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Spatial statistics is an important methodology for geospatial data analysis. It has evolved to handle spatially

autocorrelated data and spatially (locally) heterogeneous data, which aim to capture the first and second laws of

geography, respectively. Examples of spatially stratified heterogeneity (SSH) include climatic zones and land-

use types. Methods for such data are relatively underdeveloped compared to the first two properties. The

presence of SSH is evidence that nature is lawful and structured rather than purely random. This induces

another “layer” of causality underlying variations observed in geographical data. In this article, we go beyond

traditional cluster-based approaches and propose a unified approach for SSH in which we provide an equation

for SSH, display how SSH is a source of bias in spatial sampling and confounding in spatial modeling, detect

nonlinear stochastic causality inherited in SSH distribution, quantify general interaction identified by

overlaying two SSH distributions, perform spatial prediction based on SSH, develop a new measure for spatial

goodness of fit, and enhance global modeling by integrating them with an SSH q statistic. The research

advances statistical theory and methods for dealing with SSH data, thereby offering a new toolbox for spatial

data analysis. Key Words: confounding, inference, sample bias, spatial causality, spatially stratified heterogeneity.

S
tatistical theory was initially developed for

independently and identically distributed (iid)

observations from a population (often obtained

by a series of experiments). Spatial data, resulting

from variables of interest that are close to each other

in a geographical space, tend to be similar locally,

however. This is called the spatially autocorrelated

(SAC) property in the literature. If the underlying

spatial variations from the population can be

described by a spatial statistical model, then statisti-

cal inference becomes possible (see, e.g., Christakos

1992; Griffith 2003; Haining 2003). Modeling spa-

tial dependency, by some form of spatial autoregres-

sive model for lattice data, or permissible

semivariogram for geostatistical data, lies at the heart

of many branches of spatial statistics (Cliff and Ord

1981; Cressie 1993; Stein 2022).

The ability to model spatial dependency opens

opportunities to undertaking many forms of spatial

analysis, such as spatial interpolation (Matheron 1963).

The underlying principle can be described as one of

borrowing nearby data values by inverse distance

weighting for the purpose of estimating remaining data

values to construct a map. Models of spatial variations

can also be used to improve the precision of small area

parameter estimates by similar processes of borrowing

information from neighboring areas. The underlying

assumption that allows this form of information bor-

rowing is that neighboring parameter values are similar

so that the information contained in the data from

neighboring areas can be “borrowed” for estimating the

unknown parameters (Ripley 1981; Fotheringham,

Brunsdon, and Charlton 2000; Rao 2003; Goldstein

2011; Haining and Li 2020).
This article is concerned with the development of

methods that can address another frequently encoun-

tered property of spatial data: spatial heterogeneity.

Heterogeneity is a term used in statistics to indicate

that one or more statistical characteristics of interest

are not the same across all subsets of the population
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(Everitt and Skrondal 2010, 204). The presence of

spatial heterogeneity violates the second part of the

iid assumption—observations are not “identically dis-

tributed.” In particular, if our study region is large

and physically or socioeconomically diverse or our

study region is observed in high spatial resolution,

then the assumption that all subsets of the study

region have the same statistical characteristics is

likely to be violated. The assumption that some of

the subsets of our data have different statistical char-

acteristics might be a safer starting point in data

analysis. For instance, Dutilleul (2011, 20–21)

described three types of often encountered spatial

heterogeneity: heterogeneity in the mean (or first-

order heterogeneity; see Stein, Hoogerwerf, and

Bouma 1988; Fotheringham, Brunsdon, and

Charlton 2000; Lloyd 2010; Ge et al. 2019; Haining

and Li 2020, chapter 6), heterogeneity in the vari-

ance (heteroscedasticity or second-order heterogene-

ity), and heterogeneity associated with the

autocorrelation structure of the data (see Getis and

Ord 1992; Anselin 1995; Kulldorff 1997).
Another ubiquitous form of heterogeneity is spa-

tially stratified heterogeneity (SSH; J. F. Wang,

Zhang, and Fu 2016). It arises when an area com-

prising a collection of contiguous spatial units can

be partitioned into distinct spatial segments (strata)

where within each stratum (each comprising a num-

ber of spatial units) the mean of a variable or the

association between the observations is the same,

indicating that each stratum only displays within-

stratum homogeneity. The statistical characteristics

might not be the same when compared with other

strata so that the strata display between-strata het-

erogeneity collectively. This problem seems to have

received less systematic attention than other forms

of spatial heterogeneity described earlier. Part of the

reason for this might lie in the challenge of identify-

ing homogeneous zones. Stein, Hoogerwerf, and

Bouma (1988) appears to be the first paper to

address spatial stratification—a topic to which we

return in the following sections of this article.

Modeling would be confounded if it did not make

allowance for SSH when population is SSH

(Simpson Paradox). Even if SSH is recognized, there

might be insufficient data to provide nice estimates

of the parameters in each stratum using traditional

estimation methods—referred to as the data sparsity

problem, or the biased sample problem when not all

strata have been sampled (see, e.g., Meng 2018; J.

Wang et al. 2018; Bradley et al. 2021). Besides the

challenges raised by the presence of SSH, disregard-

ing the presence of SSH implies that some of the

information in the data, which could be useful in

that data’s analysis, is not being exploited.

This article aims through theory and with refer-

ence to previous studies to promote a systematic

framework for the statistical analysis and modeling

of SSH. The article is structured as follows. We first

consider the principal statistical challenges that arise

when working with SSH populations. We then

introduce the equation for SSH populations aiming

to address the challenge of identifying SSH zones.

Next, we give examples of statistical inference for

SSH populations. We then draw the reader’s atten-

tion to a number of applications where SSH is a key

issue for data analysis due to the nature of the scien-

tific problem. We comment here on the relationship

between SSH and the methods of this article on the

one hand and the modifiable areal unit problem

(MAUP) on the other. We draw some final conclu-

sions and directions for future work to conclude.

Statistical Challenges When Working

with Spatially Stratified Heterogeneous

Populations

In this section we illustrate statistical problems

that can arise if SSH goes undetected in the process

of a statistical analysis.

Unrepresentative Samples and Poor Quality
Estimates

An unrepresentative sample means that the histo-

gram of the sample differs significantly from that of

the population from which it is collected. In this

case the expected value of the sample mean would

be not identical to the population mean; that is, the

sample mean would be a biased estimator of the pop-

ulation mean. If the population is SSH and the sam-

ple size is small with few or no sample points in

some strata, then this will exacerbate the problem of

estimator bias. If there are few sample points in a

stratum, then large estimates of error variances

would appear.
Figure 1 shows a well-known biased sampling

problem: the distribution of climatic zones within

China and the distribution of meteorological stations
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in China in 1900. The inadequacy of the early net-

work of stations for statistical analysis of the whole
country is obvious. Supplementary information, if
available, could be called on to reduce the effects of
any intrastratum sample bias (Heckman 1979; J.

Wang et al. 2018). If a population is spatially homo-
geneous, then the mean square error (MSE) of the
estimator declines as the sample size corresponding

to a given level of spatial autocorrelation increases

(Rodr�ıguez-Iturbe and Mej�ıa 1974; O’Connell et al.

1979).

Confounded Relationships

The presence of SSH undermines inferences based

on global statistics that disregard any stratified heter-

ogeneities in the population (Lindley and Novick

1981; Hox 2010, 3). For example, L. Xu et al.

(2011) used bubonic plague records and climate

records for the period from 1850 to 1964 to show

that the intensity of plague in China presents no

clear evidence of an association with wetness levels

until the data are broken down into the northern

and southern halves of the country. Figure 2A shows

a plot based on a data set for the whole country,

whereas Figures 2B and 2C partition the data into

North China and South China. L. Xu et al. (2011)

found that plague-carrying rodent communities

respond differently to higher levels of precipitation

in arid northern China compared with humid south-

ern China.

Analogously, if the population were SSH, then

any global model based on a pooling of data sets

would give rise to errors in prediction for either the

entire area or a few subareas without the user neces-

sarily knowing which subsets they are. In a special

issue of the Canadian Water Resources Journal, over-
viewing processes that generate flooding in Canada,

Buttle et al. (2016) reported that a global model

cannot provide accurate flood predictions for both

entire and different regions of Canada subjected to

different climatic regimes. Different flood-generating

Figure 1. Climate zones in China (spatially stratified

heterogeneity [SSH] population) and meteorological stations

(sample) in 1900.

Figure 2. The relationship between plague intensity and wetness levels. (A) All China; (B) only North China; (C) only South China.

The solid curves are the generalized additive model associations. Their linear trends are represented by dotted red lines. Plague intensity

refers to the number of plague cases (N) per year. Source: Figures 2B and 2C are reproduced with the permission of L. Xu et al. (2011).
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processes include flooding generated by snowmelt,

rain-on-snow, and rainfall, as well as groundwater

flood processes and flooding induced by storm surges,

ice jams, and urban flooding.
The two major challenges of bias and confound-

ing in spatial statistics mentioned earlier cannot be

automatically solved by big data and artificial intelli-

gence, and in fact they could be made worse due to

the “big data paradox” (Meng 2018; Li et al. 2023).

In fact, they could be solved more straightforwardly

if the SSH was identified prior to modeling. This

would allow statistics to be calculated individually

within strata to avoid confounding or by using the

Heckman (Heckman 1979) or B-SHADE (J. F.

Wang, Hu, et al. 2013; C. Xu et al. 2022) methods.

If a large national survey is carried out but SSH is

not considered, then the foregoing problems can be

addressed by Bayesian hierarchical models (BHMs) if

the relationships in strata are monotonic, which

allows the “borrowing information” methodology

referred to earlier (see Ripley 1981, 19–27; Dunn

and Harrison 1993; Haining and Li 2020, chapters 7

and 8).

Equation for Spatially Stratified

Heterogeneity

In this section, we illustrate SSH (Figure 3),

which is then represented in an equation form. This

facilitates the investigation of a statistic that is a

function of (L, P), where L represents the number of

strata and P represents the form of the partition into

the strata.
Figure 3 illustrates a range of maps displaying data

values with different degrees of spatial structures.

Figure 3A represents a map that shows no evidence

of stratification. Figure 3B illustrates a map with

some small degrees of spatial structures (some spatial

autocorrelation between neighboring values) but still

showing no evidence of any stratification. Figure 3D

shows a map with two sharply defined strata showing

strong homogeneity within each of the strata (little

or no intrastrata variability). Figure 3C depicts an

“imperfectly stratified heterogeneous” map where

data values are well structured in space with some

within-strata variations and the boundary lines (in

red) between the three strata. These are somewhat

fuzzy—appearing to be three spatial regimes,

although the positions of the boundary lines could

be debated. In practice, Figure 3C represents the

most likely scenario. Attached to each map in

Figure 3 is a notional value of what is termed the q-
statistic, which provides an appropriate measure of

SSH. We discuss this q-statistic next.

An Equation for an SSH Population

An SSH (super)population is composed of strata

(h¼ 1, … , L). We do not assume that stratification

is known, implying that it is not a regression prob-

lem. Therefore, we also need to estimate stratifica-

tion in our method. For a given stratification, the

SSH equation can be expressed as:

y ¼ Xbþ e, e � Nð0, r2IÞ (1)

where y ¼ (y1, � � �, yL)
T and yh ¼ (yh1, � � �,

yhNh
)T. X ¼ diag(1N1, � � �, 1NL), 1Nh is the Nh-

dimensional column vector with all of its compo-

nents equal to 1, b ¼ (M1, … , ML)
T, and e ¼ (e1,

� � �, eL)
T with eh ¼ (eh1, � � �, ehNh

)T. X partitions

data into L strata in which stratum h is of size Nh

and an element vector yh and a mean mh. If a linear

regression approach is used (Gujarati and Porter

2009, 37), then X cannot be changed and would be

updated. In the SSH equation, however, adding or

changing a stratum denoted by X would require

Figure 3. Illustrative maps displaying different amounts of spatially stratified heterogeneity (see text) together with the corresponding

values of the q-statistic. �p < 0.05. ��p< 0.01.
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changing the definitions of some of the strata X. We

have:

SST ¼ SSBþ SSW (2a)

SST ¼ yT I − Bð Þy (2b)

SSB ¼ yT A − Bð Þy (2c)

SSW ¼ yT I −Að Þy (2d)

where A¼X(XTX)−1X T, B¼ 1(1T1)−11T, and 1 is
the N-dimensional vector with all components equal

to 1. Given X, SST, SSB, and SSW represent the
sum of squares total, the sum of squares between
strata, and the sum of squares within strata, respec-

tively. Note that A – B is an orthogonal projection
matrix and tr(I – A) ¼ N – L. Equations 2b, 2c,
and 2d can only be derived based on a given stratifi-
cation. To identify the true stratification, we need to

combine them together. This motivates us to pro-
pose a function for SSH.

A Function for SSH

A measure of SSH (J. F. Wang, Zhang, and Fu
2016) can be generalized and investigated as a func-
tion of L and P based on the matrix form:

q L, Pð Þ ¼ 1� yT I −Að Þy
yT I − Bð Þy (3)

We here make explicit that the q-statistic is a

function of the number of strata (L) and the form of

the particular partition (P) as there are many parti-

tions that can produce L strata. An optimized strati-

fication can be defined by

O L, Pð Þ ¼ argmaxðL, PÞ qðL, PÞ� �
(4)

One more essential difference between the R2 for

linear regression or the interclass correlation coeffi-

cient (ICC) and our q-function given by Equation 3

is that R2 or ICC assumes that the partition is given,

but here we do not make this assumption. It follows

that the q-statistic has a noncentral F distribution

given X (J. F. Wang, Zhang, and Fu 2016), whereas

ICC follows the standard central F distribution

(Snijders and Bosker 2011, 46). The q function is

used to detect SSH and to make attribution for SSH

without requiring any linearity assumption. This is

also different from R2 and ICC for multilevel model-

ing. In Figure 4, we illustrate the q-function. For

emphasis we have shown that stratum h¼ 1 appears

in two distinct geographical areas. The stratum label

refers to its clustering (e.g., land-use type), not its

spatial location. The stratification of a variable Y
can be partitioned either by Y itself or by a suspected

explanatory variable X (discussed later), depending

on the purpose of the study. This result holds for

other forms of stratification such as in time if data

values are temporal.

Figure 4. Illustrating the q-function. N and r2 are the number of units and variance of an area, respectively; subscript h¼ 1, … , L, is
the h-stratum; SSH of a population Y is partitioned by either itself Y or its explanatory variable X.
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The q-function, for any given L and P, takes a

value in the interval [0, 1], where 0 reflects no strat-
ified heterogeneity. This implies that each of the L
strata has the same degree of (internal) heterogene-
ity as found across the whole map (Figure 3A). A

value of the q-function equal to 1 indicates complete
within-stratum homogeneity (all data values within
a stratum are the same), which implies that the het-

erogeneity observed across the whole map is due to
the differences between the L strata for the given
partition (Figure 3D).

Evaluation of Different Stratifications

The identification of zones lies at the heart of tradi-
tional regional geography as well as contemporary data

analysis practice concerned with boundary delineation
(e.g., wombling; see Womble 1951) and various forms
of regional clustering or “region-building” (Longley

et al. 2005, 135; Dutilleul 2011, 20–21). As the stratifi-
cation is unknown, we want to find a stratification
strategy to provide the minimum within-group varia-
tion value simultaneously with the maximum between-

group variation value. The boundary between the strata
might exist already, such as geological maps and cli-
mate zones, although they could be reassessed and

revised by new tools; or could be determined through
searches using optimal algorithms, or is divided by
equal intervals, as provide by ArcGIS settings. The

choice among the approaches is based on the context
of the study. In the case of spatial classifiers (Haining
2003, 201–06), the objective function in these meth-
ods is usually constructed by combining a homogeneity

function for within-group variances and a spatial com-
pactness function for their coordinate locations. The q-
function can be treated as the first of these functions.

The advantage of the q-statistic, as we shall see, is that
it is possible to connect the null distribution with a
standard, well-known, distribution such that we can

easily derive its p value.
The q-statistic can be used to make an empirical

evaluation of different stratifications (varying L or

varying the partition for the same value of L) to see
which yields the largest value of the statistic. Taking
the case where L is fixed (we are confident about
the number of strata) and we want to compare two

partitions P1 and P2 that yield L strata, we compute:

Q P1, P2ð Þ ¼ q L; P1ð Þ –q L; P2ð Þ: (5)

If Q(P1, P2) > 0 (< 0) then P1 (P2) yields a

more homogeneous intrastratum partition than P2
(P1). Because Q(P1, P2) ¼ SSB1−SSB2

SST ¼ D P1, P2ð Þ
SST ,

the statistical significance of the difference between
the two partitions can be tested by D(P1, P2). If P1
is the true stratification, then it can be shown that:

D P1, P2ð Þ �approximateN EðDÞ,VðDÞð Þ (6)

with

EðDÞ ¼ r2tr A1 –A2ð Þ þ bTX1
T A1 –A2ð ÞX1b

(7)

VðDÞ ¼ 2tr A1 –A2ð Þ2 þ 4bTX1
T A1 –A2ð Þ2X1b

(8)

where E and V stand for expectation and variance,

respectively; A1 and A2 are A for P1 and P2,
respectively; and X1 is X for one of the partitions,
P1, say. Although there might be many partitions

generating L strata, in practice the number of parti-
tions that will justify comparison should be much

fewer in number.
The individual elements of q(L; P), SSWh, that is

the sum of squares within stratum h and is the L
terms in the numerator of the second term in the
definition of q(L; P) in Equation 3, can be compared

to see which of these strata displays the most (intra-

stratum) heterogeneity. The strata making the larg-
est contribution to the numerator might be

candidates for further partitioning—that is the
increase of L. Comparing partitions involving differ-

ent numbers of strata raises another problem, how-

ever; namely the need to include a penalty to
prevent overstratification. The argument is similar to

that encountered when selecting independent varia-

bles in a regression model where Akaike’s informa-
tion criterion (AIC) is used to compare different

models allowing for differences in model complexity.

A model, A, with more independent variables than
another, B, where the independent variables in B

form a subset of those in A, will fit the data better
but be more complex and this needs to be allowed

for when model fits are compared—in this case two

stratifications with a different number of strata are
identified. AIC penalized estimation based on mini-

mized Kullback–Leibler information between two

probability density functions (PDFs; Akaike 1974)
might be not used directly to compare two stratifica-

tions that differ in terms of L. Figure 5 illustrates
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that spatial statistics become necessary to distinguish

various spatial arrangements that possess the same
marginal PDF or histogram. Consequently, different
SSHs (either partitions or the number of strata, or

both) could share the same AIC. Furthermore, giv-
ing the SSH of the population (patterns composed
of the blue and white pixels in Figure 5), the effects
of each boundary choice (red lines in Figures 5B and

5C), MAUP, are measured by the q-statistic.
SSH is the characteristic of a population (gray

background in Figures 3 and 5, and the bottom layer

of Figure 4), which is first identified by a researcher
or team of researchers imposing a stratification on
the data (stratified by red lines in Figures 3–5) and

then measured by the q(L, P) statistic. The best
stratification is the one that accurately reflects the
SSH of the population. In practice, hundreds of
algorithms have been developed to help find the

best stratification. Table 1 illustrates how the SSH
information propagates from SSH population (q0 2

[0, 1], 0 if the population is iid and 1 for perfect

SSH) to a stratification by a researcher (W 2 [0, 1],
0 if population SSH is completely disregarded and 1
for fully accounted for), which is then measured by

q. In essence, q ¼ Wq0. The case that q¼ 1 indicates
the population displays perfect SSH (q0 ¼ 1), which
is also fully identified by the stratification (W ¼ 1;
Figure 5C stratified by line 1); the case that q¼ 0

indicates either the population being iid (Figures 3A
and 5A) or that SSH population has been poorly
stratified (Figure 5C stratified by line 2). The case

that q value lies between 0 and 1 reflects an SSH
between the two extremes above (Figure 5B strati-
fied by line 1 or line 2 or both).

A population might be SSH from one perspective
but not from another. For example, Figure 5A dis-
plays perfect SSH with two strata of gray and white,
but no SSH from the perspective of a geospatial

zonation partitioned by the red line (q¼ 0).
Sometimes, the interpretability of the findings is

Figure 5. Schematic comparison between classical statistics and spatial statistics. Three spatial distributions measured using classical

statistics (mean value �y and variance r2), spatially autocorrelated Moran’s I (Moran 1950) and spatially stratified heterogeneity q-statistic
(with strata partitioned by red lines). Three 8� 8 pixel boxes displaying the same number of blue (value 1) and white (value 0) pixels

(Nw ¼ NB ¼ 32). q1 and q2 refer to the q values for the population stratified by line 1 and line 2, respectively, q1&2 refers to the q value

for the population stratified by lines 1 and 2. Source: Adopted with revisions from J. F. Wang, Zhang, and Fu (2016).

Table 1. Spatially stratified heterogeneity (SSH) population and its representation by stratification

q ¼ Wq0

SSH of population

Perfect SSH q0 ¼ 1 q0 ¼ (0, 1) iid q0 ¼ 0

Stratification W True W ¼ 1 1 0

W ¼ (0, 1)

Neglected W ¼ 0 0 0

Note: iid 5 independently and identically distributed.
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more important than maximizing q(L, P). For exam-

ple, in analyzing economic data variation, estab-

lished standards of stratification (L, P), such as the

UN’s standard for levels of gross domestic product

per capita, might be chosen to conform with a pre-

existing methodology.

Inference under Spatially Stratified

Heterogeneity

In this section, we provide examples of statistical

analysis when SSH is present in a data set.

Statistics within Homogeneous Strata

Once a partition into homogeneous strata has

been constructed under the case when observations

are independent, conventional statistics can then be

applied to draw inferences about intrastrata proper-

ties as the previous example illustrates (see Figures

2B and 2C). If, on the other hand, intrastratum

observations are SAC, then spatial statistical techni-

ques are needed to draw inferences about intrastrata

properties. Because many of these statistics depend

on the specification of a weights (or connectivity)

matrix W (Haining and Li 2020, chapter 4) for spa-

tial relationships between the observations, a ques-

tion arises as to how to treat those observations

close to the boundary of any stratum. In the interest

of improving statistical precision (particularly if a

stratum has relatively few observations), it might be

appropriate to “borrow” some sample observations

from the “other side” of the stratum boundary.

Although this might introduce some bias into

parameter estimators, such an approach might be jus-

tified, especially in those situations where some seg-

ments of a stratum boundary are more akin to zones

of transition, even if other boundary segments dis-

play abrupt change. An attempt to resolve such a

question is to estimate the nonzero entries in the W
matrix (Haining and Li 2020, 4.10 and 8.4). Kriging

with a moving window and geographically weighted

regression (GWR) would be alternative choices for

spatial interpolation to points when the population

is SSH. The two approaches potentially risk large

error at SSH boundaries, because both approaches

are based on drawing on neighboring samples. Yang

et al. (2022) merged two water basins (two strata) to

form a single homogeneous area when their SSH

was tested to be insignificant to reduce errors in soil

interpolation (Stein, Hoogerwerf, and Bouma 1988).
When interest centers on the spatial distribution

of some parameter, Haining and Li (2020, chapters 7

and 8) described a number of BHMs with spatial

dependency that yield estimates of a heterogeneous

parameter. They illustrate an application of these

methods to samples of household income for

Newcastle-upon-Tyne, England at the middle super-

output area (MSOA) level. An MSOA is a small

area for reporting UK Census data, which is treated

as a single stratum by our method. A sample is col-

lected from a national survey such that not all

MSOAs (strata) have data or many of them only

have a small number of observations. The samples

within each stratum are assumed to be conditionally

independent and identically distributed, that is, con-

ditional on the underlying process generating the

data. It is the set of MSOA-level parameter values

that are SAC. The application involves different

autoregressive models for capturing spatial autocorre-

lation in the spatial distribution of the parameter of

interest (average household income at the MSOA

level). The chosen model, specified in the BHM’s

prior model for the parameter of interest, leads to

information sharing across the MSOAs. BHMs are

fitted using Markov chain Monte Carlo simulation.

Here as in the cases of the other methods described

earlier, additional covariates can be included in the

model to improve the accuracy of the estimates.

Spatial Interpolation with SSH

Areal interpolation is the term used to describe

the process of transferring data from one spatial

framework (“the source”) to a new spatial framework

(“the target” or “reporting” framework); see, for

example, Goodchild, Anselin, and Deichmann

(1993), Haining (2003, 131–38), and Lin, Xu, and

Wang (2023) for an overview. J. F. Wang, Haining,

et al. (2013) described what they termed “the sand-

wich method” to transfer data values from a source

to a target framework appropriate for an SSH popu-

lation (Figure 6). The methodology provides esti-

mates for each target zone with an estimate of error

variance. First, the SSH population is stratified into

homogeneous strata (J. F. Wang, Haining, and Cao

2010) and mean and variance estimates are obtained

for each of the source strata ({h} in Figure 6). Next,
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the SSH population of source zones is overlaid on

the target zone framework ({r} in Figure 6). The

estimates for the target zones are obtained from the

source zones in proportion to the degree of overlap

occurring. Any individual source zone can contrib-

ute to the estimates of multiple target zones. In this

sense, the sandwich approach “borrows strength”

from all the source strata that overlap any particular

target stratum, depending on the geographical

extent and configuration of the source zones rela-

tive to the target zones. This process of borrowing

strength might not be limited to just nearby areas.

Provided that there are sample values in each

source zone, the methodology can be applied with-

out the need of whether they belong to sample data

in a target unit. According to the definition of q
and stratified sampling, the overall error of the

sandwich estimator can be easily derived: mse(y) ¼
(1 – q)(1 – n

N)
r2
n , where n and N stand for the

number of units in the sample and population,

respectively, and r2 is the variance. Clearly, the

error is zero if q¼ 1 and collapses into the error of

the sample mean if q¼ 0.

A number of techniques are proposed to construct

maps of spatial distributions of some SSH attributes
(e.g., annual air temperature by climatic zones) on

the basis of a sample of SAC observations. Means of

surface with nonhomogeneity (MSN), biased senti-

nel hospital area disease estimator (B-SHADE), and

single-point area (SPA) estimators combine Kriging

and stratified sampling to make inferences that are

best linear unbiased (BLUE). MSN is applicable

when all strata have samples (J. F. Wang,

Christakos, and Hu 2009; Hu and Wang 2011; Gao

et al. 2015). The estimator reduces to either Kriging

if SSH is absent or the sandwich estimator (J. F.

Wang, Haining, et al. 2013) if SAC is absent.

When some strata have no observations, B-SHADE

can be used to make a spatial prediction by the ratio

between a sample and the population. This ratio

could be estimated using a covariate. For example,

the ratio in the early years when stations are sparse

in number can be estimated by the observations

from present-day meteorological stations to adjust for

sample bias (J. F. Wang et al. 2011; Hu et al. 2013;

C. D. Xu, Wang, and Li 2018). B-SHADE reduces

Figure 6. Illustrating the sandwich estimator when the population is spatially stratified heterogenous (SSH). A population < is

composed of strata {h¼ 1, ., L} and reporting units {r}. The green shaded area in {h} takes the example of stratum h¼ 4. The red

transparent prism between {h} and {r} illustrates information flowing from {h} to {r}; �y and V�y stand for mean and variance of the attribute

y, respectively; n and N stand for the number of sample units and all units in a stratum, respectively. Subscript h stands for stratum h, hi
stands for the ith sample unit in stratum h; subscript rh stands for a unit formed by the intersection between two units r and h.
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to MSN if all strata have samples. When only a sin-

gle sample unit is available, SPA estimates an areal

mean using a prior relationship that has been identi-

fied between the target variable (e.g., PM2.5) and a

covariate (e.g., PM10) that has been observed in all

strata (J. F. Wang, Hu, et al. 2013).

Spatial Causality

Establishing cause-and-effect associations between

variables is a core interest for scientific researchers

(Einstein 1953), including both deterministic and

stochastic causations (Christakos 2012). By spatial

stochastic causality inferred from spatial characteris-

tics, Christakos (2012) coined the term stochastic
causality to refer to the case where if anything hap-

pens at location A, then something related will hap-

pen at location B with a certain probability, where

B might or might not be spatially coincident with

A. Causality inferences based on binary intervention

or no intervention in natural experiments (Imbens

and Rubin 2015; Pearl and Mackenzie 2018) and

using SAC data (Gao et al. 2023) were developed,

respectively.

Spatial patterns might provide insights into cau-

sality. Snow (1854) mapped the association between

the residential locations of individual deaths from

cholera and the sites of the Broad Street pumps from

which people living in this area obtained their

water. He observed that the number of deaths from

cholera decreased with increasing distance from the

pump (Figure 7C). A more recent story of spatial

causality is the identification of a seafood market as

a possible source of COVID-19 in Wuhan City,

China. This was done by noting that the mass cen-

ter of the cases, rather than that of the citizens in a

city, is significantly closer to the market. The second

support is that the hot spot map of cases is exactly

consistent with the location of the market. The

third support is that the circle centered at the mar-

ket, with the radius equal to the median distance

between the cases and the market, is much smaller

than the circle centered at the market with the

radius equal to the median distance between the

human population to the market (Worobey et al.

2022).
Our axiom is that if X causes Y, then their spatial

patterns (spatial stratified heterogeneities) would

tend to be coupled, in addition to displaying a signif-

icant Pearson’s correlation. A version of the function

q(L; P) can be used to examine the coupling, as

hinted at in Figure 4. In Figure 4 we note that the

partition, P, can be specified in terms of the

observed values of Y, which is the variable to be

tested for stratified heterogeneity, or it could be

specified in terms of a suspected explanatory vari-

able, say X. To make clear which variable is used to

construct the partition, we could write q(L; Px)
when the partition is based on some variable X.
This variable, X, might be either categorical, such as

a land-use type, or quantitative with the property

that the values of X within any of the X-defined
strata are similar but far away between strata.

Suppose that we are able to specify a partition, Px,

Figure 7. Association between (A) two points’ pairs (Pearson 1895), (B) two time series (Zhang et al. 2007), and (C–D) two spatial

patterns (Snow 1854; Wang et al. 2010): From correlation (A) to causality (B–D). The Pearson coefficient is around 0.7 for both (A)

and (B), but (B) has an extra piece of information of the consistency between two nonmonotonous trends. (C) displays the spatial

consistence between the cases density (y) and the distance to a well (x) in a cholera outbreak in London in 1854. (D) displays the

consistency between two complicated spatial patterns formed by the prevalence of neural birth defects (y) and lithology zones (x),
respectively. The coupling is measured by spatially stratified heterogeneity q-statistic.
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of a quantitative variable X. The mean value of X
within a single stratum defines the level of X in that

stratum and all the observed values of X in that

same stratum are similar. If there is causality

between Y and X across the strata then the value of

the function, call it q(L; Px), calculated on Y will

tend to be large (closer to 1). On the other hand, if

there is no causality between Y and X, the value of

q(L; Px), calculated on Y will tend to be small

(closer to 0). This is because if X causes Y then,

within the strata, we should expect Y to be homoge-

neous in the strata of X. In other words, their spatial

patterns, depicted by stratifications (L; Px), tend to

be coupled. The degree of the consistency can be

measured by q(L; Px) of y.
The correspondence between two geographical

shapes might be indicative of a causal association

(Sugihara et al. 2012). Figure 7 illustrates different

graphical forms that could be suggestive of spatial

causality. Figure 7A shows a linear scatterplot

revealing an association between two variables, data

for which have been recorded at the same geo-

graphical locations, with larger values of X associ-

ated with larger values of Y. The Pearson

correlation coefficient is 0.7, providing statistical

evidence of an association. Figure 7B shows two

time series plots spanning 500 years at the same

geographical location. The Pearson correlation coef-

ficient is 0.7 between the two variables, but in

addition the two time series keep the same shape

over the long run. Calculating the Pearson correla-

tion allowing different time lags (temporal shifts)

in the two time series could indicate the response

times in the relationship. Zhang et al. (2007)

inferred that Northern Hemisphere temperature var-

iation influences agricultural production in China.

The irreversibility of the time arrow is often impor-

tant in establishing the nature of any causal rela-

tionship (Runge et al. 2023). By the same line of

thought, the association between two static spatial

patterns (Figures 7C and 7D), especially when

shapes are complicated, could imply a stochastic

causality between the two spatial variables (Figure

4, Figures 7C and 7D). Because space (unlike time)

is not directional, the nature of any causality might

need to call on external, discipline-based knowl-

edge, otherwise the association is at best a descrip-

tion of the “here and now.” This is why it can be

so valuable to analyze space–time and not purely

spatial data.

General Interaction among Variables

As more explanatory variables are introduced into

any analysis, consideration needs to be given as to

how the variables interact to affect the outcome (Y).
In the case of two explanatory variables, X1 and X2,
we can construct maps that reflect the underlying

interaction between them (X1 \ X2) as illustrated

in Figure 8. The interactions include, but are not

limited to, the product interaction association stud-

ied in econometrics (Gujarati and Porter 2009, 263,

287, 470). Further, by comparing the values of

q(X1), q(X2), and q(X1\X2), one can start to

explore how the interaction between X1 and X2
might be associated with linear or nonlinear varia-

tion in the level of Y. Luo et al. (2016) examined

the interaction between determinants of landscape

fragmentation in the United States. B. Xu et al.

(2021) investigated the general interaction between

meteorological indicators and the prevalence of

respiratory viruses in China.

Spatial Goodness of Fit

Yin et al. (2019) developed a new indicator, max-

imum frequent temperature (MFT), to explain the

minimum mortality temperature (MMT) globally.

The Pearson coefficient between MMT and MFT is

much larger than that between MMT and two other

widely adopted indicators (Table 2). Additionally, q
values are calculated with a suggestion that MFT

matches to MMT, spatially, better than the remain-

ing variables considered. Both statistics recommend

the use of MFT to explain MMT.

Geodetector q þ
q is easily integrated with other methods to

enhance their capacities. Examples are q þ Kriging

to map soil pollutions (Yang et al. 2022); q þ GWR

to investigate drought (Ji et al. 2022); q þ InSAR

to identify ground deformation (Chen et al. 2022); q
þ Google Earth Engine to study land-use changes

(Liu et al. 2021); q þ SWAT to assess water conser-

vation functions (Yu, Wang, and Liu 2020); q þ
BHM to model point of interest urban vibrancy (Z.

Wang et al. 2022); and q þ deep learning to map-

ping tree canopy (Guo et al. 2023). For more exam-

ples, please refer to www.geodetector.cn.
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SSH Plot

If X is a quantitative variable, then a bivariate plot

of the means of X against the corresponding means of

Y by strata will indicate the form of any association—

which need not be linear. Note that for the two val-

ues of q(L; Px) with one calculated on Y and the

other on X but with Px for both cases, an extension

is required to determine which of the two variables is

more homogeneous within the strata. Figure 9 decom-

poses the components of the q-function when the aim

is to compare two variables (X and Y). We assume

that the stratification of the map has been derived

based on the spatial variation in the variable X (not

Y). Each circle on the scatterplot refers to a single X-
defined stratum. The center of any circle on the scat-

terplot is defined by the mean values of Y and X
within that stratum, respectively. The size of any cir-

cle is proportional to the size of the stratum (in terms

of population size or areal extent) to give visual

weight to larger strata. However, the shading of any

circle (for stratum h) is based on qh ¼ 1 – [rh
2/r2] cal-

culated on the variable Y. The darker the shading,

the smaller the within-stratum variance of Y (the

within-stratum variance on X is small by construc-

tion) is. We are able to refine this plot further. If any

stratum h comprises several discrete geographical areas

(see Figure 4), then multiple circles for stratum h
could be disaggregated with one for each discrete

area. This might indicate that areas are large and

widely scattered geographically. It might be undesir-

able to do this if each discrete geographical area is

very small, thereby giving rise to the small number

problem (see, e.g., Haining and Li 2020, 81).

Empirical Studies

In this section we review two empirical studies in

geographical (or spatial) epidemiology where the

presence of SSH raises methodological issues.

Figure 8. The general interaction between explanatory variables X1 and X2 impacting on a response variable Y: q(YjX1\X2).

Table 2. Statistical indexes between three temperature indicators and minimum mortality
temperature (Yin et al. 2019)

Annual mean temperature 78th percentile temperature MFT

Pearson correlation 0.71 0.75 0.93

q-statistic 0.56 0.57 0.87

Note: MFT¼maximum frequent temperature.
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Obtaining a Map of Breast Cancer Incidence Using
Sample Data: Comparing Sandwich and Kriging
(China National Cancer Centre 2019)

Breast cancer mortality rates in the more than

2,700 counties of China in 1992 were collected from
China’s Center for Disease Control (CDC;
Figure 10A). Moran’s I test for spatial autocorrela-

tion (using the four nearest counties as neighbors
when specifying the W matrix) gave a value of
0.195 (p¼ 0.001). We calculated q for eight different

partitions (L¼ 3, 4, … , 10 strata) of the breast

cancer mortality data and the partition is based on

selecting a large value of q while restricting the

number of partitions (L). We chose the stratification

(L¼ 5), which gave rise to the first significant value

of q at the 1 percent level (q¼ 0.6381 with

p< 0.01) while “penalizing” for increasing values of

L (see Table 3). As we move from L¼ 4 to L¼ 5, q
increases by 0.074 (from 0.564 to 0.638) and from a

p value of 0.029 (not significant at the 1 percent

level) to a p-value of 0.007 (significant at the 1 per-

cent level). At the next level of stratification from

L¼ 5 to L¼ 6, the improvement in L (which by def-

inition must occur) is less than occurred when mov-

ing from four to five strata (0.061 compared to

0.074), indicating a decrease in the size of the

improvement relative to the improvement when

moving from L¼ 4 to L¼ 5. We are implicitly

invoking a criterion of simplicity when trying to

reach statistical significance of q with smaller L, a

problem we will discuss again later. These two statis-

tics (Moran’s I and the q-function) indicate that the

breast cancer mortality data display both spatial

autocorrelation and SSH at the county support.
The SSH-based sandwich method used the mor-

tality data from sixty-four sample counties (see

Figure 10A) to construct a county-level map of

Figure 10. Interpolation of (A) breast cancer mortality sample data using (B) spatially autocorrelated-based Kriging, and (C) spatially

stratified heterogeneity–based sandwich methods.

Table 3. q-function calculated for breast cancer mortality
rates in China in 1992

L

3 4 5 6 7 8 9 10

q-function 0.400 0.564 0.638 0.699 0.733 0.774 0.818 0.823

p value 0.024 0.029 0.007 0.000 0.000 0.000 0.000 0.000

Figure 9. q-function scatterplot. Arrows point in the direction of

increasing values. Each circle refers to a single X-defined stratum.

The size of any circle is proportional to the size of stratum. The

shading of any circle is based on qh ¼ 1 - rh
2/r2 calculated on Y,

and the darker the shading the smaller the variance qh. The

scatterplot suggests, descriptively, a weak, inverse relationship

between X and Y at the scale of seven aggregate strata of varying

size. There might be a case for disaggregating the large circle,

third from the right, if it comprises several discrete geographical

areas. The same comment might apply to the two other larger

circles—first from the right and third from the left.
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breast cancer mortality for all the counties of China

in 1992 (Figure 10C). The results obtained by this

method and by Kriging (Figure 10B) were compared

with the known mortality rates from the CDC data-

base. The leave-one-out validation R2 derived from

sandwich mapping is 0.705, whereas for Kriging the

value is 0.532. In this instance and therefore by the

R2 criterion, sandwich mapping outperforms Kriging.

The mechanism behind the statistical findings could

be that breast cancer (population) shows more SSH

than SAC, perhaps reflecting SSH between urban

and rural areas, epidemiologically. Therefore, an

SSH-based estimator is theoretically more appropri-

ate than an SAC-based estimator in this case. Aside

from the many different reporting units that could

have been presented derived from the original sam-

ple, the sandwich method has the particular merit of

invoking simple modeling assumptions coupled with

full utilization of the sample data through stratifica-

tion rather than using only the nearest neighbor

data values as in the case of Kriging. The evidence

from this example indicates that the sandwich

method performs well. It outperforms Kriging when

the variable exhibits SSH. It clearly needs more

work to determine whether this property holds more

generally, particularly in the case when methods of

Kriging, developed for heterogeneous surfaces, have

been implemented.

Spatial Attribution of Neural Tube Defects in
Heshun County

We summarize our findings from a pilot project

investigating the factors associated with the geo-

graphical distribution of cases of neural tube defects

(NTDs) in Heshun County, Shanxi Province (J. F.

Figure 11. (A) Example data of neural tube defect (NTD) incidence (Y) and suspected factors (X) (B) watershed, (C) soil type, and

(D) elevation level. Source: Adapted from J. F. Wang, Li, et al. (2010).
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Wang, Li, et al. 2010). It is an area with one of the

highest NTD incidence rates in China. The factors
(X) believed to be responsible for variation in NTD
incidence (Y) include the physical environment,
man-made pollution, and nutrition. The factors (X)
are measured at both a nominal level and a quanti-
tative level and exhibit SSH (see Figure 11). The q-
function (Figure 4) was used to examine the spatial

association between NTD incidence and the sus-
pected factors (x). The procedure for examining the
association between a Y and any particular x is as

follows. First, the map for the selected x is stratified
to be Px. Second, the map for y is overlaid on the
stratified map Px of the chosen x. Finally, the data

on y are used to calculate q(L, Px). Software to cal-
culate q is available at www.geodetector.cn.

Figure 12 presents the q-function scatterplot
between NTD incidence (Y) and elevation (X), a

proxy for one of the suspected determinants. The
scatterplot visualizes the SSH information of the
data. For example, the rate of NTD incidence at ele-

vation 1,300m is high (6.9 percent) but very vari-
able as indicated by the white color of the circle.
Moreover, the stratum area to which these data refer

is small (as indicated by the size of the circle).

The four dark circles on the plot indicate elevations

where NTD incidences are not highly variable but

there is no evidence of a simple linear relationship

between NTD incidence and elevation.
Table 4 presents the q-function between NTD

incidence (Y) and three of the suspected determinants

(Xs). The study found that some environmental fac-

tors (watershed type and elevation but not soil type)

were found to be significantly associated with varia-

tion in NTD occurrence in the region. Usually water

quality and the geological chemical environment are

more similar within watersheds than between water-

sheds. Non-environmental factors (not reported here)

were of secondary importance. These findings were

helpful for identifying what courses of action would

be most appropriate for disease intervention in the

region (see J. F. Wang, Li, et al. 2010).

Figure 12. q-function scatterplot between neural tube defect incidence (Y) and elevation (X).

Table 4. q-function calculated for neural tube defect
incidence using strata constructed for different suspected

determinants

Watershed Elevation Soil type

q-statistic 0.64 0.61 0.39

p value 0.00 0.04 0.36
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In both of the examples and in several of the ear-

lier sections, statistical results depend on the scale

(size) of, or partitioning associated with, the report-

ing units (referred to as the MAUP; Openshaw

1984; Ge et al. 2019). This is an issue endemic

within spatial analysis when working with areal

units. Typically, the methods described here do not

appear to give rise to any additional or significant

scale effects because the reporting units themselves

are unaffected (with the possible exception of some

uses of the sandwich method where some source

zones might be divided up and distributed over two

or more target zones). The creation of homogenous

subsets, however, adds another layer of the partition

effect. This is why it is important to detect and jus-

tify the presence of spatial heterogeneity with the

implementation of the corresponding methodology

to identify homogeneous subsets as described earlier

and discussed further next.

Discussion and Conclusions

SSH is prevalent when data cover a large geo-

graphical area or where the data are in high resolu-

tion. The problems caused by SSHy to statistics that

assume homogeneity can be resolved or at least

reduced if the structure of the heterogeneity can be

identified, such that the map can be partitioned into

homogeneous subpopulations. Conventional (iid)

statistical methods can be used in each stratum if

observations are independent, and spatial statistical

methods should be used if the observations are SAC.

If the structure of the SSH can be identified, then it

can also be used to design sampling schemes that

will help in drawing a representative sample that

provides coverage of the different strata and reduces

estimator bias.

Identifying SSH offers an opportunity for spatial

interpolation when SAC is absent or weak. Besides

providing a measure of SSH, the q-function can be

used to explore the nonlinear association between

the spatial patterns of two variables and has clear

physical meaning, as was discussed earlier. Table 5

summarizes tools that are often used for data show-

ing different states (presence–absence) of SSH

and SAC.

Although in certain research contexts SSH is

endemic with numerous algorithms developed for

spatial clustering, it has not received the attention

that other special characteristics of spatial data have

received. The development of statistics for SSH will

add to the toolbox of exploratory spatial analysis

techniques, alongside techniques for exploring data

that are SAC (Anselin 1995).

Table 5. Examples of techniques when working with spatially stratified heterogeneous data

The statistical characteristics of geographical variables

Spatially stratified heterogeneity (SSH) (measured by q-function)

Absent Present

Spatial autocorrelation Absent Classical (iid) statistics Spatial clustering methods, wombling,

areal interpolation, sandwich

estimation

Present Spatial statistics applied to

identically distributed (id)

data: Kriging, etc.

MSN (stratified sample), B-SHADE

(biased sample), SPA (single-point

sample), hierarchical modeling

Causality inference for or by SSH

Note: MSN¼means of surface with nonhomogeneity; B-SHADE¼ biased sentinel hospital area disease estimator; SPA¼ single-point area.

Figure 13. Nonmonotonic population (red curve) and modeling strategies (blue lines). GWR¼ geographically weighted regression.
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Cressie (1993) remarked, “Whether one chooses

to model the spatial variation through the (nonsto-

chastic) mean structure (called large scale variation

… ) or the stochastic dependence structure (called

small scale variation) depends on the underlying sci-

entific problem, and can sometimes be simply a

trade-off between model fit and parsimony in model

description. What is one person’s (spatial) covariance
structure may be another person’s mean structure” (25).

This remark is relevant to the relationship between

the characteristics of heterogeneity and spatial auto-

correlation and how it might be handled in the

course of data analysis (Atkinson and Tate 2000).

For example, the behavior of local indicators of spa-

tial association (LISA), Getis–Ord statistics, and

GWR, all exploratory statistics, could be reflecting

either local spatial autocorrelation (Anselin 1995;

Sui 2006, 494) or spatial heterogeneity (Goodchild

and Haining 2004; Anselin 2006). The semivario-

gram, well known in geostatistics, underpins Kriging.

It is an interpolation method based on the spatial

autocorrelation properties of a set of data. The

method can also be employed to identify spatial het-

erogeneity (see Isaaks and Srivastava 1989, 223–24

and Figure 9.5; 292 and Figure 12.2 also discuss the

use of the correlogram in Kriging). The two con-

cepts, spatial heterogeneity and spatial autocorrela-

tion, do not reflect distinct and separate features of

spatial data. To paraphrase Cressie, “one person’s

heterogeneity in the mean may be another person’s

local or global spatial autocorrelation.” That said,

one of the central points of this article has been to

argue that SSH might, as in the examples presented

here, fit better with the scientific problem and pro-

vide a satisfactory trade-off between model fit and

model complexity.

SSH offers an important opportunity for detection

of spatial causality and for general interaction.

When Y is nonmonotonically linked to X, modeling

globally could be confounded (Christakos et al.

2017; Figures 2A and 13A), whereas a local model

might be overfitting and neglects trends in the popu-

lation (Figure 13C). Actually, a simple solution to

the confounding is to partition the population into

homogenous strata (Figure 13B), such that one can

model the strata and regress the trends in strata,

respectively, as suggested earlier. A further benefit

from acknowledging SSH rises from the combining

of the SSW and SST statistics as in the Geodetector

q-function (Figure 4) so that the nonmonotonic

association between two variables can be explored

(Figure 13B), which could be missed by more con-
ventional linear modeling.

As a new tool to analyze SSH, we believe two
issues related to the q-function need further investi-

gation. First, the value of q(L, P) depends on both
the number of strata and the spatial structure of the

stratification. In some circumstances there could be
a large number of plausible stratifications (in terms

of both L and P) and efficient methods are needed

to compare them. Closely related to this point, the
decision on the number of strata to employ involves

a trade-off between complexity (the number of
strata) and the level of intrastratum homogeneity as

discussed earlier. (How can we be sure that we have
chosen the best L and P? Should it just be a statisti-

cal decision? How much substantive knowledge
should be drawn on to make the final choice and

how sensitive are our results to the chosen L and P?)
In keeping with other forms of statistical decision-

making, an AIC statistic could provide a way to for-

malize this trade-off, as suggested earlier, but more
work is needed to assess this because AIC is not

directly applicable. The reason is that the PDF that
AIC is based on is not on a one-to-one mapping

with the spatial distribution on which the q-function
is based. For example, different spatial distributions

(stratifications) might share the same PDF. Second,
although spatial autocorrelation and SSH are two

important characteristics of spatial data, the relation-

ships between them and the influence of one on the
other in the conduct of spatial data analysis need

further investigation. Notwithstanding these con-
cerns, there are a few rules of thumb that should be

helpful in choosing (L, P) as we illustrated in this
article.
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