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Abstract. Correctly representing the response of vegetation productivity to water availability in Earth system
models (ESMs) is essential for accurately modelling the terrestrial carbon cycle and the evolution of the cli-
mate system. Previous studies evaluating gross primary productivity (GPP) in ESMs have focused on annual
mean GPP and interannual variability, but physical processes at shorter timescales are important for determining
vegetation–climate coupling. We evaluate GPP responses at the intraseasonal timescale in five CMIP6 ESMs
by analysing changes in GPP after intraseasonal rainfall events with a timescale of approximately 25 d. We
compare these responses to those found in a range of observation-based products. When composited around
all intraseasonal rainfall events globally, both the amplitude and the timing of the GPP response show large
inter-model differences, demonstrating discrepancies between models in their representation of water–carbon
coupling processes. However, the responses calculated from the observational datasets also vary considerably,
making it challenging to assess the realism of the modelled GPP responses. The models correctly capture the
fact that larger increases in GPP at the regional scale are associated with larger increases in surface soil moisture
and larger decreases in atmospheric vapour pressure deficit. However, the sensitivity of the GPP response to
these drivers varies between models. The GPP in NorESM is insufficiently sensitive to vapour pressure deficit
perturbations when compared all to other models and six out of seven observational GPP products tested. Most
models produce a faster GPP response where the surface soil moisture perturbation is larger, but the observa-
tional evidence for this relationship is weak. This work demonstrates the need for a better understanding of
the uncertainties in the representation of water–vegetation relationships in ESMs and highlights a requirement
for future daily-resolution observations of GPP to provide a tighter constraint on global water–carbon coupling
processes.

1 Introduction

The flux of carbon into the land surface resulting from photo-
synthesis is referred to as gross primary productivity (GPP).
Terrestrial GPP is the single largest component flux in the
global carbon cycle, with typical estimates of its magnitude
being in the region of 140 PgCa−1 (Canadell et al., 2021). As
such, it plays a key role in modulating the atmospheric car-
bon dioxide concentration, and the terrestrial biosphere has
taken up around a third of anthropogenic CO2 emissions over
recent decades (Friedlingstein et al., 2022). Understanding
the processes that control this uptake is critical to our ability

to correctly model climate because any change has poten-
tially significant implications for the accumulation of CO2 in
the atmosphere. Relevant processes include a number of lim-
iting factors, such as the availability of nutrients (Fernández-
Martínez et al., 2014), fertilisation by atmospheric carbon
dioxide (Chen et al., 2022), and water – the focus of this
study – in terms of both soil moisture that is accessible to
plants and the atmospheric vapour pressure deficit.

Without sufficient available water for transpiration, or
when there is high atmospheric demand (corresponding to
a high vapour pressure deficit, VPD), plants close their stom-
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ata. As a consequence, they are unable to replenish leaf-
internal carbon dioxide, and thus photosynthesis is down-
regulated. The water and carbon cycles are thus intrinsically
linked, and the availability of water is a first-order determi-
nant of terrestrial GPP. There is growing evidence that the
growth rate of atmospheric CO2 is sensitive to changes in
terrestrial water storage (Humphrey et al., 2018; Liu et al.,
2023) and a reasonable hypothesis is that this signal is in
part controlled by the response of photosynthesis to water
availability in soil. In climate models, the representation of
downregulation of GPP due to lack of available soil water
is typically quite crude. A commonly used approach is to
model the potential, un-stressed GPP and then apply a scalar
which is determined by a linear ramp between some bounds,
below which no photosynthesis occurs and above which it
is unaffected by soil moisture. This avoids the complexities
of implementing more process-based schemes, such as that
of Bonan et al. (2014), into climate models, as these intro-
duce additional poorly constrained parameterisations. How-
ever, the schemes currently employed are sensitive to choices
such as soil hydraulic parameters and the depth over which
the soil moisture stress factor is calculated (Harper et al.,
2021). These decisions, implemented by modelling groups,
will lead to differences in the response of the modelled GPP
to soil moisture.

It is generally the case that the stomatal conductance de-
creases with increasing VPD and hence lowers the rate at
which CO2 is drawn into the substomatal cavity to replen-
ish that used in photosynthesis. However, empirical studies
reveal a complex relationship between water use efficiency
(WUE, the amount of carbon assimilation per unit of water
transpired) and VPD, and consequently, the relationship with
GPP is not straightforward (Grossiord et al., 2020). The land
surface components of many climate models use variants of
the Ball–Berry scheme (Ball et al., 1987). This approach re-
lates the stomatal conductance to the carbon assimilation and
atmospheric humidity via empirical parameters, assuming a
linear response. Commonly used extensions to Ball–Berry
in climate models, in particular that developed by Leuning
(1995), provide more realistic responses of stomatal conduc-
tance to VPD but still rely on empirical parameterisation and
do not appear to have much additional skill over the origi-
nal Ball–Berry model when used for large-scale simulations
(Knauer et al., 2015). As a consequence the relationship be-
tween GPP and VPD in climate models remains fairly crude.
A key assumption in many climate models is that the slope
of the relationship between stomatal conductance and VPD
can be assigned globally (often on the basis of plant func-
tional type) and is not affected by environmental conditions
(Knauer et al., 2015). A further confounding factor is that
the interpretation of the effects of VPD and soil moisture on
GPP tend to be complicated by their interdependence on each
other. High VPD will generally coincide with dry soils and
vice versa due to feedbacks between surface energy and wa-
ter fluxes and the lower atmosphere.

A key problem in trying to evaluate the processes in cli-
mate models involved in the water controls on photosynthesis
in models is that observations of GPP on large spatial scales
tend to be heavily modelled themselves. For example, the
MODIS GPP product (MOD17) is based on a light use ef-
ficiency approach where the primary satellite data input is
the fraction of absorbed photosynthetically active radiation
(Running et al., 2004). The efficiency by which the absorbed
light is used to drive carbon assimilation is modelled, with
meteorological drivers as inputs. Consequently, any differ-
ence between GPP predicted by a climate model and the cor-
responding MODIS data could be due to the modelled effi-
ciency term in MOD17. Arguably, a better point of contact
between the models and the MODIS data would be the frac-
tion of absorbed photosynthetically active radiation (fAPAR)
itself as this is more directly derived from the actual satellite
observations (Zobitz et al., 2014), but this contains no direct
information about water.

Another approach to estimating GPP on global scales,
which has been gaining much traction in recent years, is to
upscale eddy-covariance-based estimates of GPP from flux
tower networks using Earth observation (EO) and meteoro-
logical data as inputs to regression models. The FLUXCOM
GPP product, for example, uses a wide range of data from the
MODIS sensors, including vegetation indices and land cover
data, meteorological data from ERA-Interim, and a range of
machine learning techniques to upscale the FLUXNET data
record (Jung et al., 2020; Tramontana et al., 2016). Whilst
these methods show great promise, their reliance on the flux
towers means that the data they are trained on contain sam-
pling bias toward northern temperate regions, with relatively
few data across the tropics. This is particularly problematic
as the majority of global GPP occurs in these tropical re-
gions, so this data scarcity is a key contributor to uncertainty
in global total GPP (Schimel et al., 2015). The tropics are
also likely to be a key region in which water will influence
vegetation productivity as the climate changes (Worden et al.,
2021).

Solar-induced fluorescence (SIF) observations from space
offer a new and potentially transformative information source
on large-scale GPP (Pickering et al., 2022). SIF is a
by-product of photosynthesis, and observations are hence
directly related to the biochemical mechanisms control-
ling GPP in a way not available from other global-scale
data sources. However, mechanistic estimates of GPP from
satellite-observed SIF are not yet routinely available, and
most existing products are generated using statistical regres-
sion (Bai et al., 2022; Alemohammad et al., 2017). In addi-
tion, the EO-based SIF data record is relatively short, with
longer-term data records (such as from GOSAT) having rel-
atively sparse spatial sampling.

Previous evaluations of GPP in global models have typ-
ically focused on annual mean GPP, interannual variability,
and trends (Piao et al., 2013; Anav et al., 2015; Slevin et al.,
2017; Kim et al., 2018; Hu et al., 2022). These studies have
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shown that although models can produce reasonable spatial
and seasonal distributions of GPP, there is a large inter-model
range in mean global GPP (Piao et al., 2013; Anav et al.,
2015; Kim et al., 2018; Hu et al., 2022). The observation-
based products used for evaluation also have large differ-
ences in mean global GPP (Anav et al., 2015). Models pro-
duce a mean annual GPP that is sensitive to interannual vari-
ations in temperature, precipitation, and radiation (Piao et al.,
2013; Anav et al., 2015), but there is uncertainty in the mag-
nitude of the GPP interannual variability, and it tends to be
too weak in observation-based products compared to models.

However, studies using daily observational data have
shown that vegetation also responds to intraseasonal vari-
ability in precipitation (Guan et al., 2014; Wu et al., 2022;
Harris et al., 2022). Evaluating modelled GPP responses
at these shorter timescales offers an opportunity to investi-
gate the physical processes linking climate drivers to GPP.
In many regions, the intraseasonal variability of vegetation
strongly influences vegetation–climate coupling out to inter-
annual timescales (Guan et al., 2014, 2018; Wu et al., 2021;
Barnes et al., 2021). Correctly modelling GPP responses to
shorter-term variations in precipitation could therefore im-
prove estimates of land carbon uptake on climate-relevant
timescales.

Here, we investigate how GPP (and other linked variables,
such as soil moisture and vapour pressure deficit) responds to
intraseasonal precipitation events in different CMIP6 models
and assess against a range of observation-based GPP prod-
ucts to get physical insight into which models have realistic
rainfall–GPP coupling processes. An issue in comparing cli-
mate model outputs in terms of their rainfall–GPP responses
is that the timing, magnitude, and location of precipitation
events are likely to be inconsistent. Consequently any differ-
ences in the modelled GPP could be due to differences in the
simulation of the rainfall regime itself. The approach we have
adopted is to identify the timing of peak intraseasonal precip-
itation events (Harris et al., 2022) and compare the response
of other variables relative to that point in time. We show that,
whilst models agree on the timescales of the response of soil
moisture to precipitation events, there are considerable dis-
crepancies between models in the response of GPP to pre-
cipitation. This points to disagreement in the processes that
couple available water and GPP in the models. Furthermore,
we note that observational GPP products also exhibit similar
levels of disagreement in the timing of response of GPP to
rainfall, pointing to the need for better data products.

2 Data and methods

2.1 CMIP6 model data

We compare vegetation productivity responses in models
from the CMIP6 esm-hist experiment (Eyring et al., 2016).
This experiment covers the recent historical period from
1850 to 2014. Only data from 2000–2014 are included in our

analysis in order to permit a fair comparison with the avail-
able satellite observations. To investigate vegetation produc-
tivity responses to intraseasonal rainfall variability, we re-
quire daily or sub-daily model output data for precipitation
and GPP. These data are available for the esm-hist experi-
ment for only five models: ACCESS-ESM1-5, BCC-CSM2-
MR, CNRM-ESM2-1, NorESM2-LM, and UKESM1-0-LL.
We use the precipitation fields provided at daily resolution
and take the daily mean of the GPP data, which is made avail-
able at 3 h resolution. These models also all provide daily sur-
face soil moisture (mrsos) data: this is the mass of water in
the upper 10 cm of soil. We compute daily near-surface VPD
from near-surface air temperature (tas) and relative humidity
(hurs). This is done by first computing the saturation vapour
pressure es according to Tetens’ formula (Bolton, 1980):

es = 6.112exp
(

17.67× tas
tas+ 243.5

)
, (1)

where tas is expressed in degrees Celsius (°C). The vapour
pressure deficit is then

VPD= es

(
1−

hurs
100

)
. (2)

Near-surface relative humidity is not available at daily reso-
lution for BCC-CSM2-MR, so this model is excluded from
the VPD-focused sections of our analysis. All model data are
regridded to 1°× 1° horizontal resolution using land-area-
weighted averaging.

2.2 Observational datasets

Intraseasonal rainfall events are identified using the Inte-
grated Multi-satellitE Retrievals for GPM (IMERG) V06
daily product (Huffman et al., 2019). Surface soil moisture
is assessed using both the ESA CCI Soil Moisture com-
bined active–passive microwave product v06.1 (Dorigo et al.,
2017; Gruber et al., 2019) and the Global Land Evaporation
Amsterdam Model (GLEAM) v3.6a (Miralles et al., 2011;
Martens et al., 2017). GLEAM models the distribution of soil
water content based on Multi-Source Weighted-Ensemble
Precipitation (MSWEP) v2.8 (Beck et al., 2017) and cor-
rects the soil moisture of the top model layer by assimilat-
ing the ESA CCI Soil Moisture combined product. The two
surface soil moisture datasets are therefore not independent,
but both are tested here to ascertain whether the differences
in the products affect the assessment of the CMIP6 models’
surface soil moisture. ESA CCI Soil Moisture has the advan-
tage of being less reliant on model algorithms, while the sur-
face soil layer in GLEAM is 10 cm deep and may therefore
be more representative of the CMIP mrsos variable, which
is defined over the same depth. The microwave observations
used in ESA CCI Soil Moisture measure varying soil depths
but are typically taken to quantify soil moisture in the top
2–5 cm (Ulaby et al., 1982). We compute near-surface VPD
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from ERA5 reanalysis data for 2 m air temperature and 2 m
dew-point temperature (Hersbach et al., 2020).

Daily GPP data are obtained from FLUXCOM
RS+METEO (Jung et al., 2020). FLUXCOM RS+METEO
uses machine learning to upscale estimates of terrestrial
carbon fluxes from eddy covariance flux towers to create a
global gridded GPP product based on remote sensing and
meteorological forcing data. We test versions of FLUXCOM
RS+METEO using two different meteorological forcing
datasets: ERA5 and CRU JRA v1.1 (Harris et al., 2014;
Kobayashi et al., 2015; Harris, 2019). For each of these
forcing datasets, we use the ensemble median GPP over
three machine learning methods and two flux partitioning
methods, as detailed by Tramontana et al. (2016) and Jung
et al. (2019). Note that while the meteorological forcing data
are updated daily, the remote sensing driving data are based
on mean seasonal cycles (Jung et al., 2020).

Whilst daily data are preferable for investigating intrasea-
sonal variability, information can also be obtained from other
sub-monthly GPP datasets. Incorporating these datasets into
the analysis allows a better understanding of the uncertainty
in our results that arises from the need to derive GPP from di-
rect observations. We include the 8-daily MODIS Terra GPP
product (Running et al., 2015), as quality-controlled and re-
gridded by Kern (2021). We also analyse the 8-daily VPM
GPP product (Zhang et al., 2017a), which is intended to pro-
vide an alternative to MODIS Terra GPP by using the im-
proved light use efficiency theory of the vegetation photo-
synthesis model (VPM). The VODCA2GPP dataset (Wild et
al., 2022), which estimates GPP based on vegetation optical
depth (VOD) retrieved from passive microwave observations,
is also produced at 8 d resolution.

Satellite observations of solar-induced chlorophyll fluo-
rescence (SIF) provide an additional way of estimating GPP
at the global scale. SIF is approximately linearly correlated
with GPP (Frankenberg et al., 2011), although the relation-
ship varies with season and vegetation type (Chen et al.,
2021). We therefore also compare the modelled GPP re-
sponses with SIF data that are spatially downscaled from
GOME-2 observations (Duveiller et al., 2020). This prod-
uct includes data based on two different methods of retrieval
from GOME-2: Joiner et al. (2013), henceforth labelled JJ,
and Köhler et al. (2015), labelled PK. These datasets have a
temporal resolution of 8 d using a 16 d rolling window.

All observational products are available for the complete
period 2000–2014, except for IMERG, which is available
from June 2000 onwards, and the GOME-2 SIF data, which
are available from 2007 onwards. All products are regridded
by land-area-weighted averaging to a horizontal resolution of
1°× 1°.

2.3 Compositing around intraseasonal precipitation
events

Intraseasonal precipitation events are identified using the
method of Harris et al. (2022). Long-term linear temporal
trends in the data are removed before processing. For each
1°× 1° grid box, we apply a 25 d low-pass Lanczos filter
to the daily precipitation anomaly, where the anomaly is
computed relative to the climatology for a 7 d rolling win-
dow. This removes variability at frequencies higher than
25 d from the anomaly time series. Intraseasonal precipita-
tion events are then defined as local maxima of the filtered
time series that lie above 1 standard deviation from the mean.
This method identifies wetter-than-usual intraseasonal peri-
ods with a characteristic timescale of approximately 25 d.
The elevated precipitation associated with an intraseasonal
wet event may be a single large rainfall event or it may com-
prise several shorter bursts of rainfall. Using such a filtering
approach ensures that the driving precipitation composites
have a consistent timescale so that they provide a fair basis
on which to compare the timescales of the GPP responses
between the models and the observations. The dates of these
events are identified separately for each CMIP6 model and
for IMERG. Due to gaps in the IMERG dataset at high lati-
tudes, this procedure results in far fewer observed events than
modelled events outside the latitude band 60° S–60° N. We
therefore restrict all analyses of both modelled and obser-
vational data to 60° S–60° N in order to ensure a fair com-
parison between the two. We then composite daily standard-
ised anomalies (relative to 7 d rolling climatology) of pre-
cipitation, SSM, VPD, and GPP around the dates of the in-
traseasonal precipitation events. For the observational GPP
products with 8 d resolution, the standardised anomalies are
computed relative to a 31 d rolling climatology instead of 7 d
to ensure sufficient data for the climatological averaging. It
should be noted that the composited variables do not undergo
Lanczos filtering; the filter is only used to determine the dates
of the precipitation events around which to composite.

The results are aggregated over regions containing multi-
ple grid boxes to increase the number of precipitation events
contributing to each composite. Only grid boxes with valid
ESA CCI Soil Moisture observations are included to max-
imise our observational knowledge of the surface soil mois-
ture perturbations that are driving the GPP responses. Al-
though this eliminates tropical forest regions from the analy-
sis, it is found to make only a small difference to the result-
ing GPP composites, since vegetation in these regions does
not respond strongly to intraseasonal wet events compared to
vegetation in water-limited regions (Harris et al., 2022). We
also remove frozen grid boxes from the composites by dis-
carding events in months when the median of maximum 2 m
air temperature is below 0 °C.
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3 Results

3.1 Global evaluation

Global (60° S–60° N) composites of precipitation, surface
soil moisture, and GPP around intraseasonal wet events are
shown in Fig. 1. The composites of precipitation are simi-
lar between the CMIP6 models and observations (Fig. 1a),
indicating that our method successfully creates similar stan-
dardised anomalies of precipitation driving the land surface
responses in each case. The surface soil moisture responses
following these wet events are also similar between mod-
els (Fig. 1b), with consistent maximum standardised anoma-
lies 2–3 d after the wet event peak and comparable longer-
term anomalies of elevated soil moisture out to 60 d. The ob-
served surface soil moisture composites from the GLEAM
and ESA CCI products are also a reasonable match to the
CMIP6 models. The models are in better agreement with the
observed composite obtained from GLEAM, which may be
due to GLEAM representing the same depth of soil surface
layer as the model output.

However, the responses of GPP to the intraseasonal wet
events show large inter-model differences (Fig. 1c). All mod-
els exhibit a positive GPP anomaly in the days following
the peak of wet events, but the amplitude and timing of this
anomaly vary greatly. CNRM-ESM and UKESM produce
a larger standardised anomaly in GPP than the other mod-
els, while ACCESS-ESM and NorESM show the smallest
responses. NorESM also has the slowest response in GPP,
with the peak GPP anomaly occurring 22 d after the peak
precipitation anomaly compared to 4 d for BCC-CSM, the
fastest-responding model. The models also show contrasting
behaviour leading up to the peak of the wet events: some
have a much larger negative GPP anomaly than others, asso-
ciated with a reduction in downwelling shortwave radiation
during the wet events. However, in this study we focus on the
post-event characteristics of the GPP response.

To investigate which of the modelled productivity re-
sponses are realistic, the wet event GPP composites are
shown in Fig. 1d for a variety of datasets based on obser-
vations (as described in Sect. 2). While composites obtained
from the same family of observational products (e.g. the two
SIF retrieval methods) are similar to one another, there is a
large spread in the responses between the types of observa-
tional products, with anomaly magnitudes and timings cover-
ing most of the behaviour seen in the models. The exception
to this is the faster response of BCC-CSM, for which we do
not find any observational evidence.

Whilst a horizontal resolution of 1° is relevant for eval-
uating ESMs, which represent an average coarse-scale be-
haviour of the Earth system, it is possible that the intrasea-
sonal precipitation events and the vegetation responses do
not spatially co-occur within this 1° grid box in observa-
tions. Therefore, to test whether the 1° GPP responses are
attributable to the precipitation anomalies, we also composite

the GPP response around intraseasonal wet events using the
IMERG and VPM datasets at 0.25 and 0.1° horizontal reso-
lution. The global composite GPP response is not found to
be sensitive to spatial resolution (Fig. S1 in the Supplement).
This indicates that the coarser 1° response, which represents
the vegetation response at a scale relevant to ESMs, is repre-
sentative of the processes occurring at much smaller spatial
scales in the real world.

It is therefore clear that there is great uncertainty in the
response of GPP to intraseasonal rainfall events in CMIP6
Earth system models but that the observations also fail to
constrain this response. This makes it challenging to assess
which of the model responses are most realistic from a global
perspective. In order to further investigate whether the mod-
els are providing appropriate GPP responses, we therefore
move to a regional evaluation.

3.2 Regional evaluation

To provide a regional assessment of GPP responses to in-
traseasonal rainfall events, we create composites for each
IPCC AR6 land region (Iturbide et al., 2020) using the same
method as in Sect. 3.1. This gives 46 regions, which are
designed to represent areas with consistent climate features
(Iturbide et al., 2020). Only 40 regions are included in this
analysis: GIC (Greenland and Iceland), RAR (Russian Arc-
tic), and the two Antarctic regions lie entirely outside the
60° S–60° N latitude band in which we identify intraseasonal
precipitation events. We also remove the desert regions SAH
(Sahara) and ARP (Arabian Peninsula) because these show
outlying relationships between modelled and observed GPP
anomalies, which is likely to be due to the very low GPP
in these regions. All regions included in the analysis have
a minimum of 500 precipitation events identified in each
model and in observations. Full details of the sample sizes
of events are included in Fig. S2.

In order to summarise the GPP responses in each region,
we focus on three key properties of the composites, which are
illustrated in Fig. 2a. The peak amplitude in GPP is defined as
the maximum standardised anomaly occurring after the peak
of the rainfall event composite (i.e. after day 0). The lag is the
number of days after the rainfall peak that this peak ampli-
tude occurs. The post-event amplitude is the mean standard-
ised anomaly over days 40–60 after the rainfall peak, a period
when there is no longer an anomaly in precipitation. The am-
plitude metrics characterise the contribution of intraseasonal
wet events to GPP variability, while the lag measures how
quickly GPP responds to a wet event.

Figure 2 compares the modelled peak amplitude, lag, and
post-event amplitude of GPP in each AR6 region to val-
ues from one of the observation-based products. The ob-
servational product used for this comparison is FLUXCOM
RS+METEO driven by CRU JRA v1 reanalysis (henceforth
referred to as FLUXCOM-CRUJRAv1). This product is cho-
sen as a starting point because FLUXCOM RS+METEO pro-
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Figure 1. Composites of (a) precipitation, (b) surface soil moisture, and (c, d) GPP around intraseasonal wet events. All land pixels between
60° S and 60° N are included, except in months when the ground is frozen or in regions without valid ESA CCI Soil Moisture observations.
The surface soil moisture and GPP composites have been scaled by the maximum amplitude of their corresponding precipitation composite.

vides the only available daily GPP data, but other observa-
tional products will be analysed later in this section. The
peak and post-event amplitudes of GPP are scaled according
to the observed peak and post-event amplitudes in surface
soil moisture, respectively (i.e. the modelled peak amplitude
in GPP is multiplied by the ratio between the observed and
modelled peak amplitudes in surface soil moisture). Surface
soil moisture is chosen as the scaling variable because the
GPP amplitude is strongly linearly related to the surface soil
moisture amplitude (see Fig. 4 and accompanying analysis
later in the section). ESA CCI Soil Moisture is used as the
benchmark observation. This scaling accounts for the pos-
sibility that individual models may under- or overestimate
the regional surface soil moisture perturbation at the regional
scale following wet events. Whilst a larger surface soil mois-
ture perturbation is expected to lead to a larger-amplitude re-
sponse in GPP, the scaled data allow us to assess the sensi-
tivity of the GPP response to surface soil moisture by adjust-
ing to identical surface soil moisture perturbations for each
model.

All the analysed CMIP6 models show positive correla-
tion for the peak and post-event amplitudes of regional
GPP responses with FLUXCOM-CRUJRAv1, significant at
the 95 % level (Fig. 2b and c, respectively). Importantly,

this indicates that the models are generally able to cor-
rectly represent which regions develop larger anomalies in
GPP following intraseasonal rainfall events. However, it is
clear that the actual modelled values of response ampli-
tude are very different between models. For example, in
regions that show higher peak amplitudes in FLUXCOM-
CRUJRAv1, UKESM is able to represent these higher ampli-
tudes, whereas the amplitudes modelled by ACCESS-ESM
and NorESM are much lower.

The lag of modelled regional GPP responses (Fig. 2d)
is significantly correlated with observed lags for ACCESS-
ESM, BCC-CSM, CNRM-ESM, and UKESM. No signifi-
cant linear relationship is found between observed and mod-
elled lags for NorESM, indicating that the timing of GPP re-
sponses to rainfall may not be realistic in this model. In many
regions, the GPP lag modelled by NorESM is much longer
(20–60 d) than the observed lag in any region. This suggests
that the NorESM GPP response is generally too slow, which
is consistent with this model showing the slowest response in
the global composites in Fig. 1. Even for the models where
a significant correlation in lag is found, the correlation coef-
ficients are much lower than for the amplitude relationships,
showing that the models match the observations better for the
magnitude of the GPP response than the timing.
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Figure 2. (a) Illustration of the three properties of the GPP response composite that will be analysed. The example composite used for the il-
lustration is the GPP response from UKESM in the northern Australia region. (b–d) Comparison of the peak amplitude, post-event amplitude,
and lag of the GPP response to intraseasonal wet events between the CMIP6 models and the FLUXCOM-CRUJRAv1 observational product.
Each scatter point represents an AR6 region. Dashed lines show linear best fits and panel legends detail the linear correlation coefficients.
Asterisks after correlation coefficients denote significance at the 95 % level. The grey lines indicate the identity line in each panel, i.e. where
agreement between modelled and observed values would occur. The peak and post-event amplitudes in GPP have been scaled by the peak
and post-event amplitudes in surface soil moisture, respectively.

Given the uncertainty in observed GPP responses estab-
lished in Sect. 3.1, it is important to assess the effect of
changing the observational GPP product on the results of the
assessment carried out in Fig. 2. The Taylor diagrams pre-
sented in Fig. 3 show the correlation between regional re-
sponses for each possible model–observation pair, in addi-
tion to the inter-regional standard deviation normalised by
the observed standard deviation

(
σmodel
σobs

)
and the root mean

squared error normalised by the observed standard devia-
tion. For example, in Fig. 3a, the orange cross summarises
the linear relationship between UKESM and FLUXCOM-
CRUJRAv1 that is shown in full in Fig. 2b, which has a cor-
relation of 0.89 and a slightly higher spread in peak GPP am-
plitudes between regions for the model than the observations(

i.e. σmodel
σobs
≈ 1.2

)
.

When focusing on the peak amplitude of the GPP re-
sponse, the correlation between the model and observations
shows some variation based on the choice of observational

product, but the value typically lies between 0.8 and 0.9. The
exception is NorESM, which is consistently a worse match
for the observed regional distribution of GPP response am-
plitudes (r ≈ 0.6), regardless of the observational product se-
lected. The extent to which the inter-regional standard devia-
tion in peak amplitudes matches the observed standard devi-
ation is much more dependent on the choice of model than on
the choice of observational product. This reflects the fact that
some models produce much higher maximum regional peak
amplitudes than others (as seen in Fig. 2). NorESM produces
the lowest inter-regional variation in GPP response ampli-
tudes, related to its inability to represent the larger responses;
σmodel is far too low compared to the observed standard de-
viation, regardless of product. ACCESS-ESM also underes-
timates the inter-regional variation in response amplitudes
compared to the observational products, while UKESM over-
estimates it. CNRM-ESM and BCC-CSM both reasonably
capture the variation, falling within the spread of the observa-
tional products. Combined with their high correlation coeffi-
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Figure 3. Taylor diagrams of regional relationships between modelled and observed GPP responses. Markers show the correlation and
ratio of standard deviations σmodel

σobs
between the model and each observation-based GPP product for the (a) peak amplitude, (b) post-event

amplitude, and (c) lag of the GPP response to intraseasonal wet events. The colour of the marker indicates which model is being evaluated,
and the shape of the marker indicates the observation-based product used. The labelled grey contours indicate the root mean squared error
normalised by observed standard deviation. GPP peak and post-event amplitudes have been scaled by the modelled peak and post-event
amplitudes in surface soil moisture, respectively.

cients (r > 0.8), these two models therefore provide the most
realistic representation of the differences between regions in
the peak amplitude of GPP responses to intraseasonal rainfall
events.

The correlation between models and observations is more
dependent on the choice of observational product for the
post-event amplitude (Fig. 3b – note the change in the ra-
dial axis scale from Fig. 3a) than for the peak amplitude.
This indicates inter-product disagreement on which regions
experience elevated GPP in the months following wet events.
CNRM-ESM outperforms the other models here in terms of
correlation and also produces a standard deviation consistent
with several of the observational datasets. Similarly to the
results for the peak amplitude, NorESM and ACCESS-ESM
tend to underestimate the inter-regional variation in response,
while UKESM overestimates it. In other words, intraseasonal
rainfall events in NorESM and ACCESS-ESM play too mi-
nor a role in GPP variability compared to in observations.

Whereas all pairs of models and observations show corre-
lations with r > 0.5 for both the peak and post-event ampli-
tudes, the modelled lags in the regional GPP responses show
much less agreement with the observed lags (Fig. 3c). Many
of the relationships do not show a correlation significant at
the 95 % level, with some even having a negative correlation.
For each model, there are also large spreads in both the corre-
lation and σmodel

σobs
dependent on the observations used for the

assessment. The timing of GPP responses to intraseasonal
rainfall events is much less well constrained by observations
than the amplitude.

We now consider the possible causes of such large differ-
ences between models. Different inter-model GPP responses
may arise due to differing land cover maps (e.g. if forests
show a weaker response to rainfall events than other land
cover, then a model with more extensive forest cover will
produce a weaker globally composited GPP response). Al-
ternatively, differences in the GPP response could be due to
variations in the models’ representation of processes linking
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water availability and vegetation productivity so that changes
in GPP differ between models even when identical land cover
is being considered.

To assess whether the first possibility is solely responsi-
ble for the differing GPP responses seen in Fig. 1c, we com-
pare regional land cover fractions between the models (Ap-
pendix A). We find that inter-model differences in the ampli-
tude and lag of GPP responses can be seen even in regions
where the models have similar land cover. Therefore, land
cover differences cannot by themselves explain the discrep-
ancies in the GPP response, so we further investigate the dif-
ferences in water–carbon coupling processes. Two important
processes that have known uncertainty in their representation
in ESMs are the control of soil moisture stress on GPP and
the response of stomatal conductance to changes in vapour
pressure deficit (VPD). We therefore investigate the regional
relationships between the GPP response and the perturba-
tions in surface soil moisture (SSM) and near-surface VPD
following the wet events.

Figure 4 explicitly compares these relationships in each
model and in observations. Again, FLUXCOM-CRUJRAv1
is used as an illustrative observational GPP product, but the
other products will be included later in the section to test
the robustness of the relationships. ESA CCI Soil Moisture
is used for the SSM observations, but the results are qual-
itatively unchanged if it is substituted with GLEAM (not
shown). When defining the peak amplitude of the VPD re-
sponse, the minimum rather than the maximum standardised
anomaly is taken, since VPD typically decreases during and
after intraseasonal wet events. Note that daily VPD data were
not available for BCC-CSM, so this model is not included
in the VPD analysis. SSM and VPD perturbations are not
independent from one another; the regional amplitudes of
SSM and VPD responses are strongly negatively correlated
(not shown). However, we test the relationship of GPP with
both variables since they influence the GPP through different
modelled processes.

All models represent the observed positive correlation be-
tween the SSM peak amplitude and the GPP peak ampli-
tude: regions with a larger standardised anomaly in SSM fol-
lowing rainfall events show a larger standardised anomaly
in GPP due to the greater change in water availability. The
models also capture the observed negative correlation be-
tween the peak amplitudes of the VPD and GPP responses.
Regions with a smaller drop in VPD standardised anomaly
after wet events are experiencing less evaporative demand
compared to climatological conditions, so stomata can re-
main open to allow photosynthesis without experiencing as
much water loss to the atmosphere. These correlations are
significant (p < 0.05) in all the observational products tested
(Fig. S4a and b). However, even though all models represent
these basic relationships, there are large differences between
the correlation coefficients, meaning that GPP responses to
rainfall are more tightly coupled to the associated perturba-
tions in SSM and VPD in some models than others. For ex-

ample, in CNRM-ESM2-1, the correlation between the peak
amplitude of the SSM perturbations and the peak amplitude
of the GPP response is r = 0.94, meaning that the magni-
tude of the SSM perturbations can explain 89 % of the vari-
ance in the GPP peak amplitude between regions (r2

= 0.89),
whereas in UKESM1-0-LL it only explains 52 % of the vari-
ance (r = 0.72, r2

= 0.52).
There are also differences between models in the slopes of

the linear relationships. This demonstrates that the models’
GPP peak amplitudes have varying sensitivities to changes
in the peak amplitude of the SSM and VPD perturbations.
For example, for a given increase in the peak standardised
anomaly of SSM, NorESM exhibits a much smaller increase
in the associated GPP peak anomaly than the other models.
We test the significance of these differences in sensitivity
among all the models and all the observational GPP products.
This is done using estimated marginal means of linear trends
and correcting for multiple testing using the Tukey method.
Figure 5 shows the resulting 95 % confidence intervals for
the sensitivity of the GPP responses to the driving pertur-
bations in SSM and VPD. This analysis shows that for the
relationship between the peak amplitudes of VPD and GPP
(Fig. 5b), the sensitivity of NorESM is significantly different
(p < 0.1) to the sensitivity of all other models and all obser-
vational GPP products except SIF-GOME2-JJ. These differ-
ences are also all significant at p < 0.05 other than NorESM-
VODCA2GPP. Therefore, we conclude that the amplitude of
GPP responses to wet events in NorESM is not sufficiently
sensitive to the changes in vapour pressure deficit.

The peak amplitude of GPP responses is also less sen-
sitive to SSM perturbations in NorESM than in the other
models (Fig. 5a), showing a significantly (p < 0.05) different
sensitivity to BCC-CSM, CNRM-ESM, and UKESM. How-
ever, of the seven observational products, the SSM sensitiv-
ity in NorESM is only significantly different to FLUXCOM-
ERA5, so there is insufficient evidence here to state that it is
unrealistic compared to the range of observations. In con-
trast, the peak amplitude of GPP responses in BCC-CSM
shows excessive sensitivity to SSM perturbations, with sig-
nificant (p < 0.05) differences to MODIS Terra, VPM, SIF-
GOME2-JJ, and VODCA2GPP (and p < 0.1 for the differ-
ence with FLUXCOM-CRUJRAv1). It additionally shows a
significantly higher sensitivity than two of the other models
(NorESM and ACCESS-ESM).

Similar relationships between SSM and VPD as well as
GPP are also found for the post-event amplitudes, but the
correlation is generally weaker than for the peak amplitudes.
The peak amplitude of GPP is more strongly constrained by
the concurrent SSM and VPD anomalies than the post-event
amplitude. In the case of NorESM, the correlation is suf-
ficiently weak that no significant relationship is found be-
tween SSM and GPP amplitudes after the event when test-
ing at the 95 % level; vegetation productivity is much less
strongly linked to surface soil water conditions than in the
other models and in the observations (again, the correlations
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Figure 4. Regional GPP responses to intraseasonal wet events compared to the driving perturbations in surface soil moisture (SSM:
a, c, e) and vapour pressure deficit (VPD: b, d, f). Each scatter point represents an IPCC AR6 region. Dashed lines show linear best fits.
The legend for each panel indicates the linear correlation coefficient between the driving perturbation and the GPP response for each model.
Asterisks after correlation coefficients denote significance at the 95 % level. The uppermost legend, showing which model is denoted by each
colour, applies to all panels. The observational products (OBS) used are FLUXCOM-CRUJRAv1 (GPP), ESA CCI (surface soil moisture),
and ERA5 (VPD).

are significant at p < 0.05 in all the observational products
tested). The weaker relationships between post-event ampli-
tudes can be partly explained by the fact that over the 40–60 d
timescale, changes in root zone soil moisture explain more of
the variation in the GPP amplitudes than changes only in the
surface layer (whereas the surface layer is generally more
important for the peak amplitude). Comparing the post-event
amplitude of soil moisture in the top 1 m of soil with the post-
event amplitude of GPP gives higher correlation coefficients
than seen in Fig. 4c for all models (other than BCC-CSM,

for which the 1 m layer data are not available), as shown in
Fig. S5. In the months after the peak of the wet event, the
rainfall infiltrates the soil and provides additional moisture
availability to vegetation at deeper soil levels. Figures 4c and
5c show that NorESM is less sensitive to the SSM post-event
amplitude than the other models, although its sensitivity is
significantly (p < 0.05) different only to UKESM, CNRM-
ESM, and four out of the seven observational products. The
modelled sensitivity to VPD post-event amplitude is not in-
consistent with observations for any model.
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Figure 5. Sensitivity of regional GPP responses to intraseasonal wet events compared to the driving perturbations in surface soil moisture
(a, c, e) and VPD (b, d, f). Error bars denote 95 % confidence intervals. The sensitivity of the observational GPP products is measured with
respect to ESA CCI for surface soil moisture and ERA5 for VPD.

The lag in GPP response is compared to the peak am-
plitude rather than the lag of SSM and VPD because there
is very little variation in SSM and VPD lags between re-
gions due to these variables responding very quickly (1–
3 d) after rainfall. In the models, the lag of the GPP re-
sponse tends to be shorter in regions with larger pertur-
bations in SSM and VPD. All models exhibit this re-
lationship except NorESM. However, the evidence for
the relationship in the observations is much weaker (see
Fig. S4). Only two of the seven observational products tested
show a significant (p < 0.05) negative correlation between
SSM peak amplitude and GPP lag (FLUXCOM-ERA5 and
VODCA2GPP), while VPM shows a significant positive cor-
relation. Four out of the seven products show a signifi-
cant positive correlation between VPD peak amplitude and

GPP lag (FLUXCOM-ERA5, FLUXCOM-CRUJRAv1, SIF-
GOME2-PK, and VODCA2GPP). Even in the observational
products that do show these significant relationships, the cor-
relation coefficients are much lower than those obtained from
the models. The highest correlation coefficients from obser-
vations are from VODCA2GPP at r =−0.50 for the correla-
tion between SSM peak amplitude and GPP lag and r = 0.56
for VPD peak amplitude and GPP lag. These correlations are
considerably weaker than those found in the models (other
than NorESM), which have |r| between 0.58 and 0.73. It is
therefore possible that the timing of the GPP responses in
the models is too tightly constrained by the amplitude of the
regional perturbations in SSM and VPD.
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4 Discussion and conclusions

This work has demonstrated that the responses of vegeta-
tion productivity to intraseasonal rainfall events are very dif-
ferent between ESMs participating in CMIP6. Of the mod-
els tested, UKESM and CNRM-ESM tend to produce larger
standardised anomalies of GPP following rainfall events,
while ACCESS-ESM and NorESM produce smaller pro-
ductivity anomalies. There are also differences in the tim-
ing of the models’ responses following the rainfall events,
with NorESM taking much longer to reach its peak GPP
anomaly and BCC-CSM responding most quickly. The mod-
els all correctly represent larger anomalies in regional GPP
being associated with larger increases in surface soil mois-
ture and larger decreases in near-surface vapour pressure
deficit. However, the strength of these relationships and the
sensitivity of the GPP responses to these drivers vary be-
tween models. In particular, GPP responses in BCC-CSM
show excessive sensitivity to intraseasonal surface soil mois-
ture perturbations, while NorESM is not sufficiently sensitive
to vapour pressure deficit perturbations. This aligns with the
findings of Anav et al. (2015) that NorESM has lower sea-
sonal and interannual variability than other models.

The reasons for this diversity in model behaviour are likely
multiple and complex. We suggest that unravelling them re-
quires in-depth knowledge of each model configuration, pa-
rameterisation structure, and parameter values, which is be-
yond the scope of this paper. Likely causes include differ-
ences in the soil moisture stress function applied to down-
regulate GPP and in the stomatal conductance models, which
control how changes in VPD affect GPP, as discussed in
Sect. 1. Further work should therefore compare the GPP re-
sponses between different versions of particular ESMs or
land surface models to establish how specific changes in con-
figuration – for example, alternative soil moisture stress pa-
rameters and stomatal conductance models – impact the cou-
pling between water availability and vegetation productiv-
ity. The vertical profile of root water uptake may also play
a role. Each model discretises the soil column into layers dif-
ferently and prescribes different root depths for plant func-
tional types. In a model where vegetation is able to access
deeper reserves of soil water, it may become less water-
stressed and therefore exhibit smaller responses to rainfall
events. Additionally, the partitioning of rainfall into direct
evaporation, transpiration, and runoff, which operate on dif-
ferent timescales, will impact the magnitude and timing of
water availability for vegetation following a rainfall event.
The post-rainfall GPP response could also be affected by
each model’s representation of drought deciduous phenology
(for example, drought deciduous phenology is turned off in
UKESM).

Further work is therefore needed to understand why differ-
ent methods for deriving global GPP products result in differ-
ent relationships with water availability, quantify the uncer-
tainty in these products, and ultimately obtain observations

that will reduce our uncertainty in the response of GPP to
intraseasonal rainfall events. Some of the issue with timing
in the observations may be due to the 8-daily temporal res-
olution of all products other than FLUXCOM RS+METEO.
We therefore emphasise the usefulness of GPP data at the
daily timescale for diagnostics of climate–carbon cycle cou-
pling. Many models only make GPP data from CMIP experi-
ments publicly available at monthly resolution. Future priori-
tisation of sub-monthly vegetation data would aid the inves-
tigation of process-oriented diagnostics that can help us un-
derstand land–atmosphere coupling in these models. Insights
at this timescale are key for constraining model processes,
and in many regions the response of vegetation productiv-
ity to events on this timescale is important for determining
its annual mean (e.g. Wu et al., 2021). Daily SIF observa-
tions could be a valuable resource for understanding GPP
responses to rainfall events, particularly since they are less
affected by cloud cover than alternative vegetation obser-
vations such as the normalised difference vegetation index
(NDVI).

This study has demonstrated a framework for evaluating
an important link between the water and carbon cycles in
ESMs by assessing the response of GPP to intraseasonal rain-
fall events. In the recent historical period of CMIP6 sim-
ulations, models show diverse behaviour in their GPP re-
sponses, and only some aspects of this can be constrained
by the currently available observations. It is therefore diffi-
cult to determine which models represent the most realistic
vegetation responses to wet conditions. This means it is chal-
lenging to understand and model the behaviour of the land
carbon sink and its consequences for atmospheric CO2 lev-
els in the present day and to have confidence that the sink is
represented correctly in projections under future scenarios.
Improvements are required in both our understanding of how
model configurations and parameters affect the resulting veg-
etation productivity responses to water availability and the
observational datasets used to evaluate this coupling.

Appendix A

Inter-model differences in the GPP responses to water avail-
ability could arise due to the presence of discrepancies in the
models’ land cover maps. For example, if one model repre-
sents a higher percentage of forested land in a region, its GPP
is likely to show less of a response to intraseasonal rainfall
events in this region than a model with higher grassland cov-
erage.

To demonstrate that differences in GPP responses between
models occur even where the land cover distributions are
similar, Fig. A1 shows the land cover distributions and the
responses of SSM, VPD, and GPP to intraseasonal rainfall
events (as in the global composites of Fig. 1) for the IPCC
AR6 Central North America (CNA) region (Iturbide et al.,
2020). The mean land cover over the period 2000–2014 is
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Figure A1. Land cover and responses to intraseasonal wet events in the Central North America (CNA) AR6 region. (a) Percentage of the
region assigned to each land cover. The “other” category includes water bodies. (b–d) Responses of standardised anomalies in surface soil
moisture (b), near-surface vapour pressure deficit (c), and GPP (d) in the three models that provide land cover information. These composites
have been scaled by the maximum of the precipitation composite for each model.

used for Fig. A1a. Only three models are included: land cover
data were not available for BCC-CSM2-MR or NorESM2-
LM.

All three models have similar land cover in this re-
gion. ACCESS-ESM and UKESM are the most alike, with
CNRM-ESM having a lower fraction of bare soil and more
vegetated cover. However, this higher similarity between the
land cover of ACCESS-ESM and UKESM does not translate
into greater agreement in their responses of GPP to rainfall.
Although the models produce consistent responses in SSM
and VPD, the GPP responses are very different, as was found
in the global evaluation of Sect. 3.1. The peak standardised
anomaly in GPP following rainfall events in this region is
approximately 3 times higher in UKESM than in ACCESS-
ESM. Since in this case we have established that the differ-
ence is not due to a disparity in the land cover distribution,
we conclude that it is the result of differences in the models’
representations of water–vegetation coupling processes.

Code and data availability. Daily GPP data from FLUXCOM
RS+METEO are available on request from the FLUXCOM team
(see http://www.fluxcom.org/CF-Download/ for details). All other
datasets used in this paper are publicly available for download.
CMIP6 model data: https://doi.org/10.22033/ESGF/CMIP6.4003

(Seferian, 2019), https://doi.org/10.22033/ESGF/CMIP6.7924
(Seland et al., 2019), https://doi.org/10.22033/ESGF/CMIP6.5929
(Tang et al., 2019), https://doi.org/10.22033/ESGF/CMIP6.2901
(Wu et al., 2018), https://doi.org/10.22033/ESGF/CMIP6.4242
(Ziehn et al., 2019). ERA5: https://doi.org/10.24381/cds.adbb2d47
(Hersbach et al., 2023). IMERG precipitation:
https://doi.org/10.5067/GPM/IMERGDF/DAY/06 (Huffman et al.,
2019). ESA CCI Soil Moisture combined product v06.1: https://
catalogue.ceda.ac.uk/uuid/43d73291472444e6b9c2d2420dbad7d6
(Dorigo et al., 2021) (last access: 23 July 2021). GLEAM
v3.6a soil moisture: https://www.gleam.eu/#downloads (last
access: 16 December 2022). MODIS Terra GPP aggregated
to 0.5° resolution: https://doi.org/10.25592/uhhfdm.8556
(Kern, 2021). VPM GPP (8-daily at 0.5° resolu-
tion): https://doi.org/10.6084/m9.figshare.c.3789814.v1
(Zhang et al., 2017b). Downscaled GOME-2 SIF:
https://doi.org/10.2905/21935FFC-B797-4BEE-94DA-
8FEC85B3F9E1 (Duveiller et al., 2020). VODCA2GPP:
https://doi.org/10.48436/1k7aj-bdz35 (Wild et al., 2021). The
code used to generate the results and figures in this paper is
available at https://doi.org/10.5281/zenodo.11263264 (Harris,
2024).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esd-15-1019-2024-supplement.
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