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A B S T R A C T

Reliability analyses based on probability theory are widely applied in geotechnical engineering, and several
analytical or numerical methods have been built upon the concept of failure occurrence. Nevertheless, common
geotechnical engineering real-world problems deal with scarce or sparse information where experimental data
are not always available to a sufficient extent and quality to infer a reliable probability distribution function.

This paper rigorously combines Fuzzy Clustering and Possibility Theory for deriving a data-driven,
quantitative, reliability approach, in addition to fully probability-oriented assessments, when useful but
heterogeneous sources of information are available.

The proposed non-probabilistic approach is mathematically consistent with the failure probability, when
ideal random data are considered. Additionally, it provides a robust tool to account for epistemic uncertainties
when data are uncertain, scarce, and sparse. The Average Cumulative Function transformation is used to obtain
possibility distributions inferred from the fuzzy clustering of an indirect database. Target Reliability Index
Values, consistent with the prescribed values provided by Eurocode 0, are established.

Moreover, a Degree of Understanding tier system based on the practitioner’s local experience is also
proposed. The proposed methodology is detailed and discussed for two numerical examples using national-scale
databases, highlighting the potential benefits compared to traditional probabilistic approaches.
1. Introduction

The reliability assessment of any engineering system requires ad-
dressing four main problems: (i) to determine the input data, (ii) to
adopt a suitable methodology for the reliability analysis, (iii) to define
an analytical or numerical model representing the system with high-
fidelity, and (iv) to give a correct interpretation of the analysis output.
When dealing with geotechnical engineering problems, the first aspect
of step (i) is strongly affected by the uncertain nature of the input data.
The soil parameters used for the definition of the model in step (iii)
are characterized by various sources of uncertainty such as inherent
variability (Lumb, 1966; Manolis, 2002; Greco, 2016), measurement
scatter due to limitations of the experimental techniques (Phoon and
Kulhawy, 1999; Uzielli et al., 2006; Phoon et al., 2022a), and sampling
or statistical error (Ching et al., 2016; Mašín, 2015) because of the
limited number of soil samples used in the investigation. A more
exhaustive description of the main sources of uncertainty affecting
geotechnical problems can be found in Otake and Honjo (2022).
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To deal with these soil uncertainties, geotechnical engineers can
adopt different strategies, as pointed out by Christian (2004), namely
by ignoring them, being conservative, using an observational method
or quantifying their effects on structural and geotechnical safety. The
latter is the purpose of the reliability analysis; according to the nature
of the uncertainty, e.g., aleatoric or epistemic, the methodology of step
(ii) can change considerately. Under the probabilistic framework, well-
established approaches can be used: a reliability index method has been
used by Cherubini (2000) for carrying out a reliability evaluation of
the bearing capacity of shallow foundations; the First Order Reliability
Method (FORM) has been used by Honjo et al. (2000) for the seismic
design of a shallow foundation of a building; Monte Carlo Simulation
was used by Xue and Nag (2011) to study the effects of the inclined
loads on the reliability of shallow foundations; Zorzi et al. (2020)
developed a reliability framework with emphasis on verifying the ser-
viceability limit state criterion in terms of maximum allowable rotation
during an extreme cyclic loading event assuming the soil parameters
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are normally distributed; Carswell et al. (2015) used a first-order
method (𝛽 method) and Monte Carlo simulation (MCS) to estimate the
reliability of an offshore wind turbine monopile foundation when the
beta distribution has been adopted for modelling the variability of the
soil properties.

Nevertheless, practical geotechnical problems are associated with
sampling uncertainty resulting from sparse and scarce information.
More extensively, Phoon (2018) coined the acronym MUSIC (or more
recently MUSIC-X) to identify the distinctive attributes of geotechnical
data, which can be described as Multivariate, Uncertain and unique,
Sparse, and InComplete. Therefore, the definition of an exact proba-
bilistic model as required by the studies previously mentioned could be
doubtful in view of the limited quality and extent of the information
owned by the engineer. Ching and Phoon (2019, 2020) proposed a
Bayesian machine learning method, then extended with Hierarchical
Bayesian Model in Ching et al. (2021), to handle MUSIC data.

On the other hand, the use of the probability theory, either as-
ociated with a certain expected frequency of occurrence (frequen-
ist statistics) or with a subjective specified likelihood of occurrence
Bayesian statistics), is not the only mathematical framework that
an be used for assessing the reliability of a geotechnical problem.
or instance, Beer et al. (2013b) carried out a comparative reliabil-
ty study between probabilistic and interval analysis on the stability
f a retaining wall showing that the latter leads to conservative re-
ults and can identify extreme (low-probability-but-high-consequence)
vents straightforwardly. Further non-probabilistic approaches have
een also applied for geotechnical reliability analyses such as adopting
uzzy numbers as nominal values (Nawari and Liang, 2000), or fuzzy
ets (Pramanik et al., 2019, 2021). Cremona and Gao (1997) presented
possibilistic reliability analysis theory on the basis of a possibilistic

afety index called Possibility of Failure, whilst (Feng et al., 2021)
roposed a fuzzy importance sampling method for estimating failure
ossibilities. Moreover, hybrid approaches where different natures of
he input data coexists have been developed, such as in An et al. (2016)
r in Tombari and Stefanini (2019).

Mixed concepts have been used such as fuzzy probabilities (Beer,
009), probability-boxes (Schöbi and Sudret, 2017), or possibility the-
ry (Dubois and Prade, 2004; Dubois, 2006), and each one can be
ncluded under the general context of imprecise probabilities (Beer
t al., 2013a). In particular, the possibility theory based on Zadeh’s
heory of fuzzy sets (Zadeh, 1965) can be seen as a simple quantitative
ramework for statistical reasoning with imprecise probabilities (Dubois
nd Prade, 2015). Hose and Hanss (2019) proved the preservation of
robability–possibility consistency demonstrating that the possibility
nd the necessity measures can be viewed as a upper and lower prob-
bilities. The same Authors, in Hose and Hanss (2020), addressed the
roblem of inferring a membership function from empirical observa-
ions; by viewing fuzzy numbers as possibility measures, they suggested

procedure for obtaining a consistent estimate of the membership
unction in terms of an approximation of its level sets. Membership
unctions can also be constructed from partitions of a dataset (see e.g.,
uillaume and Charnomordic, 2004), through fuzzy (c-means) clusteri-
ation (Oliveira and Pedrycz, 2007). Therefore, possibility theory seems
o be particularly useful to elicit a membership function from partitions
f a database and can be exploited in search for a novel concept of
eliability in geotechnical engineering.

.1. Overview of the proposed approach and scope of work

The aim of this paper is to propose a novel reliability approach to
eal with uncertain, scarce and sparse data in non-probabilistic fashion,
ithout adopting neither the assumption of the probability axioms nor
ny probability distributions of the data. The proposed approach, based
n the possibility approach (Dubois, 2006), provides a simple yet robust
ool for the uncertainty propagation of quantitative data and subjective
2

nformation. The key aspect of the proposed alternative definition
of structural reliability is the preservation of probability–possibility
consistency (Hose and Hanss, 2019; Dubois and Prade, 2015) allow-
ing to formulate a non-probabilistic cardinality of reliability target,
hereinafter named Reliability Index Value, embedding both epistemic
and aleatory uncertainties. Fig. 1 shows the workflow of the proposed
possibility approach for assessing geotechnical reliability. Therefore,
a fully-fledged definition of possibilistic reliability characterized by a
level of safety consistent with the prescriptions of the standard codes,
is established (first scientific contribution).

Moreover, since the inputs of the proposed reliability approach
are represented by possibility distributions, the estimation of their
membership functions can be performed by inferring them directly
from samples of datasets (see, e.g., Hose and Hanss, 2020). In this
study, fuzzy (c-means) clusterization (Oliveira and Pedrycz, 2007) is
herein adopted to generate partitions from a database, which are then
transformed into possibilistic membership functions through a rigorous
transformation called Average Cumulative Function (see Stefanini and
Guerra, 2017; Guerra et al., 2020). Therefore, the second contribution of
this paper is to propose a robust integration between reliability analysis
and indirect regional, national or global databases of inputs (e.g., soil
properties) to support the decision-making process. This can be seen
as a contribution in the exploitation of the dark data as defined and
questioned by Phoon (2020) as well as in the facilitation of the digital
transformation of geotechnical engineering (Phoon et al., 2022b).

Finally, it will be shown that the number of subclasses can be
related to the ‘degree of understanding’ (see e.g., Fenton et al., 2016
or the Canadian Highway Bridge Design Code - CSA S6:19, CSA,
2019). Therefore, the proposed approach defines a three tier system,
ranked as ‘low’, ‘typical’ and ‘high’, to establish a design value based
on objective and subjective information such as the level of local
experience, number of samples and engineering judgement. Therefore,
the third contribution of this paper is to inherently embed subjective
and quantitative information into the proposed reliability methodology
through the concept of ‘degree of understanding’ (DoU); this constitutes
a rigorous approach to account for several recommendations mentioned
in the Eurocode 7 (BS EN 1997-2:2007, British Standards Institution
et al., 2007) such as the consideration of relevant published material
and data and use of local experience, which are essential for deriving
reliable values of geotechnical parameters.

It is worth emphasizing that the proposed procedure is accessible
to practitioners even without any prior of fuzzy theory: the database
and the fuzzy partitions should be set up by third-party experts whilst
the practitioners just need to define a nominal value (Prästings et al.,
2019) that will be used to retrieve a design membership function also
based on their local experience and subjective information. The design
membership function will be just an ordered set of input data (e.g., a
set of angles of internal friction of the soil) to be used sequentially
into the performance function for conducting a traditional analysis,
as it will be shown in the worked example in Sections 3.3 and 4.
Each data input corresponds to a certain value of the membership
function. The reliability is assessed by obtaining the membership value
of the performance function for which the limit state is reached. This
computed value is compared to the proposed target Reliability Index
Value to assess the level of safety in terms of Fail or Safe.

The remainder of this paper is organized as follows. In Section 2 the
proposed methodology of geotechnical reliability under the possibility
framework is established. Section 3 provides a comparative example be-
tween probability and possibility reliability assessment to validate the
method; moreover, two complete numerical applications of common
engineering problems considering real databases are also provided in
Sections 3.3 and 4.
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Fig. 1. Proposed possibilistic reliability with database support.
2. Proposed possibility reliability approach with database cluster-
ing

2.1. Possibilistic reliability

Let us consider a performance or limit state function, 𝐺, described
as 𝐺 = 𝑓

(

𝑋1,… , 𝑋𝑑
)

, where the given deterministic or crisp function
𝑓 takes as argument a vector of 𝑑 ≥ 1 real parameters

(

𝑋1,… , 𝑋𝑑
)

with
elements in a nonempty subset X ⊆ R𝑑 .

In case of structural safety at the Ultimate Limit State (ULS), the
conventional performance function is defined as the difference between
the resistance of the investigated problem, 𝑅, and the applied external
load 𝑉 , as follows:

𝐺 = 𝑅 − 𝑉 ≥ 0. (1)

The performance function, 𝐺, determines if the structure is safe (𝐺 > 0)
or unsafe (𝐺 ≤ 0):
𝐺
(

𝑥1, 𝑥2,… , 𝑥𝑑
)

> 0 ⇒ Safe
𝐺
(

𝑥1, 𝑥2,… , 𝑥𝑑
)

≤ 0 ⇒ Failure
(2)

where 𝑥𝑖, 𝑖 = 1, 2,… , 𝑑 are the parameters of the considered problem. In
geotechnical engineering problems, the subset X contains the soil prop-
erties, e.g., 𝑋1 = 𝜑,𝑋2 = 𝛾,𝑋3 = 𝑐, namely the angle of internal friction,
the soil density and the cohesion, respectively. If these parameters are
uncertain, precisely random, BS EN1990 (British Standards Institution
et al., 2021) defines three levels of structural safety, classified as Level
I (deterministic reliability), Level II (Reliability Index methods) and
Level III (Full Probability methods). The three levels are sorted with
an increasing degree of complexity and required experience (Phoon,
2023). Although the three levels should guarantee the same safety,
it will be shown in Section 3.2 that this is not always occurring.
The full probability analysis requires the exact knowledge of the joint
probability distributions of the parameters, and it is not covered in this
study.

On the other hand, when the data used for characterizing the
reliability problem are affected by epistemic uncertainty, e.g., sparsity
and scarcity, the adoption of the probabilistic approaches as prescribed
by the standard codes (e.g. BS EN1990 (British Standards Institution
et al., 2021)) might be questionable because of the high sensitivity
of the failure probability to the input distribution parameters (Ober-
guggenberger and Fellin, 2002). To seek a more robust measure, the
Possibility Theory (Dubois, 2006) is exploited in this study for deriving
a novel approach to reliability assessment in geotechnical engineering.

The previously defined real-valued quantities 𝑋𝑗 , 𝑗 = 1, 2,… , 𝑑
are now expressed in terms of 𝑑 fuzzy intervals (or fuzzy numbers)
represented by membership functions 𝑢𝑋𝑗

∶ R → [0, 1] such that, given
two closed real intervals [𝑎𝑗 , 𝑏𝑗 ] and [𝑐𝑗 , 𝑑𝑗 ] with 𝑎𝑗 ≤ 𝑐𝑗 ≤ 𝑑𝑗 ≤ 𝑏𝑗 , it
can be defined, for 𝑧 ∈ R, as follows:

𝑢𝑋𝑗
(𝑧) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

0 if 𝑧 < 𝑎𝑗
𝑢𝐿𝑋𝑗

(𝑧) if 𝑎𝑗 ≤ 𝑧 < 𝑐𝑗

1 if 𝑐𝑗 ≤ 𝑧 ≤ 𝑑𝑗
𝑢𝑅𝑋𝑗

(𝑧) if 𝑑𝑗 < 𝑧 ≤ 𝑏𝑗

(3)
3

⎩ 0 if 𝑧 > 𝑏𝑗
where 𝑢𝐿𝑋𝑗
∶ [𝑎𝑗 , 𝑐𝑗 ] ⟶ [0, 1[ is a non-decreasing right-continuous

function (where 1 is not included in the interval), 𝑢𝐿𝑋𝑗
(𝑧) > 0 for

∈]𝑎𝑗 , 𝑐𝑗 ], called the left side of the fuzzy interval and 𝑢𝑅𝑋𝑗
∶ [𝑑𝑗 , 𝑏𝑗 ] ⟶

[0, 1] is a non-increasing left-continuous function, 𝑢𝑅𝑋𝑗
(𝑧) > 0 for 𝑧 ∈

[𝑑𝑗 , 𝑏𝑗 [, called the right side of the fuzzy interval. By convention, if 𝑑 = 1
the index 𝑗 will be omitted in Eq. (3).

Therefore, the deterministic limit state function 𝐺 in Eq. (1) is
transformed to a fuzzy function which takes the membership functions
of the inputs, 𝑢𝑋𝑗

, 𝑗 = 1..., 𝑑 and returns the membership function 𝑢𝐺 of
the output. This can be done by using the Zadeh’s extension principle
(Zadeh, 1975), which is hence applied as follows:

𝑢𝐺(𝑔) = 𝑠𝑢𝑝
⏟⏟⏟

𝐺(𝑥1 ,𝑥2 ,…,𝑥𝑑 )=𝑔

𝑚𝑖𝑛
{

𝑢𝑋1
(𝑥1), 𝑢𝑋2

(𝑥2),… , 𝑢𝑋𝑑
(𝑥𝑑 )

}

(4)

where 𝑠𝑢𝑝 is the supremum operator, 𝑥𝑗 , for 𝑗 = 1, 2,… , 𝑑, is a value
of fuzzy parameter 𝑋𝑗 with membership 𝑢𝑋𝑗

(𝑥𝑗 ) and 𝑔 ∈ R is a dummy
variable that denotes any possible value of function 𝐺 on its range. In
compact form:

𝑢𝐺 = 𝐺𝐸𝑃

(

𝑢𝑋1
,… , 𝑢𝑋𝑑

)

, (5)

where 𝐺𝐸𝑃 is a fuzzy function that relates the fuzzy inputs, 𝑋1,… , 𝑋𝑑 ,
to the fuzzy output, 𝐺. The computational approaches to obtain 𝑢𝐺 are
described in Section 2.1.3. In analogy with the representation of Eq. (3),
the membership function 𝑢𝐺 in Eq. (5) is given in the following form:

𝑢𝐺(𝑔) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if 𝑔 < 𝑎𝐺
𝑢𝐿𝐺(𝑔) if 𝑎𝐺 ≤ 𝑔 < 𝑐𝐺
1 if 𝑐𝐺 ≤ 𝑔 ≤ 𝑑𝐺

𝑢𝑅𝐺(𝑔) if 𝑑𝐺 < 𝑔 ≤ 𝑏𝐺
0 if 𝑔 > 𝑏𝐺

(6)

where the support is defined by the interval
[

𝑎𝐺 , 𝑏𝐺
]

and the core by
[

𝑐𝐺 , 𝑑𝐺
]

.
To derive a safety measure based on the membership function 𝑢𝐺

of Eq. (6), a criterion to separate the safe from the unsafe domain is
established. Criteria based on several definitions of the cardinality of
a fuzzy set might be defined; nevertheless, in this study, a cardinality
calibrated to be consistent with the prescribed values provided by BS
EN1990 (British Standards Institution et al., 2021) is proposed. As
demonstrated in Dubois and Prade (2016), a probabilistic cumulative
distribution function (CDF) can be transformed into a possibility dis-
tribution 𝑢𝐺, consistent with the density function 𝑓𝑋 , as described in
the next Section 2.1.1. Therefore, whilst the probability assessment
requires that the computed failure probability is lower than a pre-set
target value 𝑃0:

𝑃𝑓 = ∫𝐺(𝑋)≤0
𝑓𝑋 (𝑋)𝑑𝑋 < 𝑃0, (7)

the proposed approach establishes a possibilistic target value, named
Target Reliability Value, as a limit value on the membership function
of the performance function, 𝑢 .
𝐺
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2.1.1. Possibility measures and probability-to-possibility transformations
Generally, a membership function 𝑢 ∶ X → [0, 1] can represent

a possibility measure on X with an associated possibility distribution
𝑈 ∶ 𝛺(X) → [0, 1] with 𝛺(X) being the family of subsets of X. For a
subset 𝐴 ∈ 𝛺(X), 𝑈 (𝐴) is defined by 𝑈 (𝐴) = 𝑠𝑢𝑝 {𝑢(𝑥)|𝑥 ∈ 𝐴} and has
the following essential properties:

1. 𝑈 (𝐴 ∪ 𝐵) = 𝑚𝑎𝑥 {𝑈 (𝐴), 𝑈 (𝐵)} for all 𝐴,𝐵 ∈ 𝛺(X);
2. 𝑈 (X) = 1,
3. 𝑈 (∅) = 0.

It can be observed that the possibility measure is defined in analogy
with the probability measure, without relying upon the determination
of a 𝜎-field, set of all possible outcomes (Hose and Hanss, 2019).

To derive a possibility measure from Eq. (6), a useful representation
(see Stefanini and Guerra, 2017; Guerra et al., 2020) of a fuzzy number
𝑢 is through the 𝜆-Average Cumulative Function (𝜆-ACF for short) of 𝑢,
with 𝜆 ∈ [0, 1], stated as follows:

𝐹 (𝜆)
𝑢 (𝑥) = (1 − 𝜆)𝐹𝐿

𝑢 (𝑥) + 𝜆𝐹𝑅
𝑢 (𝑥) (8)

which is defined as the convex combination of two monotonic functions
𝐹𝐿
𝑢 and 𝐹𝑅

𝑢 , for all 𝑥 ∈ R:

𝐹𝐿
𝑢 (𝑥) =

⎧

⎪

⎨

⎪

⎩

0 𝑖𝑓 𝑥 < 𝑎

𝑢𝐿(𝑥) 𝑖𝑓 𝑎 ≤ 𝑥 < 𝑐

1 𝑖𝑓 𝑥 ≥ 𝑐.
(9)

and

𝐹𝑅
𝑢 (𝑥) =

⎧

⎪

⎨

⎪

⎩

0 𝑖𝑓 𝑥 ≤ 𝑑

1 − 𝑢𝑅(𝑥) 𝑖𝑓 𝑑 < 𝑥 ≤ 𝑏

1 𝑖𝑓 𝑥 > 𝑏.
(10)

For 𝜆 = 1
2 we denote 𝐹

( 12 )
𝑢 (𝑥) by 𝐹𝑢(𝑥) =

𝐹𝐿
𝑢 (𝑥) + 𝐹𝑅

𝑢 (𝑥)
2

. Therefore,

there exists a unique membership function 𝑢 with AC function 𝐹𝑢 such
that, for all 𝑥 and all 𝛼 ∈]0, 1], we have (see Guerra et al. (2020)):

𝑢−𝛼 =
(

𝐹𝑢
)−1

(𝛼
2

)

and, 𝑢+𝛼 =
(

𝐹𝑢
)−1

(

1 − 𝛼
2

)

. (11)

where 𝑢+𝛼 and 𝑢−𝛼 are the end-points of the 𝛼-cuts. The 𝛼-cuts of the
fuzzy interval 𝑢 are the compact intervals [𝑢]𝛼 = {𝑥|𝜇(𝑥) ≥ 𝛼} ⊂ R with
𝛼 ∈]0, 1], denoted by [𝑢]𝛼 =

[

𝑢−𝛼 , 𝑢
+
𝛼
]

; for 𝛼 = 0 we define [𝑢]0 to be the
closure of interval {𝑥|𝜇(𝑥) > 𝛼}, assumed to be bounded.

In such a way, 𝑢 is determined by the pair 𝑢 =
(

𝑢−, 𝑢+
)

of functions
𝑢−, 𝑢+ ∶ [0, 1] ⟶ R. The representation of a possibility distribution
as ACF can be effectively used for performing arithmetic operations
between fuzzy sets (Stefanini and Guerra, 2017).

A further advantage of the 𝜆-ACF is to produce a direct probability-
to-possibility transformation 𝑇 , given by Eq. (14), and its inverse 𝑇 −1,
given by Eq. (8), as suggested in Guerra et al. (2020). Let us denote
by  the collection of all possibility distributions 𝑈 (or measures 𝑢)
on (X, 𝛺(X)) and by  the collection of all probability distributions 𝑃
(or density 𝑝) on the same space (X, 𝛺(X)). A probability-to-possibility
transformation is any map 𝑇 ∶  →  such that for 𝑃 ∈  it is
𝑈 = 𝑇 (𝑃 ) ∈  that transforms a probability distribution 𝑃 into a
possibility distribution 𝑈 .

It is important to remark that 𝑇 is an admissible transformation (see
Jin et al. (2019)); i.e., it has the following properties, listed below in
the case of a discrete set (X):

1. 𝑇 is bijective, i.e., the inverse 𝑇 −1 exists: 𝑇 −1(𝑈 ) = 𝑃 if and only
if 𝑇 (𝑃 ) = 𝑈 ;

2. 𝑇 is consistent, i.e., if 𝑃 ∈  and 𝑈 = 𝑇 (𝑃 ) we have 𝑈 (𝐴) =
𝑚𝑎𝑥 {𝑈 (𝑥)|𝑥 ∈ 𝐴} ≥ 𝑠𝑢𝑚 {𝑃 (𝑥)|𝑥 ∈ 𝐴} for all 𝐴 ∈ 𝛺(X).

3. 𝑇 is support-preserving, i.e., 𝑃 ∈  and 𝑈 = 𝑇 (𝑃 ) we have
𝑃 (𝑥) = 0 if and only if 𝑈 (𝑥) = 0 for all 𝑥 ∈ X.
4

Fig. 2. Standardized normal distribution: probability density function (green), ( 1
2
)-AC

function (black) and corresponding Membership Function (red). The marked point is
the target −𝑏𝑒𝑡𝑎∗ = −3.8 for the Ultimate Limit State at 50 years corresponding to the
failure probability 7.2348×10−5; the membership value of −3.8 is 𝛼∗ = 1.44696088×10−4.

4. 𝑇 is co-monotonic, i.e., if 𝑃 ∈  and 𝑈 = 𝑇 (𝑃 ) we have 𝑃 (𝑥) ≥
𝑃 (𝑦) if and only if 𝑈 (𝑥) ≥ 𝑈 (𝑦) for all 𝑥, 𝑦 ∈ X.

Usually, a transformation 𝑇 and its inverse 𝑇 −1 are called Direct and
Reverse, respectively. The ACF-based transformation is admissible and
has the additional core-preserving property, that is:

𝑃 (𝑥∗) = 𝑚𝑎𝑥 {𝑃 (𝑥), 𝑥 ∈ X} if and only if 𝑈 (𝑥∗) = 1 (12)

if 𝑃 ∈  and 𝑈 = 𝑇 (𝑃 ).
For any 𝜆 ∈ ]0, 1[, there exists a bijective correspondence between

the family of all 𝜆-AC functions 𝐹 (𝜆)
𝑢 and the family of the probabilistic

CDFs 𝐹𝑋 of a real random variables 𝑋. For a fixed 𝐹 ≡ 𝐹𝑢 ≡ 𝐹𝑋 , the
function

𝐹−1(𝛼) = inf{𝑥|𝐹 (𝑥) ≥ 𝛼} for all 𝛼 ∈ ]0, 1] and 𝐹−1(0) = 𝑎 (13)

is called the quantile function of 𝐹 .
Remark that for the value of 𝜆 = 1∕2, the membership function 𝑢,

associated to a given AC function, 𝐹 ∶ R → [0, 1], can be obtained easily
as 𝑢(𝑥) = 2⋅𝑚𝑖𝑛 {𝐹 (𝑥), 1 − 𝐹 (𝑥)}; in this case the core of 𝑢 coincides with
the median of the distribution 𝐹 . Alternatively, the value of 𝜆 ∈ ]0, 1[
can be calibrated such that the core of the possibility distribution 𝑢
coincides with the modal value, �̂�, of the probabilistic 𝐹 , (more details
in Guerra et al. (2020)):

𝑢(𝑥) = 𝑚𝑖𝑛
{

𝐹 (𝑥)
1 − �̂�

,
1 − 𝐹 (𝑥)

�̂�

}

(14)

where �̂� = 1 − 𝐹 (�̂�).
It is worth mentioning that a probability–to–possibility transfor-

mation, for a unimodal probability distribution 𝑃 , can be obtained
by considering the value �̂�, corresponding to the modal (of highest
probability) element to be considered the most natural nominal value
(see e.g., Dubois et al., 2004). On the other hand, an interval 𝐼𝛼 , for a
fixed confidence level 𝛼 ∈ ]0, 1[, is such that 𝑃 (𝐼𝛼) = 1−𝛼 and 𝑃 (𝐼𝑐𝛼 ) = 𝛼
has the meaning of a risk level, i.e., the probability for the variable 𝑋
to be outside 𝐼𝛼 . Consequently, a family

{

𝐼𝛼 ∶ 𝛼 ∈]0, 1[
}

of nonempty
and nested intervals containing �̂� induces the fuzzy membership �̂� such
that its 𝛼-cuts are [�̂�]𝛼 = 𝐼𝛼 , i.e., for all 𝛼,

�̂�(𝑥) = 𝑠𝑢𝑝𝛼
{

1 − 𝑃 (𝐼𝛼) ∶ 𝑥 ∈ 𝐼𝛼
}

. (15)

Clearly, each measurable set 𝐴 has 𝑃 (𝐴) ≤ �̂� (𝐴), i.e., 𝑃 is consistent
with �̂� (see also Dubois and Prade (1990)). If the sets 𝐼𝛼 above have
minimal length then �̂� is maximally specific, satisfies the consistency
principle and the order preservation condition (�̂�(𝑥′) ≥ �̂�(𝑥′′) ⇔ 𝑝(𝑥′) ≥
𝑝(𝑥′′)).

Therefore, for all 𝑥 ≤ �̂� and for all probabilities 𝑃 of the credal set
(Dubois and Prade, 2016) of 𝑢 (or 𝑈), the following property holds:

𝑃 (] − ∞, 𝑥]) ≤ (1 − �̂�)𝑢(𝑥). (16)
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Specifically, if a reliability condition of the form 𝑃 (] − ∞, 𝑥]) ≤ 𝜖 is to
e tested for a fixed 𝑥 ≤ �̂�, where 𝜖 is a small value (e.g., the failure
robability 𝑃0), the safety test can be performed on 𝑢(𝑥), as follows:

𝑢(𝑥) ≤ 𝜖
(1 − �̂�)

⟹ 𝑃 (] − ∞, 𝑥]) ≤ 𝜖. (17)

Therefore, Eq. (17) can be exploited to define a safety criterion for
he fuzzy-valued performance function 𝐺, in terms of its membership
unction 𝑢𝐺 ∶ R → [0, 1] of Eq. (5) by extending the reliability problem
f Eq. (2) to fuzzy numbers:

𝐺(0) < 𝛼∗ ⇒ Safe

𝐺(0) ≥ 𝛼∗ ⇒ Failure;
(18)

ere, the maximum acceptable possibility level to guarantee structural
afety, herein called Target Reliability Value (TRV), 𝛼∗ is determined
s:
∗ =

𝑃0

(1 − �̂�)
. (19)

It is worth emphasizing that the proposed possibility TRV represents
n upper bound value for all probabilities 𝑃 of the credal set of 𝑢, hence

the proposed methodology can be seen as conservative with respect
to the probabilistic Level II approach. For a membership function
constructed from a normal distribution and with core coincident with
the median of the distribution, 𝛼∗ = 2𝑃0 is obtained.

A similar approach was recently suggested by Guerra and Sorini
(2020) for assessing the risk management in real financial markets; the
ACF transformation of Eq. (13) is used to define a possibilistic (fuzzy)
Value at Risk (VaR) measure, given, for a fixed membership value 𝛼∗,
by

𝑉 𝑎𝑅𝐴𝐶𝐹 (𝛼∗) = (𝐹𝑢)−1(𝛼∗). (20)

The relevant advantage of the proposed possibility reliability for
Eq. (18) lies in the simplicity of its computation: once the parameters
are represented as fuzzy numbers and the membership function of 𝐺
is obtained as in Eq. (6), the condition 𝐺 = 0 is verified when the
associated degree of membership 𝑢𝐺(0) is lower than a given target 𝛼∗
and consequently the structural design can be considered to be safe;
otherwise, it is considered to fail.

2.1.2. Consistency of the target reliability value with the prescribed stan-
dards

The Target Reliability Value, 𝛼∗, required for the reliability as-
sessment of Eq. (18), which dictates the required level of safety on
the proposed possibility approach is defined to be consistent with
the prescribed standards. In particular, under the probability Level II
approach, EN1990 (British Standards Institution et al., 2021) proposes
the evaluation of the reliability index 𝛽, which is a measure of the
distance between the mean performance and the failure boundary,
defined as follows:

𝛽 =
𝜇𝑅 − 𝜇𝑉

√

(𝜎2𝑅 + 𝜎2𝑉 ) − 2 ⋅ 𝐶𝑜𝑣[𝑅, 𝑉 ]
(21)

where 𝜇𝑅,𝑉 and 𝜎𝑅,𝑉 is the mean and standard deviation of the re-
istance and load, respectively. The term 𝐶𝑜𝑣[𝑅, 𝑉 ] is the covariance

between 𝑅 and 𝑉 which yields 0 if the two random variables are
independent.

The probabilistic reliability index 𝛽 should be greater than a pre-
set value, the target 𝛽∗, given by the structural code and reported
in Table 1, for 3 classes of consequences, i.e. RC3, RC2 and RC1,
corresponding to i.e. high, medium, low consequences, respectively.

In Table 1 are also reported the corresponding target failure proba-
bilities, 𝑃0, obtained through the following expression:

𝑃 ∗
𝑓 = 𝛷(−𝛽∗) (22)

where 𝛷 is the cumulative distribution function of the standardized
Normal distribution. For instance, in case of 𝛽∗ = 3.8, the target

∗ −5
5

probability of failure is 𝑃𝑓 = 7.2348 × 10 . o
Table 1
Recommended minimum values for reliability index 𝛽 (probability of failure in
parenthesis) for ULS (British Standards Institution et al., 2021).

Reliability class 1-year reference period 50-year reference period

RC1 5.2 (9.9644 × 10−8) 4.3 (8.5399 × 10−6)
RC2 4.7 (1.3008 × 10−6) 3.8 (7.2348 × 10−5)
RC3 4.2 (1.3346 × 10−5) 3.3 (4.8342 × 10−4)

Table 2
Proposed recommended values for the Target Reliability Value 𝛼∗ for ULS.

Reliability class 1-year reference period 50-year reference period

RC1 1.993 × 10−7 1.708 × 10−5

RC2 2.602 × 10−6 1.447 × 10−4

RC3 2.669 × 10−5 9.668 × 10−4

In case of the standard Gaussian distribution 𝑁(0, 1) the maximal
specificity transformation 𝑢𝑁 (in closed form) is such that for any
negative 𝑥∗ < 0 with 𝑈𝑁 (𝑥∗) = 𝛼∗ it is 𝑃 (] − ∞, 𝑥∗]) ≤ 𝛽∗ where
𝛽∗ = 𝑃 (𝑥∗).

Therefore, in this paper, the Target Reliability Value is derived
in order to guarantee a level of safety comparable to the probabilis-
tic reliability of Table 1, by adopting the probability to possibility
transformation.

Therefore, from the cumulative distribution function of the stan-
dardized normal distribution 𝑁(0, 1) used to calculate the probability
of failure through Eq. (22), a fuzzy number can be elicited through
the ACF transformation. Fig. 2 shows the PDF of the standard 𝑁(0, 1)
y a green-coloured curve and its cumulative distribution function 𝛷
y a black-coloured curve, which is assumed to coincide with the AC
unction, 𝐹 , appearing in Eq. (14) and giving, as the left side of Eq. (14),
he resulting membership function 𝑢𝑁(0,1), pictured in red colour. There-
ore, it is possible to derive the value 𝛼∗ of the membership function
𝑁(0,1), corresponding to the point of the probabilistic target reliability
ndex −𝛽∗ (e.g. 𝛽∗ = 3.8), as marked in Fig. 2; this computed value is
eferred to as the Target Reliability Value 𝛼∗ and given in Table 2 for
he three reliability classes RC1, RC2 and RC3 and for the 1-year or
0-year reference periods.

It is worth emphasizing that many probability-to-possibility trans-
ormations are introduced by several scholars in the literature. An
nteresting setting helping to choose the one or other among them,
as been proposed recently by Jin et al. (2019), where the class of
o-called Arising Accumulation Transformations (AAT and its inverse
AT) introduced by Dubois and Prade (see, e.g., Dubois and Prade
2016) and Dubois et al. (2004)) is analysed. An empirical comparison
f different transformations is not the direct scope of this paper but is
lear that the proposed calibration of the Target Reliability Value can
e performed through a different transformation, without altering the
athematical construction in a significant way. For example, using the
AT as a substitute of ACF, a corresponding 𝛼∗𝐴𝐴𝑇 will be obtained; as
AT has a higher uncertainty degree with respect to ACF (see e.g., Jin
t al., 2019), a value of 𝛼∗𝐴𝐴𝑇 = 2.363 × 10−3 > 𝛼∗𝐴𝐶𝐹 for the 50-years
C2 case of Table 2.

.1.3. Computational approach to the extension principle
By exploiting the Zadeh’s extension principle (Zadeh, 1975), the

erformance function 𝐺 of Eq. (1) is extended to a fuzzy interval 𝑢𝐺 =

𝐸𝑃

(

𝑢𝑋1
,… , 𝑢𝑋𝑑

)

having 𝛼-cuts [𝐺]𝛼 = [𝐺−
𝛼 , 𝐺

+
𝛼 ], obtained by solving

he box-constrained global optimization problems, for 𝛼 ∈ [0, 1],

𝐺−
𝛼 = min

{

𝐺(𝑥1,… , 𝑥𝑑 )|𝑥𝑗 ∈ [𝑢𝑋𝑗
]𝛼 , 𝑗 = 1,… , 𝑑

}

𝐺+
𝛼 = max

{

𝐺(𝑥1,… , 𝑥𝑑 )|𝑥𝑗 ∈ [𝑢𝑋𝑗
]𝛼 , 𝑗 = 1,… , 𝑑

} . (23)

The optimization (23) can be solved for a finite set of 𝑁 values
f 𝛼, say 0 = 𝛼 < 𝛼 <,… , < 𝛼 = 1, and in general, a relatively
1 2 𝑁
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small value for 𝑁 is adopted, depending on the required precision in
onstructing a good approximation of the whole membership function;
he values 𝛼1 = 0 and 𝛼𝑁 = 1 are always included, in order to obtain

the exact support and core of the membership function of the fuzzy
number 𝐺𝐸𝑃 as in Eq. (6) and deduce its associated possibility measure
by the ACF transformation of Eq. (14). For a general (non monotonic)
function 𝐺, it is necessary to solve globally the 𝑚𝑖𝑛 and 𝑚𝑎𝑥 problems
in Eq. (23) for the 𝑁 different values of the selected 𝛼𝑗 . This can
be done simultaneously with a single call to an optimization routine,
e.g., Hanss (2005) adopts its so-called transformation method, while
Stefanini et al. (2008) adapted two versions of the differential evolution
(DE) algorithm.

The computational complexity is reduced significantly when the
problem is described through a monotonic function, namely when
the performance function 𝐺 is monotonic increasing or decreasing

ith respect to its parameters. This implies that the Eq. (23) can be
lobally solved by simply evaluating function 𝐺 at the extreme points
f intervals [𝑢𝑋𝑗

]𝛼 , 𝑗 = 1,… , 𝑑, corresponding to the required 𝛼-cuts
with 𝛼 ∈

{

𝛼1, 𝛼2,… , 𝛼𝑁
}

, i.e., with a single computation of 𝐺 for each
minimization and maximization. Therefore the total number of function
evaluations depends only on the discretization of the membership
function.

2.2. Robust embedding of databases and local experience

The fuzzification of the performance function in Eq. (5) requires
defining the parameters or inputs of the considered engineering prob-
lem, i.e., 𝑋1,… , 𝑋𝑑 , as possibility distributions, in which the vague-
ness and uncertain nature is expressed by membership functions,
𝑢𝑋1

,… , 𝑢𝑋𝑑
.

Given a database of 𝑑-dimensional tuples, 𝐱𝑖 = (𝑥𝑖,1,… , 𝑥𝑖,𝑑 ), 𝑖 =
1, 2,… , 𝑚, with 𝑚 records for each of the given 𝑑 attributes, the es-
timation of the membership function for each of the 𝑑 parameters
taken independently, is achieved through the three-step procedure
described below. In the rest of this section, the procedure is developed
for a given input 𝑋𝑗 , hence, the 𝑗 index is omitted, denoting with
𝑥1, 𝑥2,… , 𝑥𝑚 the available values instead of using the double index
notation 𝑥1,𝑗 , 𝑥2,𝑗 ..., 𝑥𝑚,𝑗 . The data 𝑥𝑖 are assumed to be elements of
a real interval [𝑎, 𝑏] such that 𝑎 ≤ 𝑥𝑖 ≤ 𝑏, 𝑖 = 1, 2,… , 𝑚, i.e., 𝑎 =
𝑚𝑖𝑛

{

𝑥𝑖|𝑖 = 1,… , 𝑚
}

and 𝑏 = 𝑚𝑎𝑥
{

𝑥𝑖|𝑖 = 1,… , 𝑚
}

.

2.2.1. Step 1: Fuzzy clustering and partitioning
The first step entails to perform the clustering of the database,

hence decomposing the data into subgroups; clustering is essentially
an optimization approach that consists in determining a family of 𝑛𝑐
classes 1,… ,𝑛𝑐 and a numerical matrix 𝑈 = [𝑢𝑖,𝑘] with 𝑢𝑖,𝑘 ∈ [0, 1], in
order to minimize an objective function defined in several ways (see,
e.g., Bezdek (1981), Döring et al. (2006) and Oliveira and Pedrycz
(2007)) based on some distance measure, 𝑑(𝑥𝑖,𝑘), between the 𝑖th
record and the 𝑘th class (cluster); for instance,

minimize 𝐽 (𝑈,𝑘, 𝛽) =
𝑚
∑

𝑖=1

𝑛𝑐
∑

𝑘=1
𝑢𝛽𝑖,𝑘𝑑

2
𝑖,𝑘 (24)

where the component 𝑢𝑖,𝑘 of matrix 𝑈 measures the degree of mem-
bership of 𝑥𝑖 to class 𝑘 and 𝛽 ≥ 1 is a fixed fuzzification coefficient.
For 𝛽 = 1, the approach is consistent with the deterministic k-means
or hard clustering. Usually, each cluster 𝑘 is identified in terms of a
computed (representative) prototype value 𝑐𝑘 ∈ [𝑎, 𝑏], 𝑘 = 1, 2,… , 𝑛𝑐
and the distance 𝑑𝑖,𝑘 is the Euclidean one.

The matrix 𝑈 represents a (discrete) 𝑛𝑐 -dimensional fuzzy set such
that its 𝑘th column, 𝑘 = 1, 2,… , 𝑛𝑐 , is a fuzzy set on the 𝑚 records in
the data set. From the properties of 𝑈 , giving a fuzzy clustering of the
data set, no cluster is empty and each datum has total membership 1,
i.e., the following two conditions hold true:
𝑚
∑

𝑢𝑖,𝑘 > 0 for all 𝑘 ,
𝑛
∑

𝑢𝑖,𝑘 = 1 for all 𝑖.
6

𝑖=1 𝑘=1
c

The fuzzy clustering (fuzzy c-means) can be carried out through the
Alternating Optimization (AO) algorithm as described in Bezdek (1981)
and Oliveira and Pedrycz (2007). The algorithm is implemented in the
MATLAB (MATLAB, 2022) routine fcm.

It is well known that, except for special cases, the columns of
matrix 𝑈 do not produce fuzzy numbers, but only fuzzy sets with non-
monotonic left and right branches as instead required in Eq. (3); an
additional step is then required, to modify 𝑈 such that each class 𝑘
corresponds to the membership function of a fuzzy number, hence
to a possibility distribution. From the clustering matrix 𝑈 = [𝑢𝑖,𝑘],
to the 𝑖th data and for each of the 𝑘 = 1,… , 𝑛𝑐 classes, a (finite)
fuzzy 𝑛𝑐 -partition of the interval [𝑎, 𝑏] in terms of a family of 𝑛𝑐 fuzzy
numbers

{

𝐴𝑛𝑐
𝑘 , 𝑘 = 1, 2,… , 𝑛𝑐

}

is sought. In this paper, the so-called
Ruspini condition (see, e.g., Holčapek et al., 2015; Novák et al., 2016) is
satisfied for any pair of two consecutive partition classes, the 𝑘th and
(𝑘 + 1)-th; namely, 𝐴𝑛𝑐

𝑘 (𝑥) + 𝐴𝑛𝑐
𝑘+1(𝑥) = 1 for all 𝑘 = 1, 2,… , 𝑛𝑐 − 1 and

all 𝑥 ∈ [𝑎, 𝑏]. The usefulness of a fuzzy partition is that each observed
datum 𝑥𝑖 has either one membership value 𝐴𝑛𝑐

𝑘 (𝑥𝑖) = 1 (and it belongs
to the core of the fuzzy number 𝐴𝑛𝑐

𝑘 representing the 𝑘th cluster), or
exactly two positive values 𝐴𝑛𝑐

𝑘 (𝑥𝑖) and 𝐴𝑛𝑐
𝑘+1(𝑥𝑖) = 1 − 𝐴𝑛𝑐

𝑘 (𝑥𝑖), the
others being zero. Furthermore, the centroids 𝑐1, 𝑐2,… , 𝑐𝑛𝑐 obtained in
the fuzzy clustering fully characterize the cores and supports of the
fuzzy numbers 𝐴𝑛𝑐

𝑘 in the Ruspini partition; in particular, on the left
side of the interval [𝑎, 𝑏], 𝐴𝑛𝑐

1 has core [𝑎, 𝑐1] and support [𝑎, 𝑐2], each
intermediate 𝐴𝑛𝑐

𝑘 , for 𝑘 = 2,… , 𝑛𝑐 − 1, has core 𝑐𝑘 (a singleton) and
support [𝑐𝑘−1, 𝑐𝑘+1], and on the right side of [𝑎, 𝑏], 𝐴𝑛𝑐

𝑛𝑐 has core [𝑐𝑛𝑐 , 𝑏]
and support [𝑐𝑛𝑐−1, 𝑏].

Associated with a Ruspini partition there is a semantic interpreta-
tion of the family of numbers 𝐴𝑛𝑐

𝑘 in terms of the level of granularity
of a variable 𝑋 on interval [𝑎, 𝑏], expressed by the number 𝑛𝑐 of
clusters. For example, a partition into three classes, with fuzzy num-
bers 𝐴3

1, 𝐴
3
2, 𝐴

3
3, can be interpreted as 𝐴3

1 = ‘value of X is Low’, 𝐴3
2 =

‘value of X is Medium’, 𝐴3
1 = ‘value of X is High’; similarly, a partition-

ng with six classes may correspond to a semantics 𝐴6
1 =‘Very Low X’,

𝐴6
2 =‘Low X’, 𝐴6

3 = ‘Low-to-Medium X’, 𝐴6
4 = ‘Medium-to-High X’, 𝐴6

5 =

High X’, and 𝐴6
6 =‘Very High X’.

Therefore, by increasing the number 𝑛𝑐 of classes, the granular inter-
retation of the variable 𝑋 in [𝑎, 𝑏] becomes finer and hence, its degree
f uncertainty decreases. This property is here exploited to embed the
ocal experience and engineering judgement for the assessment of the
eliability; the level of confidence in the experimental data and in
he geotechnical design is hereinafter called ‘Degree of Understanding’
DoU) in analogy with the concept proposed by Fenton et al. (2016)
r by the Canadian Highway Bridge Design Code - CSA S6:19, CSA
2019). The DoU is used to define a tier system which implements the
ecommendations of the BS EN1997 (British Standards Institution et al.,
007) for determining reliable geotechnical parameters by considering
ocal experience, sample size and comparison with published data. If
he level of confidence or DoU is ‘high’, a higher number of classes are
sed so to reduce the epistemic uncertainty and therefore, giving more
eight to the experimental data; on the other hand, for low levels of

onfidence or ‘low’ DoU, a lower number of classes will be used, leading
o fuzzy partitions with a level of epistemic uncertainty consistent with
he dispersion of the database.

.2.2. Step 2: Determine empirical membership functions
The second step consists in obtaining, for the 𝑛𝑐 classes of the Ruspini

artition, the empirical membership functions extracted from the ob-
erved values

{

𝑥𝑖|𝑖 = 1, 2,… , 𝑚
}

in the clustered database. For each 𝑘th
uspini membership function 𝐴𝑛𝑐

𝑘 , the associated empirical membership
unction 𝑢𝐴𝐶𝐹

𝑘 , 𝑘 = 1,… , 𝑛𝑐 , through the ACF transformation of the
ubset of data belonging to the support of each 𝐴𝑛𝑐

𝑘 , 𝑘 = 1, 2,… , 𝑛𝑐 ,
s described by Eq. (14). The transformation will generate a possibility
istribution consistent with the empirical cumulative distribution of the

onsidered subset of data.
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Fig. 3. Square Pad Foundation under vertical load.
Source: Readapted example from Orr and Farrell
(2011).

2.2.3. Step 3: Derivation of the design Fuzzy membership function
The final step of our procedure is to obtain the fuzzified version of

the input parameter �̂�, i.e., its membership function 𝑢�̂� on the range
[𝑎, 𝑏], referred to as Design Membership Function. The Design MF is
derived by considering two consecutive fuzzy numbers 𝐴𝑛𝑐

�̂�
and 𝐴𝑛𝑐

�̂�+1
of

the Ruspini partition
{

𝐴𝑛𝑐
𝑘 |, 𝑘 = 1, 2,… , 𝑛𝑐

}

obtained in Step 1; these are
selected from the database partitions according with the position of a
fixed parameter �̂�. In this paper, �̂� is the characteristic or nominal value
(Nawari and Liang, 2000; Länsivaara et al., 2022) of the considered
geotechnical parameter.

Finally, a normalized convex combination is used for merging two
adjacent empirical membership functions as follows:

• if the position of �̂� is �̂� ∉ 𝑐𝑜𝑟𝑒(𝐴𝑛𝑐
�̂�
)∪𝑐𝑜𝑟𝑒(𝐴𝑛𝑐

�̂�+1
) and �̂� ∈ 𝑠𝑢𝑝𝑝(𝐴𝑛𝑐

�̂�
)∩

𝑠𝑢𝑝𝑝(𝐴𝑛𝑐
�̂�+1

), for �̂� = 1,… , 𝑛𝑐 − 1, then:

𝑢�̂� =
𝑤𝑢𝐴𝐶𝐹

�̂�
+ (1 −𝑤)𝑢𝐴𝐶𝐹

�̂�+1
max (𝑤, 1 −𝑤)

(25)

where the weights 𝑤 and 1 − 𝑤, are given by 𝑤 = 𝐴𝑛𝑐
�̂�
(�̂�) (or,

equivalently, 1 −𝑤 = 𝐴𝑛𝑐
�̂�+1

(�̂�));
• if �̂� ∈ 𝑐𝑜𝑟𝑒(𝐴𝑛𝑐

�̂�
) (and consequently 1 − 𝑤 = 0, 𝑤 = 1), then, set

𝑢�̂� = 𝑢𝐴𝐶𝐹
�̂�

;
• if �̂� ∈ 𝑐𝑜𝑟𝑒(𝐴𝑛𝑐

�̂�+1
) (and consequently 1 − 𝑤 = 1, 𝑤 = 0), then, set

𝑢�̂� = 𝑢𝐴𝐶𝐹
�̂�+1

.

The obtained fuzzy number, 𝑢�̂� , defines the Design Membership
Function to be used as an argument of the fuzzy performance function
of Eq. (5), to assess the possibilistic reliability in Eq. (18). The Design
Membership Function embodies the aleatory randomness of the consid-
ered parameter as well as the epistemic information extracted from the
database through the core, the support and the shape of its membership
function.

3. Possibility reliability assessment of shallow foundations

3.1. Problem description

In this section, the proposed methodology is applied to the common
engineering problem of safety assessment of a square pad foundation
under vertical loads. The design of the footing size is performed with
regard to the Ultimate Limit State, and then, the structural reliability
is assessed through traditional probability methods as well as the
proposed possibility approach. The investigated problem, as illustrated
in Fig. 3, is re-adapted from the worked example in Orr and Farrell
(2011) by considering the angle of internal friction as an uncertain
parameter.
7

The bearing resistance per unit of area of square shallow founda-
tions of dimensions 𝐵 ≡ 𝐿 can be estimated through the trinomial
equation as follows:

𝑞𝑢𝑙𝑡 = 𝑐𝑁𝑐𝑠𝑐 + 𝑞𝑠𝑁𝑞𝑠𝑞 + 0.5𝛾1𝐵𝑁𝛾𝑠𝛾 (26)

where 𝑞𝑢𝑙𝑡 is the ultimate bearing capacity of the footing, 𝑐 is soil
‘‘effective’’ cohesion, 𝛾 is the unit weight of the soil, 𝑞𝑠 is the surcharge
pressure and 𝐵 is the width of the foundation; 𝑁𝑐 , 𝑁𝑞 , 𝑁𝛾 are the bear-
ing capacity factors and 𝑠𝑐 , 𝑠𝑞 , 𝑠𝛾 are the shape factors, as prescribed
by BS EN1997 (British Standards Institution et al., 2007). It is worth
noting that an interesting approach to capture the uncertainty in the
modelling the considered physical engineering problem is based on
the introduction of a model factor (see e.g., Tang and Phoon, 2021;
Phoon et al., 2022a) to modify Eq. (26); nevertheless, this paper is
limited to sources of uncertainties affecting the parameters of the given
model, and hence, the model factor is neglected in this study without
compromising its mathematical relevancy.

The following expressions for the bearing capacity factors and shape
factors (for non-inclined vertical loads and square shape), are consid-
ered:
𝑁𝑞 = exp (𝜋 ⋅ tan(𝜙)) ⋅ (tan(𝜋∕4 + 𝜙∕2))2

𝑁𝑐 = (𝑁𝑞 − 1) ⋅ cot(𝜙)

𝑁𝛾 = 2 ⋅ (𝑁𝑞 − 1) ⋅ tan(𝜙)

𝑠𝑞 = 1 + 1 ⋅ sin(𝜙)

𝑠𝑐 =
𝑠𝑞 ⋅𝑁𝑞 − 1
𝑁𝑞 − 1

𝑠𝛾 = 0.7

(27)

The angle of internal friction, 𝜙, and the cohesion, 𝑐, of the soil,
governing the ultimate bearing capacity of the foundation, have to
be considered as nominal or characteristic values or design values
according with BS EN1990 (British Standards Institution et al., 2021).
The resistance of the shallow foundation is obtained as follows:

𝑅 = 𝑞𝑢𝑙𝑡 ⋅ 𝐵
2 (28)

The structural safety at the Ultimate Limit State (ULS) described by the
function 𝐺 = 𝑓

(

𝑋1,… , 𝑋𝑑
)

of Eq. (1) is hence assessed by comparing
the resistance given by Eqs. (26)–(28) to the external load 𝑉 .

In the following sections, two numerical applications will be con-
ducted. In the first one, the frictional angle is assumed as an ideal
random variable so to highlight the consistency of the proposed pos-
sibility approach with the prescribed probability values reported in
EN1990 (British Standards Institution et al., 2021). In the second
worked example, the values of the angle of internal friction are ob-
tained from a limited number of real experimental direct shear testing
conducted by three different technicians, and the reliability assessment
is performed by considering subjective information as well as an real
database.

The remaining parameters of the problem are considered
certain/crisp; Fig. 3 shows the values of the soil parameters (e.g. sur-
charge pressure 𝑞 =18 kN∕m3 ⋅ 0.6m + 20 kN∕m3 ⋅ 1.4m = 25.1 kN∕m2

and 𝛾 = 20 kN∕m3) and geometrical dimensions (e.g. foundation depth
= 2m); on the other hand, the size of the foundation (𝐵 = 𝐿) is designed
consistently with the Level I semi-probability approach. To keep the
focus on the soil uncertainty, the vertical unfavourable loads, i.e. the
permanent load, 𝐺 = 935.9 kN, and the variable load, 𝑄 =300 kN are
considered deterministic through the application of the partial load
factors according the Design Approach 1 (DA1-1 and DA1-2) prescribed
by the UK National Annex to EN 1997-1. It is worth emphasizing that
the proposed possibility methodology can also be directly applied when
the remaining parameters are considered as fuzzy sets; on the other
hand, if any of them are considered purely random or aleatory, a hybrid
approach should be used as done in Tombari and Stefanini (2019).
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Fig. 4. Representation of the sets of angles of internal friction for 3 different COVs as (a) Histograms and Probability Distribution Functions (b) Fuzzy Membership functions.
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3.2. Comparative study: Probability and possibility reliability assessment

The following application aims to demonstrate the validity of the
proposed method to assess the reliability of the foundation design by
maintaining the consistency between Probability and Possibility theory
for the definition of the target safety criterion. The methodology of
Fig. 1 is applied without considering the use of an indirect database
to allow a direct comparison with the probability approach.

Let us consider the problem depicted in Fig. 3 where the uncertain
angle of internal friction 𝜙 is ideally described through a log-normal
probability distribution function with mean value �̄� = 30◦ and variable
standard deviation 𝜎𝜙 obtained by equally ranging 15 Coefficients of

ariation, 𝐶𝑂𝑉 = 𝜎𝜙∕�̄� from 0.01 to 0.15. A large number of samples,
= 1 × 107 samples have to be generated in order to reach the

convergence at the target probability of failure through Eq. (7).

3.2.1. Probabilistic Level I and Level II reliability
Once the distributions of the angle of internal friction have been

obtained for each considered COV, the size of the square foundation,
𝐵 = 𝐿, is calculated according with the Level I semi-probabilistic
approach. Each characteristic value is computed as 5% fractile of the
related probability distribution function (PDF). PDFs of the generated
angles of friction for 3 selected COVs are plotted in Fig. 4a. In Fig. 5a
is depicted the variation of the characteristic value and the designed
footing width as a function of the COV. To assess the level of safety, the
Level II-𝛽 approach is first applied. The reliability index, 𝛽, calculated
through Eq. (21), is plotted in Fig. 5b.

Since the partial safety factor used in the Level I design is constant
and invariant with respect to the actual dispersion of the data, a
uniform level of safety cannot be guaranteed. Although the foundation
has been properly designed, Fig. 5b shows that the Reliability Index,
𝛽 is lower than the target, 𝛽∗ of Table 1 for low COVs, and greater
than the required level of safety for high COVs, leading to over- or
under-conservative design depending on the dispersion of the input
parameters.

Moreover, because of the nonlinear dependence between the angle
of friction and the bearing resistance, the resulting probability distribu-
tion function is not lognormal distributed. Fig. 6a shows the normalized
histograms of bearing resistance values, 𝑅, in comparison with inferred
log-normal distributions; differences can be observed even for low
COVs at the tails of the PDFs. The results in terms of the computed
probability of failure compared to the target one are depicted in Fig. 6b;
the divergence with the probability of failure calculated from the 𝛽
values evidences the impact of the non-gaussianity of the resulting
8

distribution.
3.2.2. Possibility and probabilistic reliability
The previously generated distributions of angles of internal friction

are transformed into fuzzy sets through the ACF transformation of
Eq. (14). As mentioned in Section 2.2, the proposed procedure can be
still applied without an indirect database by taking the whole dataset
as an individual partition. The membership functions of the angle of
internal friction, 𝑢𝜙, are illustrated in Fig. 4b for the same selected
COVs of Fig. 4a. The support width of each membership function is
directly proportional to the coefficient of variation, hence, the larger is,
the more dispersed are the data, whilst the core represents the median
of the data. The skewness and the shape of the membership function
can also provide information about the propagation of the uncertainty.

Once the membership functions of the input data are obtained,
Eq. (1) is fuzzified as described in Section 2.1. The membership func-
tions of the performance function or ultimate limit state are hence ob-
tained through the computational approach described in Section 2.1.3;
since the function is monotonic, the computational procedure is simpli-
fied as follows:

1. The membership function of the internal friction angle, 𝑢𝜙, is
given as a ordered pair (𝜙, 𝑢𝜙) where 𝜙 is sorted in increasing
order and 𝑢𝜙 ∈]0 1];

2. The deterministic performance function of Eq. (1) is solved
sequentially for each 𝜙, and each value of the function, 𝐺(𝜙) is
associated with the corresponding 𝑢𝜙;

3. The membership function of 𝐺, 𝑢𝐺, is then recovered from all
the ordered pairs, (𝐺, 𝑢𝜙).

Fig. 7a shows the computed membership functions of the perfor-
ance function for three selected values of COVs of the input data,
amely COV = 0.05, 0.1, 0.15. Therefore, by adopting the criterion

proposed in Section 2.1.2, the value of the membership function, 𝑢𝐺(𝑔 =
0), is compared with the target fuzzy reliability index, 𝛼∗𝑐𝑢𝑡 = 1.447 ×
10−4, consistent with the probability of failure for a 50-year reference
period in the probability framework. Fig. 7b shows a close-up of the
membership functions around the 𝐺 = 0 compared to the proposed
target Reliability Index Value.

The safe/unsafe test is repeated for each considered COV; results are
shown in Table 3. In the same figure, the probability of failure is also
numerically computed for the same sets of data assessed against the
target probability of failure of Eq. (22); therefore, it is demonstrated
that the proposed possibility approach provides with a safe-failure
outcome consistent with the probability test, as initially aimed. It is

7
worth emphasizing that 𝑁 = 1 × 10 samples had to be used to have
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Fig. 5. (a) Characteristic angle of internal friction and foundation width 𝐵 for each generated distribution; (b) Level II - Reliability 𝛽 Index.
Fig. 6. (a) Histograms of the calculated bearing resistances for 3 different COVs, the continuous curves represent the log-normal Probability Distribution Functions obtained from
the mean and standard deviation values computed from the data; (b) Probability of Failure calculated through numerical and 𝑏𝑒𝑡𝑎 methods.
a convergence result for the probability test; on the other hand, a
reliable fuzzy set can be obtained by using only a few data along
with the support of an indirect, regional or national, database and
local experience as shown in the following application. It is worth
mentioning that the number of function evaluations to perform the
proposed possibilistic approach is related to the discretization of the
membership function, which can be refined around 𝑢𝐺(𝑔 = 0) to reduce
the computational complexity.

3.3. Possibilistic reliability using experimental data

3.3.1. Experimental data
In this section, the soil of the geotechnical problem described in

Section 3.1 is characterized through laboratory testing. The values
of the angle of internal friction, 𝜙, are obtained from experimental
direct shear tests carried out by three independent technicians (T1,
T2, T3). A dry silica sand, composed by mixing rounded grains of size
corresponding to fraction B (particle size between 1.18mm−600 μm) and
fraction C (particle size between 600 μm−300 μm) in a ratio 1:2, has been
9

Table 3
Comparison of possibility and probability reliability assessment for several COVs of the
angle of internal friction.

Reliability
measure

𝐶𝑂𝑉𝜑 0.01 0.05 0.09 0.1 0.15

Probability 𝑃𝑓 0 0 6.6e−5 2.78e−4 3.04e−3
Test - Eq. (7) Safe Safe Safe Fail Fail

Possibility 𝑢𝐺(0) 0 0 1.414e−4 1.294e−4 1.3478e−3
Test - Eq. (18) Safe Safe Safe Fail Fail

tested. Each soil specimen is prepared by dry tamping layers of 10 mm
with 25 blows per layer, until the rectangular shear box of 100 mm ×
100 mm area and 48 mm depth has been filled. The procedure has been
followed by each technician in order to reach the same compaction
for every sample. The test is conducted at three increasing loading
stages (490.5N, 981N and 1471.5N), and the angle of internal friction is
derived by least-square fitting of the Mohr–Coulomb model, in which
the failure criterion is determined as a linear function of the normal
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Table 4
Angle of the internal angle of friction obtained through direct shear testing.

Technician Number of
tests

Type Mean value [◦] Interval [◦] COV [%]

T1 22 𝜙𝑐𝑣 29.95 29.14–30.77 1.65
𝜙𝑝𝑒𝑎𝑘 38.47 36.81–40.25 2.9

T2 10 𝜙𝑐𝑣 29.57 27.52–31.23 3.84
𝜙𝑝𝑒𝑎𝑘 33.67 33.06–34.31 1.39

T3 4 𝜙𝑐𝑣 32.53 31.77–33.62 2.76
𝜙𝑝𝑒𝑎𝑘 43.11 41.83–44.38 2.67

stress as follows:

𝜏𝑓 = 𝑐 + 𝜎𝑣 tan(𝜙) (29)

where 𝜏𝑓 is the shear strength, 𝑐 is the cohesion, 𝜎𝑣 is the vertical stress
ormal to the failure place, and 𝜙 is the angle of internal friction. Since
he sand is dry, the cohesion 𝑐 is equal to 0. Eq. (29) can be used to
btain the critical or peak angle of friction, 𝜙𝑐𝑣 and 𝜙𝑐𝑟𝑖𝑡, respectively.
tatistics of the results from each technician are reported in Table 4.
he dispersion of the results are shown in Fig. 8 where it can be
bserved the higher dispersion of the peak angle of friction compared
ith the critical value.

.3.2. Foundation design and probabilistic reliability
The experimental results are used to design the pad foundation of

ection 3.1 by means of the Level I semi-probabilistic approach. The
ominal value for the angle of internal friction used for the design of
he foundation is taken as the 5% fractile of the normal distribution
nterfered with the data obtained by each technician in Table 4.

It is worth mentioning that given the relatively low number of
xecuted tests, the adoption of the fractile value could be unreliable
nd the minimum or average value of the interval of data could be used
nstead (e.g., see Länsivaara et al., 2022). Nevertheless, no significant
ifferences in the foundation size have been obtained.

The final designed sizes of the pad foundation are 𝐵 = 𝐿 =
.24m, 1.52m and 0.95m for the soil values obtained by technicians
1, T2, T3, respectively. The level of safety is then assessed through
Level II approach by computing the failure probability; the reliability

equirement is met for both approaches because of the low dispersion
f the data (see Table 4), in accordance with the analysis conducted in
ig. 6 of Section 3.2.1.
10
.3.3. Design membership functions
Because of the few data used to perform the probabilistic reliability

nalysis, the proposed possibilistic reliability assessment of Section 2
s hence conducted. The indirect database labelled as ‘‘SAND/7/2794’’
Ching et al., 2017), collecting experimental investigation of reconsti-
uted soils such as Erksak, Hokksund, Monterey, Ottawa, Sacramento
iver, Ticino, and Tonegawa sands, is adopted for supporting the relia-
ility analysis of the investigated geotechnical problem of Section 3.1.
emarkably, more and different databases could be also used; the
hoice is subjective to the practitioner who can opt for local or global
atasets. As stated in the BS EN1997 (British Standards Institution
t al., 2007), values should be compared to local experience, large scale
ield trials and published data (e.g., Phoon and Kulhawy, 1999; Phoon
t al., 2022a) so to effectively consider the dispersion and variability
f the data.

The dataset of 1257 samples, illustrated as histograms in Fig. 9,
s characterized by a median of 39.90◦ and 𝐶𝑂𝑉 = 13%; the black
urves represent the Ruspini partitions, obtained in Step 1 of the

proposed procedure (Section 2.2.1) whilst the red dots are used to
indicate the centres of the prototypes. Three different numbers of
partitions or subclasses, e.g., 𝑛𝑐𝑙 = 3, 6, 9 are used to define three
levels of knowledge and local experience defined as Low, Typical, and
High Degree of Understanding, in analogy with the prescriptions of the
Canadian Highway Bridge Design Code - CSA S6:19 (CSA, 2019). Each
degree is consistent with a certain degree of knowledge embedding
local experience and engineering judgement, as an example. The higher
the degree of knowledge, the higher the number of fuzzy partitions
and hence, the less uncertain and disperse are the values used for the
assessment of the reliability.

The Ruspini partitions are then associated to possibilistic (empirical)
membership functions, through the ACF-transformation described in
Step 2; Fig. 10 shows the partitions for each degree of understanding
represented as continuous black curves.

Therefore, the design membership functions for each degree of
understanding are established by allocating a nominal value, e.g. the
5% fractile value of the angle of internal friction, and performing the
convex combination described in Step 3.

The design membership functions for each level of understanding
are shown in Fig. 10. It can be observed that in the cases in which
the nominal value corresponds or it is nearby to the prototype centre
(the core), the design membership function is exactly or very similar
to the possibilistic partition as happens for instance to Technician 3 in
Fig. 10a. Otherwise, the design MF derives from the merging of two
adjacent partitions as described in Step 3 (Section 2.2.3).
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Fig. 8. PDFs of the angle of internal friction obtained by the 3 technicians: (a) critical and (b) peak values.
Fig. 9. Dataset with fuzzy partitions for (a) Low, (b) Medium, (c) High Degree of Understanding.
3.3.4. Assessment of the possibilistic reliability
After the clustering and positioning, each Technician is equipped

with three Design MFs for each Degree of Understanding. These will
be used for the fuzzification of the performance function 𝐺 and the
assessment of the possibilistic reliability. The Design MF is a fuzzy
number described as in Eq. (3); the left- and right- sides are essentially
a 2-tuple listing an ordered pair of values, namely an angle of internal
friction 𝜑 and its corresponding value of membership, 𝑢𝜑(𝜑), sorted in
ascending order of 𝜑.

If the performance function as the one investigated for this problem
is monotonic, the possibilistic reliability analysis consists in computing
the deterministic value of the performance function 𝐺 for each value
of 𝜑 as ordered in the Design MF. Therefore, in this case, the analysis
is similar to the approach used for the Monte Carlo Simulation where a
stochastic problem is converted into multiple deterministic problems.

Whilst the Monte Carlo Simulation requires the evaluation of the
performance function for each realization in order to estimate the statis-
tics of the outcome, in the proposed approach, because the function is
monotonically increasing, the analysis can be stopped as soon as the
first positive 𝐺 is achieved; this value is associated with a certain value
of the membership function 𝑢𝜑(𝜑).

Therefore, the proposed approach of Eq. (18) consists of comparing
the obtained 𝑢𝜑(𝜑) with a target value of reliability as proposed in
Table 2; in this case, the target possibility value is consistent with
11
the probability of failure of 7.2348 × 10−5 (class RC2 in the 50-year
reference period) is 1.447 × 10−4.

The outcome of the possibilistic reliability assessment is reported
in Table 5. For low DoU, the safety criterion is not met by all the
three technicians; for this level, the dispersion and variability of the
whole database strongly affect the reliability assessment yielding a
failed outcome. On the other hand, since the probabilistic reliability
approach prescribed by the BS EN1997 (British Standards Institution
et al., 2021) does not explicitly consider the local experience and the
available data from literature or datasets, the safety is verified for all
the three cases. For the medium and high degrees of understanding, the
reliability assessment is verified for Technicians 1 and 3. Nevertheless,
while Technician 1 had performed several testing (𝑛 = 22), Technician
3 should take the decision based on only a few (𝑛 = 10) samples; this
means the outcome can be acceptable at this level only if some further
aspects are considered, such as local experience or correlations with
the results from different test fields, if available. On the other hand,
Technician 2 requires a high degree of confidence or understanding to
accept the safe outcome of the analysis.

If the test fails at the DoU, the practitioners can either, for instance,
conduct more experimental tests to increase their DoU, or propose a
different design of the foundation (e.g. larger size) to obtain a safe
design even at lower DoU.
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Fig. 10. Design Membership functions for (a) Low, (b) Typical, (c) High Degree of
Understanding for the 3 Technicians.

Table 5
Possibilistic reliability assessment.

Degree of understanding T1 T2 T3

Low Fail Fail Fail
Typical Safe Fail Safe
High Safe Safe Safe

4. Possibility reliability assessment of wind turbine pile founda-
tions

In this section, a numerical application of the proposed procedure
is applied to a bivariate data problem. The three-step methodology of
Section 2 is applied.

4.1. Problem description

The investigated problem, illustrated in Fig. 11(a), regards a 65-kW
onshore wind turbine founded on an Oxford Clay. Wind turbine data
are re-elaborated from the application in Austin and Jerath (2017). The
tower is 23m high, and its mass is 10700 kg. In this case study, a 2 × 2
12

pile group has been designed with pile diameter, 𝐷, equal to 0.25m and f
Table 6
Possibilistic reliability assessment.

DoU Low Typical High

Test result Fail Safe Safe

pile length, 𝐿, of 4.5m. An equivalent vertical static load of about 54.73
kN is applied on each pile of the pile group foundation accounting for
gravity and wind loads. The performance function 𝐺 as in Eq. (1) is
evaluated for assessing the structural safety of the onshore wind turbine
at the Ultimate Limit State.

The pile bearing capacity, 𝑅 of Eq. (1), is derived from the results
of a Cone Penetration Test (CPT) sounding by adopting the direct
method proposed by Bustamante and Gianeselli (1982) where the cone
resistance, 𝑞𝑐, is used to derive 2 variables, the pile unit end bearing,
𝑞𝑝 as well as the pile unit side friction, 𝑓𝑝 through a discontinuous
transformation.

4.2. BGS database clusterization

To assess the reliability of the designed pile group, the result of an
experimental CPT sounding is compared with published data, and also
local experience is accounted for, as recommended by EN 1990 (British
Standards Institution et al., 2021). To apply the proposed methodology
of Section 2, the dataset of CPT soundings stored in the National
Geotechnical Properties Database (Self et al., 2012) managed by the
British Geological Survey (BGS), is considered. Experimental results
conducted on 105 boreholes in the Oxford Clay formation, from 3
different members (i.e., Stewartby, Peterborough and Weymouth), are
considered.

Fig. 11(b) shows with a red-colour curve the cone resistance, 𝑞𝑐,
erived from the experimental CPT sounding used for the pile design
hilst the grey curves represent all the records collected in the BGS
atabase. To account for different sources of uncertainty, in this ap-
lication, a measurement error is introduced; considering the actual
ecording as a mean trend, 100 samples for each record are generated
y summing up a random, normally distributed, fluctuation (see e.g.
hing et al., 2018) with coefficient of variation (COV) equal to 0.15,
elected as the lower bound of the COV values investigated in Phoon
nd Kulhawy (1999) and Salgado et al. (2019) for CPT testing. The
enerated values are represented by a blue circle in Fig. 11(c).

Figs. 12 and 13 show the distribution of the cone and frictional
esistance and their Ruspini partitions shown as black-curves for 3
ifferent number of subdivisions, i.e., 𝑛𝑐 = 3, 𝑛𝑐 = 6 and 𝑛𝑐 = 9.

.2.1. Assessment of the possibilistic reliability
Each Ruspini partition is then independently transformed into em-

irical membership functions through the ACF-transformation, as de-
icted with black curves in Figs. 14(a) and 14(b) for the specific low
oU case. The membership functions of the cone resistance, 𝑢𝑞𝑝, and

rictional resistance, 𝑢𝑓𝑝, for the reliability assessment are obtained
y positioning the nominal values used for the pile design (in this
ase, the cone and frictional resistance obtained by the CPT sounding)
nd then merged to derive the red-colour membership functions in
igs. 14(a)–14(b) for different DoU.

It is worth noting that the support of the design membership func-
ion is smaller when a higher DoU is considered, demonstrating that by
ncreasing the local experience and engineering judgement, the method
s able to capture the decrease of the uncertainty of the parameter.
inally, the possibilistic reliability assessment is conducted for each
oU by verifying Eq. (18).

Practically, the input to obtain the value of the membership function
f the performance function, 𝑢𝐺, is described by a tuple of 3 elements,
amely the value of the end-bearing resistance, the value of the side

riction and the associated level of membership in [0, 1]. The number of
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Fig. 11. (a) CPT soundings obtained from the BGS database (Self et al., 2012) in grey colour and reference CPT test (red colour curve), (b) Distribution of the Cone and Frictional
Resistances.
Fig. 12. (a) Fuzzy Clustering of the cone resistance for low DoU (𝑛𝑐 = 3), (b) Typical DoU (𝑛𝑐 = 6) (c) High (𝑛𝑐 = 9) DoU.
Fig. 13. (a) Fuzzy Clustering of the side friction for low DoU (𝑛𝑐 = 3), (b) Typical DoU (𝑛𝑐 = 6) (c) High (𝑛𝑐 = 9) DoU.
tuples is related to the discretization adopted to obtain the membership
functions.

Because of the monotonicity of the performance function, 𝐺, the
computation of the membership function, 𝑢𝐺, is simply obtained by
calculating the deterministic function, 𝐺, for each tuple sorted in
ascending order of the resistance parameters. For each tuple, the
crisp/deterministic value of the performance function, 𝐺, is obtained
and the corresponding degree of membership, 𝛼𝑐𝑢𝑡 is the value of the
membership function defined in the same tuple. The sequential analysis
stops when the first non-negative value of 𝐺 is obtained.

If the membership function’s value at 𝐺 = 0 is greater than the Tar-
get Reliability Value (𝛼∗ = 1.447×10−4), the criterion is satisfied (Safe),
otherwise not and the structure is unsafe (Fail). As evidenced in Fig. 15,
at low DoU, the value at 𝐺 = 0 is equal to 𝛼 = 0.078 > 𝛼∗ = 1.447×10−4,
therefore the reliability fails. Moreover, it can be observed that by
increasing the DoU, the support

[

𝑎 , 𝑏
]

of membership function 𝑢 is
13

𝐺 𝐺 𝐺
reduced and, consequently, a lower impact of the uncertainties on the
result is expected.

Table 6 summarizes the outcome of the proposed possibilistic reli-
ability assessment; for Low DoU, the pile design is considered unsafe
due to the large variation and weight of the database; for Typical and
High DoU, if local experience and number of samples are sufficient, the
design can be considered safe.

5. Discussion and further work

Despite the continuous advance of knowledge in geotechnical relia-
bility with newly developed methods to better support decision-making
and safety assessment under various sources of uncertainty (see e.g.,
Christian, 2004; Phoon, 2020), it is well recognized that there is quite
a reluctance to apply new concepts in practice. A way to reduce the
gap between ‘‘state-of-the-art’’ and ‘‘state-of-the-practice’’ (e.g., Chwała
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Fig. 14. Empirical and Design membership function for low DoU, (a) end-bearing resistance (b) side friction.
Fig. 15. Membership function 𝑢𝐺 of the fuzzy performance function 𝐺 for three DoU.
et al., 2023; Phoon, 2023) lies in the proper education and training of
geotechnical engineers unfamiliar with techniques initially developed
for different fields (see e.g., Baecher and Christian, 2003; Zhang, 2023).

By recognizing the importance of attracting more and more prac-
titioners to the new developments, this paper aims to introduce a
simplified and easy-to-use reliability method by clearly separating the
unfamiliar theory of possibility from its use in practice. This proposed
method traces the well-known Level II reliability approach in which
the parameters are now sorted pairs, used to replace the list of ran-
dom, usually assumed normally distributed, values. The distribution of
the elements is provided by third-party experts through possibilistic
analysis and transformation of Big Indirect Data from geotechnical
databases. Practitioners’ role is to perform a series of deterministic
analyses and to verify if a certain threshold has been crossed according
to Eq. (18). Therefore, the proposed method is formulated in a way that
the assessment does not require expertise in data analysis, encouraging
the engineering geotechnical community to embrace the approach.

It is worth emphasizing that the proposed method does not in-
tend to replace or establish dominance over probabilistic approaches;
the possibility and probability theories are well related, each offering
advantages and disadvantages. On the other hand, whilst building
codes (e.g., British Standards Institution et al., 2007) prescribed con-
ventional approaches based on the classical frequentist interpretation,
it is becoming more and more recognized the fundamental contribu-
tion of the information ‘‘hidden’’ in large and continuously growing
databases. Therefore, geotechnical reliability is moving towards more
data-informed decision support (Phoon, 2023) where the Bayesian in-
terpretation plays an important role in developing better alternatives to
the conventional ones; in particular, the recently proposed hierarchical
14
Bayesian model (Ching et al., 2021) is the first data-driven method
developed for dealing with big indirect data.

The method proposed in this study is a first attempt to follow the
same challenges addressed by the hierarchical Bayesian model, through
a different interpretation, the Possibility theory, to exploit the benefits
of dealing with imprecise and vague information, offered by the Fuzzy
Theory (Zadeh, 1965). Besides, the proposed method is computation-
ally efficient compared to a Monte Carlo Simulation by requiring only a
fine discretization around the zero of the limit state function to achieve
accurate results. It is worth mentioning that the clusterization and the
multivariate analysis of the database are not covered in this study;
as proposed, the database analysis will be performed by third-party
experts. Further studies are required to obtain the optimal number of
clusters and the correlation coefficients for the various attributes.

Nevertheless, since the multivariate possibility distributions intrin-
sically accounted for the concept of possibilistic correlation (Carlsson
et al., 2005) as a measure of interactivity between various attributes
(Fullér and Majlender, 2004), the mathematical formulation of the
proposed method presented in Section 2 accounts for both univariate
and multivariate parameters. On the other hand, the outcomes of the
application in Section 4.1, can be different if further attributes of the
database were considered; the reliability assessment is governed by the
subjective and objective information provided by the data.

Moreover, in case the performance function cannot be expressed
through an analytical function, numerical approaches should be used
to simulate the behaviour of the geotechnical problem. In the case of
spatial dispersion of the soil parameters, the possibility distributions
of the parameters, obtained from the elaboration of the database,
can be used to produce an interval of values by using the concept



Computers and Geotechnics 166 (2024) 105967A. Tombari et al.

I
M
t
s
m

6

t
a
(
O
r
c
f
v
a

t
f
t
(

(
a
e

r
i
e
m
E
r
s
s
d
a
t
T
f

of 𝛼𝑐𝑢𝑡. Therefore, at each level, numerical approaches such as the
nterval Field Method (Feng et al., 2023) or the Fuzzy Finite-Element
ethod (Muhanna and Mullen, 1999) can be used in conjunction with

he proposed possibilistic data-driven approach. Nevertheless, future
tudies are required to assess the efficiency and efficacy of the proposed
ethod in complex engineering problems.

. Concluding remarks

In recent research, the quantitative description of possibility dis-
ributions and data-based (frequentist and/or epistemic) elicitation
nd estimation of membership functions have received great attention
Dubois and Prade, 2016; Masson and Denœux, 2006; Ferson and
berkampf, 2009; Hose and Hanss, 2020). In particular, several new

esults on data-driven analyses, connected to measure theoretical con-
epts, allow for possibility theory to provide ‘‘... a powerful framework
or quantitative statistical inference, which is easily established and in-
olves mostly computations based on probability–possibility transform
nd the Extension Principle’’ as stated by Hose in Hose (2022).

The properties of consistency and validity of the statistical informa-
ion are clearly expressible in terms of possibility theory (e.g., speci-
icity, consonance and efficiency of the obtained distributions) and
heir robustness can be calibrated quantitatively to allow possibilistic
statistical) inference.

The combined use of data-driven and quantitative information
based on probability and possibility measures/distributions) is now
ble to significantly reduce the effects of the overall uncertainty inher-
nt with the reliability/inference computations and analyses.

This paper presents a novel non-probabilistic approach for the
eliability assessment of geotechnical problems based on the Possibil-
ty Approach. The probability–possibility consistency is exploited to
stablish a target Reliability Index Value to provide a level of safety
eeting the prescribed values of probability of failure provided by the
urocode 1990 (British Standards Institution et al., 2021) when pa-
ameters are of ideal random nature. Moreover, when data are scarce,
parse or incomplete, the possibility theory allows the embedding of
ubjective information and aleatory uncertainties. Therefore, indirect
atasets are used to infer fuzzy sets of parameters and local experience
nd engineering judgement are rigorously considered through a three-
ier system based on the definition of the ‘Degree of Understanding’.
he worked applications of the reliability of shallow and pile group
oundations show that:

• the semi-probabilistic approach does not provide a uniform level
of safety and accordingly, due to the dispersion of the data, either
an under- or over-conservative design can be achieved;

• because of the non-linearities involves in the evaluation of the
bearing capacity of the shallow foundation, the distribution of
the resistance is non-gaussian. Therefore, the Level II ‘𝛽’ approach
could lead to erroneous assessment of the reliability;

• the proposed approach provides a safe/unsafe assessment consis-
tent with the prescribed probability of failure when the input data
are of ideal random nature;

• the clusterization of an indirect database provides information
used for the inference of the design membership function in order
to assess the possibility reliability;

• the level of safety is associated with a defined degree of under-
standing, e.g., low - typical - high, that allows to rigorously embed
the local experience into the reliability assessment of geotechnical
problems.
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