Decadal variability of ice-shelf melting in the Amundsen Sea driven by sea-ice freshwater fluxes

Haigh, Michael ORCID:; Holland, Paul R. ORCID: 2024 Decadal variability of ice-shelf melting in the Amundsen Sea driven by sea-ice freshwater fluxes. Geophysical Research Letters, 51 (9), e2024GL108406. 10, pp.

Before downloading, please read NORA policies.
Text (Open Access)
© 2024. The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Geophysical Research Letters - 2024 - Haigh - Decadal Variability of Ice‐Shelf Melting in the Amundsen Sea Driven by.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (4MB) | Preview


The ice streams flowing into the Amundsen Sea, West Antarctica, are losing mass due to changes in oceanic basal melting of their floating ice shelves. Rapid ice-shelf melting is sustained by the delivery of warm Circumpolar Deep Water to the ice-shelf cavities, which is first supplied to the continental shelf by an undercurrent that flows eastward along the shelf break. Temporal variability of this undercurrent controls ice-shelf basal melt variability. Recent work shows that on decadal timescales the undercurrent variability opposes surface wind variability. Using a regional model, we show that undercurrent variability is induced by sea-ice freshwater fluxes, particularly those north of the shelf break, which affect the cross-shelf break density gradient. This sea-ice variability is linked to tropical Pacific variability impacting atmospheric conditions over the Amundsen Sea. Ice-shelf melting also feeds back onto the undercurrent by affecting the on-shelf density, thereby influencing shelf-break density gradient anomalies.

Item Type: Publication - Article
Digital Object Identifier (DOI):
ISSN: 0094-8276
Additional Keywords: Amundsen Sea, ice shelves, sea ice, undercurrent, decadal variability
Date made live: 10 May 2024 11:30 +0 (UTC)

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...