 2010). For example, 
Besbeas et al. (2002) integrated census data (providing infor-
mation about the total number of organisms) and ring recov-
ery data (providing information on individual organisms) to 
estimate birth, death and fecundity at the population level.

Our model is parameterised using data from the UK 
Pollinator Monitoring Scheme (PoMS; O’Connor et al. 2019, 
Breeze et al. 2021, UK Pollinator Monitoring Scheme 2023), 
which has been generating monitoring data on pollinating 
insects in the UK for the last five years and is now inform-
ing an EU-wide pollinator monitoring scheme (Potts  et  al. 
2020). PoMS collects two types of data: one dataset con-
tains presence–absence data on individual species (using pan 
traps), and the other contains standardised counts that are 
not resolved to the species level (so-called flower-insect timed 
counts or ‘FIT Counts’). Our analyses of PoMS data are sup-
ported by simulations. We demonstrate that between them, 
these datasets can provide inferences about site-level alpha 
diversity that would not be possible using either dataset in 
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isolation. The model developed here will be useful in situa-
tions where professional and mass participation schemes col-
lect data on the same organisms and where the species are 
difficult to identify (e.g. most insect groups).

Material and methods

We first provide a motivation for the methods of this study 
by exploring the PoMS data. We then describe the overall 
structure of the data. We define the state models repre-
senting each species’ unknown site-specific abundance and 
occupancy. The state variables are defined in terms of spatial 
point processes, which provide a flexible way to integrate 
datasets in different ecological currencies (Miller et al. 2019, 
Isaac et al. 2020). We then define sub-models for each of the 
two data types. The final two sections of the Material and 
methods deal with inference and the estimation of commu-
nity parameters.

UK Pollinator Monitoring Scheme data

The data used is a subset of the PoMS data (UK Pollinator 
Monitoring Scheme 2022a, b). PoMS implements a system-
atic survey with 95 1 km2 sites selected following a strati-
fied sampling design across Great Britain (GB) and Northern 
Ireland (NI). The sites are surveyed up to four times per year 
from May to September, with a minimum of two weeks 
between each consecutive survey at a site. On the same 
visit, the observer implements two survey protocols: a pan 
trap survey and a FIT Count survey (O’Connor et al. 2019, 
Breeze et al. 2021). On each visit, five pan trap stations (each 
hosting three coloured bowls painted UV-bright yellow, blue 
and white, mounted at vegetation height and filled with 
water) are set out along a diagonal of each 1 km2 site and left 
for six hours. During this time, the surveyor undertakes at 
least two ten-minute FIT Counts, which involves counting 
all insects landing on a target flower in a 50 × 50 cm patch. 
Pollinators are identified at the level of a broad taxonomic 
group, e.g. bumblebees, solitary bees, and hoverflies. After six 
hours, the samples from the pan traps are collected and sent 
to a lab for professional identification. Therefore, each visit 
to the 1 km site produces a list of bee and hoverfly species 
found in the pan traps and group-level count data from the 
FIT Counts. The data used in this study were from the first 
two years (2017–2018) of PoMS, during which 74 of the 
75 survey sites across GB returned suitable data (PoMS was 
not active in NI in the first two years). The summary of the 
group-level count data and species occupancy data are pre-
sented in Table 1 and the distribution of each dataset at each 
study site is provided in the Supporting information.

The above monitoring protocols generate two types of data, 
each collected at the same set of R indexed locations during 
replicated T number of visits at each site. One dataset com-
prises detection-nondetection data at the species level (hence-
forth ‘species occupancy data’); the other is a count across all S 
species in the taxonomic group (‘group count data’).

State variables

We model species abundance as a spatial point process, in 
which the intensity of that point process determines the 
expected number of organisms per unit area. Let λij be a 
latent variable describing the intensity of species j at loca-
tion i and Ψij be the probability that species j occupies 
location i. We model intensity as a linear function of lati-
tude, reflecting the strong latitudinal gradient in pollina-
tor diversity across GB (Powney et al. 2019), although we 
do not claim that latitude is the only correlate of pollina-
tor diversity, or even the most important one. We consider 
two ways by which the two latent variables can be linked in 
the IDM using the joint likelihood approach (Pacifici et al. 
2017): the ‘complete-parameter-sharing’ and the ‘indepen-
dent-intercept’ formulation. Both variants are hierarchical 
community model (sensu Dorazio and Royle 2005), in 
that information is shared across species to yield more pre-
cise estimates of the species-specific and community-level 
parameters.

Complete-parameter-sharing formulation
The intensity of each species in an insect group is linked to 
the occupancy probability using the complementary log–log 
link function (using the equivalence relationship between 
the clog–log transformed occupancy probability and the log-
transformed intensity; Kéry and Royle 2015, Bowler  et  al. 
2019), which defines the probability that at least one organ-
ism is present (Kéry and Royle 2015)(Eq. 1):

log cloglog latitude( ) ( ) ;

( , );

0 1

0
2

10 0

� � � �

� � � �� �

ij ij j j

j jN

� � � �

� �� N ( , ),1 1
2� �� �

  (1)

where β0j the intercept for the species occupancy was nor-
mally distributed with mean ��0  and variance ��0

2 , β1j the 
latitudinal gradient slope for species j was normally distrib-
uted with mean ��1  and variance ��1

2 . The hyperparame-
ters of the intercept (��0  and ��0

2 ) and latitude effect (��1  
and ��1

2 ) represent the community-level mean and variance 
parameters respectively in the IDM for an insect group.

Table 1. Summaries of the group-level flower-insect timed (FIT) Count 
and species-level pan trap occupancy data. Both datasets were col-
lected from 74 survey sites (Nsites) with eight survey visits (Nvisit) (up to 
four visits in each year 2017 and 2018). The average FIT Counts and 
their SD (in brackets) were calculated from the group-level FIT Count 
data across all sites and visits and the average naive occupancy from 
the pantrap occupancy data across all species and sites. The naive 
occupancy is defined as the proportion of species in an insect group 
that were detected across the 74 sites and its SD is its variation over 
the eight survey visits. The number of species (Nspecies) in the species 
list for each insect group is also provided in the summary.

Insect group FIT Counts Pantrap occupancy
Average (SD) Nspecies Naive occupancy (SD)

Bumblebees 1.11 (5.18) 17 0.086 (0.20)
Hoverflies 2.74 (10.92) 79 0.055 (0.01)
Solitary bees 0.29 (1.62) 70 0.027 (0.111)
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In this model structure, all the parameters are shared by 
the two state variables. Hence each dataset directly informs 
the latent state and both datasets provide equal weights to the 
joint likelihood of the IDM (Miller et al. 2019).

Independent-intercept formulation
Although both FIT Counts and pantrap surveys were per-
formed by the same observer on the same survey visit, it 
makes sense for both latent variables to share covariates but 
allow each dataset to have separate intercepts because they 
have different survey protocols. The separate intercepts help 
model the average abundance and occupancy observation 
difference.

Here, we also describe a hierarchical community model 
and define the link function for the latent variables for an 
insect group in this IDM framework as (Eq. 2):

cloglog latitude;
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where β0j the intercept for the species occupancy is normally 
distributed with mean ��0  and variance ��0

2 , ω0 the inter-
cept of the group counts is normally distributed with mean 
��0  and variance ��0

2 , β1j the slope of the latitudinal gradi-
ent for species j is normally distributed with mean ��1  and 
variance ��1

2 . As described for the complete-parameter-shar-
ing model, the intercept and covariate effect hyperparameters 
represent their respective community-level mean and vari-
ance parameters in the models for an insect group.

This independent-intercept formulation allows both state 
variable models in the IDM to share important parameters but 
preserve their average abundance when no covariate effects 
exist. Moreover, the quality of both datasets determines how 
well the parameters are estimated (Pacifici et al. 2017) since 
some parameters will be estimated using each dataset, and the 
parameters that are not shared serve as (unequal) weights for 
the contribution from each dataset.

Sub-models for each dataset

Having defined the latent state variables λij and ψij and the 
possible ways they can be linked together, the sub-models for 
species occupancy data and group-level count data (can be 
defined.

In addition, the model can estimate various community 
ecology metrics as derived parameters. Based on preliminary 
analysis (Supporting information), we used a negative bino-
mial model with an intercept and covariate to fit the group 
count data. We also used logistic regression with intercept, 

covariate effect, site and visit random effect to fit the species 
occupancy data.

Sub-models for species occupancy data
We model the species occupancy data with an occupancy-
detection model (MacKenzie et al. 2002). We assume in this 
system that the occupancy models across the visits are closed 
(i.e. there will be no immigration and emigration in the sys-
tem), since we treat the years as visits. This assumption can be 
relaxed by using a multiseason or dynamic occupancy model 
(MacKenzie  et  al. 2003, Altwegg and Nichols 2019). The 
true ecological state (true presence or absence denoted as z in 
this study) for species j at site i is modelled with a Bernoulli 
distribution with probability ψij, where ψij was the probabil-
ity of species j occupying site i as defined by Eq. 1–2.

The detection probability (pijk) for species j at site i during the 
survey visit k is modelled with a site and species and visit random 
effect logistic regression using the logit link. That is (Eq. 3):

logit

and

( ) ;

(0, ) (0, ) (0, ),2 2 2

p

N N N

ijk i j k

i j k

� � �� � �

� � � � � �� � �� � �
  (3)

ζi, the effect of site i, is normally distributed with zero mean 
and variance ��

2 ; νj, the effect of species j, is normally distrib-
uted with zero mean and variance ��

2 ; and ρk, the effect of 
survey visit k, is normally distributed with mean 0 and vari-
ance ��2 . We model the visit effect in the detection process 
to account for the significant visit effect found during the 
exploration phase for the species occupancy data (Supporting 
information). By the definition of our model for the detec-
tion probability in Eq. 3, the average detection probability 
for a species in any given site is 0.5, which allows all species 
in the taxonomic group to have an equal chance of being 
detected or not detected on average. This average detection 
probability can be allowed to deviate from 0.5 by adding an 
intercept term in Eq. 3.

Let the observation for species j during the kth visit to 
location i be represented by Xijk, for i = 1,2,…,R indexed 
sites and j = 1,2,…,S species. This observation, over the five 
pantrap replicates at each site, is Binomially distributed with 
probability zij × pijk, where pijk is the detection probability and 
zij is the true state of species j at site i (that is, Xijk ~ Binomial 
(5, zij × pijk)).

Sub-model for group count data
Having defined the intensity of species j at location i (Eq. 
1–2), the intensity for the group counts will be a sum of all 
the intensities of the species that make up that taxonomic 
level. This is because we assume the group counts are made 
up of all the species in the pantrap data, and the sum of reali-
sations from Poisson point processes is also a Poisson point 
process with an intensity equal to the sum of the intensities of 
the individual components (Jacod 1975, Harremoës 2001).

Let Yik be the observed count of individuals on the kth sur-
vey (across all species in the group). We modelled the counts 
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with a negative binomial distribution (to allow for extra varia-
tion in the count data) with parameters θ and � �

� �
i

i
g�

�
, 

where � �i
g

j
S

ij� �  is the intensity of the group counts at site i 
(that is, Yik ~ NB(θ, γi) with mean and variance � �

�
(1 )� i

i
 and 

�
�

�
i

i2 (1 )�  respectively). The parameter θ is the overdispersion 

parameter, which allows us to model the extra variation in the 
group count data. Note that as θ ⟶ ∞, the negative bino-
mial distribution converges upon the Poisson distribution.

We present the various joint likelihood structures defined in 
section ‘State variables’ and the sub-models for each PoMS data-
set defined in section (‘Sub-models for each dataset’) in Fig. 1.
Single-dataset models

We fit three single-dataset models and compare their results 
with those from the IDM. The three models are:

Species occupancy model (SOM)
We model the species occupancy data with the occupancy-
detection model described in section ‘Sub-models for species 

occupancy data’. The occupancy probability (ψij) is modelled 
using the cloglog link as defined in the independent-intercept 
formulation described in Eq. 2. The occupancy probability 
(ψij) can be converted into an estimate of the mean intensity 
(λij) to be used in estimating the alpha diversity by using the 
relation (Eq. 4):

� �ij ij� � �log(1 ).   (4)

Group count models (GCM)
Our model for FIT Count data has a negative binomial 
distribution as described in section ‘Sub-model for group 
count data’. We define the mean intensity (λij) using both the 
complete-parameter-sharing formulation described in Eq. 1 
(which we will refer to as GCMSH in this study) and the 
independent-intercept formulation described in Eq. 2 (which 
we will refer to as GCMCO in this study).

Note that the alpha diversity estimates from the GCMs 
are strongly driven by the priors assigned to the parameters 
of λij. In the absence of information in the data to contradict 

Figure 1. Flowchart showing the integrated distribution model process for the Pollinator Monitoring Scheme (PoMS) survey data. To fit the 
integrated distribution model (IDM), we used two joint likelihood links in this study: complete-parameter-sharing formulation and indepen-
dent-intercept formulation. The state variables models are defined by Eq. 1–2. The sub-models for each dataset: the group count model (GCM) 
and species occupancy model (SOM) have been defined as the observation process of abundance and occupancy respectively. The IDM com-
bines the SOM and GCM for each joint likelihood link used. All the parameters in this flowchart are defined in sections ‘State variables’ and 
‘Sub-models for each dataset’. In addition to the intercept and covariate effect, we add a species interaction effect η in this flowchart.
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this prior, we anticipate that GCMs will estimate the local 
alpha diversity very poorly. We recognise that this model is 
not something that community ecologists would choose to 
fit, but the comparison with other models is informative.

Community diversity indices

The community alpha diversity was estimated using the 
Shannon–Wiener diversity index. This is the most commonly 
used index from the Hills indices (Hill 1973), and it places 
equal weights on rare and dominant species. We acknowledge 
that the Shannon–Wiener diversity index may have some 
limitations (Lande 1996, Morishita 1996, O’Hara 2005, 
Itô 2007, Chao and Jost 2015, Gatti et al. 2020), in which 
case other indices such as Simpson index may be preferable. 
However, we use the Shannon–Wiener diversity index to show 
how alpha diversity can be estimated using our proposed IDM 
and how all the models capture the true alpha diversity. For 
real-world applications, we urge caution about the choice of 
the index. Moreover, the Hills indices are all functions of the 
relative abundance proportion, so the method developed for 
one index can be easily extended to the others. The Shannon–
Wiener diversity index was calculated as (Eq. 5):

H r r
j

S

ij ij
1

1

( ),� ��
�

log   (5)

where rij
ij

j

S

ij

�

�
�

�
�1

 is the relative abundance of a species j 
at location i.

Evaluating model performance

We fitted five models to the PoMS survey data in this study: 
IDM with the complete-parameter-sharing formulation 
defined in section ‘Complete-parameter-sharing’ which we 
will refer to as IDMSH, the IDM with independent-inter-
cepts formulation defined in section ‘Independent-intercept 
formulation’ which we will refer to as IDMCO, and the three 
single-dataset models described in section ‘Single-dataset 
models’. These models are summarised in Table 2.

Fitting the models
We fitted the models in a Bayesian framework. We obtained 
samples of the parameters using the Markov chain Monte 

Carlo (MCMC) approach and estimated posterior summa-
ries of model parameters using the ‘NIMBLE’ package (de 
Valpine  et  al. 2017) in R (www.r-project.org). We chose a 
normal distribution with zero mean and variance of 100 as 
the prior for the mean hyperparameters of the state variables 
and an inverse gamma distribution with scale parameter 2 
and shape parameter 1 as the prior distribution for the vari-
ance hyperparameters. We ran three chains with 300 000 
iterations for all the models, and 200 000 were discarded 
as burn-in samples. We keep a twentieth of the left-over sam-
ples to reduce the hard disk space used by our analysis. The 
convergence of the fitted model was checked by estimating 
Gelman–Rubin R-hat statistic (Brooks and Gelman 1998) 
using the ‘ggmcmc’ package (Fernández-i Marín 2016) and 
rejected the models with R-hat greater than 1.1.

Simulation study
We performed simulation studies to assess which of the five 
models (described in Table 2) better estimated the true alpha 
diversity. We simulated 100 data replicates using the IDM 
framework for each latent variable formulation used in this 
study (i.e. using both the independent-intercept and com-
plete-parameter-sharing formulation). We used the same 
number of sites and visits from the PoMS surveys but used 
20 species for the simulations due to computational expen-
siveness in running the models for more species.

The true values for the hyperparameters defined in section 
‘State variables’ were chosen as follows: ��0 0� , ��0 0.2� ,  
��1 2� � , ��1 1� , ��0 0.2� , σζ = 0.3, σν = 1 and σρ = 2. 
We also randomly selected 25 sites for each visit in the group 
count and occupancy model and assigned them NAs to 
reflect missing species identifications and group counts in the 
PoMS data.

We fitted the five study models defined in Table 2 to the 
100 simulated datasets for each joint likelihood formulation. 
By this, we employed a cross-design to ascertain the effect of 
fitting a wrong model in this study. For example, when the 
IDMCO or GCMCO is fitted to the dataset simulated under 
the complete-parameter-sharing formulation, we can infer 
the effect of fitting a covariate-formulated model (‘wrong 
model’) to the dataset. We assessed this effect by estimating 
the mean bias and precision of Shannon estimates at each 
site across the replicated datasets. That is, for each site i, we 
obtain the metrics (Eq. 6):

Table 2. Models fitted in this study, their descriptions, predictors, type and data used to fit them. Two integrated models: IDM with indepen-
dent-intercepts formulation (IDMSH) and IDM with the complete-parameter-sharing formulation (IDMCO), and three single-dataset models: 
GCMSH, GCMCO and SOM, are fitted. The data used are from the UK PoMS survey: FIT Counts (GC) and Pantrap species occupancy (SO) 
data. The cloglog link was used for the occupancy model and the log link was used for the group count model. The definitions of the param-
eters used in the predictor column are described in section ‘Sub-models for each dataset’, with lat referring to the latitudinal gradient slope.

Model Model description Type Data used Predictor

IDMSH IDM with complete-parameter-sharing structure defined in Eq. 1 Integrated GC and SO β0j + β1j × lati
IDMCO IDM with independent-intercept structure defined in Eq. 2 β0j + β1j × lati

ω0 + β1j × lati
GCMSH GCM with complete-parameter-sharing structure defined in Eq. (1) Single GC β0j + β1j × lati
GCMCO GCM with independent-intercept structure defined in Eq. 2 ω0 + β1j × lati
SOM Species occupancy model Single SO β0j + β1j × lati
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where Ĥi
k′( )  is the posterior mean of the Shannon index for 

dataset k, Hi
k′( )  is the true Shannon index obtained from 

simulating dataset k and SD( )( )Ĥi
k′  is the posterior SD of the 

Shannon index for dataset k. The fitted models with mean 
bias closer to 0 and the highest mean precision are indicated 
to perform best.

Model validation and assessment
Model predictive performance
We performed twofold cross-validation to ascertain the mod-
el’s ability to predict new data. The same folds are used for 
all the models under study, and the log pointwise predictive 
density (Gelman et al. 2014, Nicenboim et al. 2021) was used 
to measure the cross-validation’s predictive accuracy. The log 
pointwise predictive density (lppd) is defined as (Eq. 7):

lppd log�
� �

���1 ( ( | , , ))
1 1

, ,K
P y y M

k

K

n

N

n k n k �̂   (7)

where log( ( | , , )), ,P y y Mn k n k� �̂  is the log predictive density 
of the withheld data samples yn,k in fold k under model M, 
which was trained with data samples y−n,k in fold k to obtain 
estimated model parameters θ̂  with n being the number 
of samples in each fold and N is the number of samples of  
each fold. Larger values of the metric indicate better 
performance.

It must be pointed out that the withheld samples used in 
IDMSH and IDMCO have both species occupancy (X) and 
group count (Y) samples in their training and validation sets. 
Therefore, we estimated the lppd for the validation samples 
from the pantrap and group count data separately after we 
had estimated the model parameters θ̂  with both datasets 
in the training samples. Since the log predictive density is 
additive (Gelman et al. 2014), the log predictive density of 
the integrated model was obtained by summing the lppd of 
each dataset.

Information provided by each dataset
We also ascertained the information contributed to the IDM 
by each data type. This was done by comparing the log-like-
lihoods of the single-dataset models (SOM and GCMs) to 
that of the IDMs (where both single and integrated models 
being compared share the same joint likelihood structure), 
following Zulian et al. (2021). Since there are two data types 
in this study: pantrap data and FIT Count data, including a 
data type that informs the IDMs should lead to better predic-
tions (higher prediction accuracy) of the other data types. For 
example, by comparing the predictive log-likelihoods of the 
GCMCO to IDMCO for group count data, one can assess 
whether the pantrap occupancy data improves the predictive 
performance of IDMCO on the group count data. We shall 
refer to this comparison of predictive log-likelihoods as the 
‘marginal contribution’ of a data type in the rest of this paper. 
Negative values of the marginal contribution indicate that 
the data type did not contribute to the IDM.

It must be stated that the marginal contribution can only 
indicate whether a data type provides information. Due to 
differences in the data types (occupancy and count data) and 
sample sizes, it is unfeasible to compare the marginal contri-
bution of the data types to ascertain which one provides the 
most information.

Table 3. Log predictive density from the twofold cross-validation, the marginal contribution of each dataset. For each insect group, the mar-
ginal contribution of pantrap data was estimated as lppdSOM − lppdIDMSH and lppdSOM − lppdIDMCO; and the marginal contribution of FIT Count 
data was estimated as the lppdGCMSH − lppdIDMSH and lppdGCMCO − lppdIDMCO. Negative values of the marginal contribution indicate that a data 
source did not contribute any information into the IDM and larger positive values indicate that a data source contributed information into 
the IDM (numbers in bold are the largest log predictive density values which indicate the best model, and the dataset with the largest mar-
ginal contribution.). 

Shannon index Log predictive density Marginal contribution
Insect group Model Mean SD All dataset Pantrap FIT Count Pantrap FIT Count

Bumblebees GCMSH 2.79 0.02 – – −239.90 – –
GCMCO 2.78 0.06 – – −290.15 – –
SOM 1.08 0.17 – −3649.25 – – –
IDMSH 2.29 0.07 −3261.26 −3322.39 −238.90 326.86 1.0
IDMCO 1.86 0.08 −3489.85 −3250.97 −238.87 398.28 1.03

Hoverflies GCMSH 4.34 0.014 – – −517.49 – –
GCMCO 4.32 0.05 – – −513.62 – –
SOM 3.98 0.13 – −35118.55 – – –
IDMSH 4.01 0.08 −36195.10 −35715.74 −479.36 38.14 −597
IDMCO 4.03 0.09 −32275.90 −31716.42 −559.48 −45.86 3402

Solitary bees GCMSH 4.10 0.08 – – −150.51 – –
GCMCO 4.08 0.18 – – −446.05 – –
SOM 3.04 0.40 – −14372.42 – – –
IDMSH 3.25 0.33 −11 341 −11165.97 −175.39 3206.45 −24.88
IDMCO 3.27 0.31 −11464.48 −11285.78 −178.70 3086.64 −28.19

 16000587, 2024, 5, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1111/ecog.07182 by U

kri C
/O

 U
k Shared B

usiness Services, W
iley O

nline L
ibrary on [08/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Page 8 of 13

Results

The estimates of the mean bias and precision of Shannon 
diversity estimates over all 30 replicated simulated datasets 
are presented in Fig. 2. The log-predictive density from the 
twofold cross-validation and average Shannon index across 
all the study sites are summarised in Table 3. The site-specific 
precision estimates of the Shannon indices for each insect 
group and the model used to fit the data are presented in 
Fig. 2. All other figures and tables referred to in this section 
are presented in the Supporting information.

Simulation study

Figure 2 shows the distribution of the mean bias and preci-
sion of the Shannon indices at the 74 sites estimated from 
the five study models fitted to the simulated data described in 
section ‘Simulation study’. Whether the data were simulated 
under the complete-parameter-sharing and independent-
intercept formulations, the mean bias of the Shannon index 
from the integrated models (irrespective of their joint like-
lihood structure) was similar to that from SOM, with the 
median bias around 0 with small variation across sites. This 
suggested that the integrated models and SOM well captured 
the true Shannon index across all the study sites.

As expected, the Shannon indices were poorly estimated 
the GCMs. Alpha diversity was consistently overestimated 
by the GCMCO model and underestimated by GCMSH 
(Fig. 2), and both models have much lower precision than 
other models. As explained in the Material and methods, this 
is expected because the only information about species iden-
tities in these models derives from the priors.

Although the mean bias of the Shannon indices from the 
integrated models and SOM are similar, the Shannon indices 
were estimated with higher precision in the integrated mod-
els than in SOM (blue bars in Fig. 2). When the data was 

simulated under the independent-intercept formulation (red 
bars), the precision of Shannon diversity estimates from the 
integrated models was similar to that of SOM.

Analysis of PoMS dataset

Estimation of Shannon index (H′)
Shannon diversity is expected to be higher for communities 
with a comparatively higher number of species (Roswell et al. 
2021) and/or evenness (Nagendra 2002). It is, therefore, not 
surprising that the Shannon indices were highest for hover-
flies (n = 79 species) and lowest for bumblebees (n = 17 spe-
cies; Table 1, 3).

The estimates of H′ from the five models showed consis-
tencies in the estimated diversity pattern for each insect group, 
as we observe in Table 3 and the Supporting information. 
Firstly, there was a negative latitudinal effect on the estimates 
of the Shannon indices (that is, the Shannon index decreased 
with the latitudinal gradient; Supporting information). The 
community intercept (��0 ) estimated from GCMCO and 
IDMCO were relatively the same, but the estimated latitu-
dinal and species effect (��1  and ��0  respectively) from the 
integrated models lies between those estimated from the group 
count and species occupancy models (Supporting informa-
tion). Additionally, the group count models (GCMSH and 
GCMCO) had the highest average H′ estimates (Table 3), fol-
lowed by the integrated models (IDMSH and IDMCO) and 
finally, the species occupancy model (SOM). These observa-
tions suggested that the integrated models serve as the average 
model for the species occupancy and group count models.

We have already established from the simulation study 
that the priors strongly affect the Shannon indices estimated 
from the GCM models. Narrowing our observations to the 
site-specific precision estimates of the Shannon indices from 
the integrated models and SOM, we observed the estimates 
from the integrated models were more precise than those 

Figure 2. Mean bias and precision of Shannon index from the five study models fitted to the simulated data. The boxplot shows the distribu-
tion of the mean bias and precision for the 74 sites. The five models: two integrated models (IDMSH and IDMCO), two group count 
models (GCMSH and GCMCO) and a species occupancy model (SOM) were fitted to data simulated under the complete-parameter-
sharing structure (coloured in blue) and those simulated under the independent-intercept structure (red).
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from SOM (Fig. 3). This precision was also higher for the 
sites with higher Shannon diversity estimates (compare 
Fig. 3, Supporting information).

Predictive performance and information provided
Table 3 shows the twofold cross-validation log-predictive 
density estimated from the five study models for the three 
insect groups: bumblebees, solitary bees and hoverflies. For 

bumblebees, we find that both IDMs outperform the sin-
gle-dataset models in predicting both the pantrap and FIT 
Count data. For hoverflies, the best fitting model in each 
case is an IDM, with the independent-intercept formulated 
model (IDMCO) performing best for pantrap data and the 
complete-parameter-sharing formulated model performing 
best for the FIT Counts. For solitary bees, we find that both 
IDMs outperform the SOM for predicting the pantrap data, 

Figure 3. Precision of the Shannon diversity (H′) estimates for each of the 74 PoMS sites from the five models in this study summarised in 
Table (2) for each of the insect groups: (A) bumblebees, (B) hoverflies and (C) solitary bees.
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but that one of the group count models is the best predictor 
of the FIT Count data. These results show that the IDMs 
outperformed the single-dataset models in the prediction 
accuracy of new data for bumblebees and hoverflies and at 
least as well for the solitary bees. In other words, the inclu-
sion of FIT Count data from has added information to the 
models.

Table 3 also shows the marginal contribution of each 
dataset to the integrated models. For the models fitted to 
the bumblebees and hoverflies, both pantrap and FIT Count 
data contributed to the IDM (with a positive marginal con-
tribution), but the contribution was higher in IDMCO than 
IDMSH. For solitary bees, the marginal contribution of the 
FIT Count was negative for both IDMCO and IDMSH 
(indicating they do not provide information into the IDM) 
and the marginal contribution of the pantrap data was posi-
tive, indicating that the FIT Count data did not inform the 
IDMs. This was expected since the average FIT Counts of 
bumblebees and hoverflies (1.11 ± 5.18 and 2.74 ± 10.92 
respectively), were significantly higher than that of the soli-
tary bees (0.29 ± 1.62; Table 1). There was much informa-
tion from this count data to inform the IDMs to predict the 
pantrap data better for bumblebees and hoverflies.

Discussion

Many data types are available in community ecology, and 
many modelling techniques are available to analyse data 
types separately. In some cases, multiple datasets are available 
that differ in taxonomic resolution. We developed a multi-
species integrated distribution model that combined data 
from different taxonomic levels to estimate alpha diversity in 
a community. Using a combination of simulations and analy-
sis of empirical data, we showed that integrated models can 
produce useful estimates of community ecology parameters 
from datasets that lack the information to do so if analysed 
separately. In addition, the IDMs performed better than the 
single-dataset models in most cases.

Previous studies have shown that IDMs perform better 
than single-dataset models in estimating state variable param-
eters and prediction accuracy of new datasets (Pacifici et al. 
2017, Miller  et  al. 2019, Doser  et  al. 2022, Strebel  et  al. 
2022). Miller et al. (2019) noted that IDMs present oppor-
tunities to model community dynamics and diversity from 
multiple datasets, and Zipkin  et  al. (2023) presented an 
integrated community model to explore such opportunities. 
Our IDM shares information among species and provides 
estimates for parameters at both species and community lev-
els (Zipkin et al. 2023). Our work provides further advance-
ments in such integrated community models by providing 
an IDM that combines data from different taxonomic lev-
els to estimate alpha diversity in a community. Our simu-
lation and case studies showed that the IDMs outperform 
the single-dataset models in producing precise alpha diversity 
estimates in a community if both datasets share information 
between them (Fig. 2, Table 3, Supporting information). The 

information from each dataset was shared through the joint 
likelihood framework, and the information sharing process 
has been noted in the literature to be the benefit of using 
IDMs (Miller et al. 2019, Isaac et al. 2020).

Furthermore, the proposed IDMs outperform the single-
dataset models’ prediction accuracy of new datasets for some 
insect groups. From our model assessment of the PoMS data 
using twofold cross-validation, IDMs outperformed the 
single-dataset models in predicting new data for all insect 
groups, except the solitary bees FIT Count data (Table 3). 
The out-performance is evident from the information pro-
vided by each dataset into the IDM to inform the estima-
tion of the model parameters directly. This observation is 
well noted in literature (Zulian  et  al. 2021). For instance, 
when modelling the solitary bees dataset, pantrap data did 
not inform the IDM to predict the FIT Count data better, 
and as such the group count model outperforms the IDMs 
(Table 3).

In this study, we explored two IDM variants with differ-
ent joint likelihood formulations. The independent-intercept 
and complete-parameter-sharing formulations had very 
similar performance in terms of predictive performance and 
alpha diversity estimation but differed in how well they fit 
the two datasets. The complete-parameter-sharing formula-
tion ensured that all state variables were shared between both 
datasets. The independent-intercept formulation allowed 
some flexibility in sharing the state model definition by 
allowing each dataset to have a unique intercept. Previous 
studies on IDMs, using either independent-intercept or 
complete-parameter-sharing formulation, have all shown 
that IDMs have higher prediction accuracy than single-
dataset models (Fletcher et al. 2016, 2019, Koshkina et al. 
2017, Pacifici et al. 2017, Simmonds et al. 2020, Adde et al. 
2021, Ahmad Suhaimi et al. 2021, Zulian et al. 2021). These 
methods have been used to model species distributions and 
turnover using multiple data types from the same taxonomic 
levels. Just a few of these studies (such as Chevalier  et  al. 
2021) exist that explore various joint likelihood structures for 
their IDMs. Our study showed that the choice of structure 
has little effect on the IDM’s predictive performance over the 
single-dataset models since all the IDMs we tested performed 
comparably better than the single-dataset models, except for 
solitary bees FIT Count data (Table 3). Additionally, the pat-
tern of estimated Shannon diversity and the precision of the 
estimates was invariant to the choice of the joint likelihood 
structure (Fig. 2–3, Table 3). This indicates the choice of the 
joint likelihood formulation is inconsequential to the perfor-
mance of IDMs, and any alternative can be chosen to model 
alpha diversity.

The UK PoMS protocols are specifically designed to pro-
duce datasets with different taxonomic resolutions. New 
monitoring technologies create many situations in which 
analysts might encounter datasets that differ in taxonomic 
resolution. For example, data on the abundance of aquatic 
macroinvertebrates, such as those collected by kick-sam-
pling for water framework directive reporting, are typically 
reported at the genus level or higher (Haase  et  al. 2023). 
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Modern DNA (meta)barcoding makes it possible to iden-
tify specimens in these samples to species level, but typically 
only as presence–absence data (Bohan et al. 2017). Another 
promising use case is the combination of traditional field sur-
veys with data identified from images using computer vision: 
algorithms often have low confidence in the species identity, 
but high confidence in the genus. Our model provides a 
ready-made solution for estimating community parameters 
in such situations.

Other situations might arise in which mixed taxonomic 
resolution is an unwanted byproduct of the data generation 
process. A good example would be a citizen science projects 
where participants differ in their taxonomic skill levels, such 
that some report counts at species level but others report at a 
coarser level. Our approach provides a way to use all the data 
at the resolution at which it was captured. Thus, our proposed 
model further extends the range of applications for IDMs in 
ecology and conservation to help researchers and conserva-
tionists make the most of available data, in order to provide 
better evidence and understanding about biodiversity.
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