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Abstract
Geodiversity is under threat from both anthropogenic activities and environmental change which therefore requires active 
management in the form of geoconservation to minimise future damage. As research on the role of geodiversity on ecosystem 
service (ES) provision has been limited, there is a need to improve our understanding of which aspects are most important 
to providing ES to better inform approaches to its conservation. Here, we focus on the cultural ES of hiking in Wales, UK. 
Harnessing big data from the social media website Flickr, we used the locations of geotagged images of hiking and a range 
of spatial layers representing geodiversity, biodiversity and anthropogenic predictor variables in habitat suitability models. 
To gain a deeper understanding of the role of geodiversity in driving the distribution of this cultural service, we estimated 
the strength and nature of the relationship of each geodiversity, biodiversity and anthropogenic indicator with hiking. Our 
models show that three geodiversity (distance from coast, range in slope and range in elevation) and two anthropogenic 
(distance from greenspace access point and distance from road) variables were the most important drivers of hiking. Further-
more, we assessed the content of the images to understand which features of geodiversity people interact with while hiking. 
We found that people generally take images of geomorphological and hydrological features, such as mountains and lakes. 
Through understanding the geodiversity, biodiversity and anthropogenic drivers of hiking in Wales, as well as identifying 
the geodiversity features people interact with while hiking, this analysis can help to inform future geoconservation methods 
by focusing efforts on these important features.
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Introduction

Globally, geodiversity—the diversity of geological struc-
tures and processes, including rocks and minerals; geomor-
phology, including landforms and topography; sediments 
and soils, including formation processes; and hydrology, 
including marine, surface and subsurface waters—is under 

increasing pressures from anthropogenic activities and envi-
ronmental change (Gray 2008a, 2013; Hjort et al. 2015; Fox 
et al. 2020a). Threats such as urbanisation, mining and land-
use change can damage geodiversity both in situ, such as 
damage to landforms, and across wider spatial and temporal 
scales, such as the contamination of hydrological systems 
and changes to soil processes (Hjort et al. 2015). Activi-
ties such as tourism and recreation can cause damage to 
geodiversity features, for example, through the erosion and 
removal of material (Gray 2008a). Furthermore, environ-
mental change such as anthropogenic induced sea-level rise, 
landslides and changes to weather patterns can impact geo-
diversity features and processes (Prosser et al. 2010; Brazier 
et al. 2012). These wide-reaching anthropogenic and envi-
ronmental impacts emphasise the need for the wider adop-
tion of geoconservation.

First introduced by Sharples (1993), the concept of geo-
conservation is any action intended to conserve geodiver-
sity features, processes, sites and specimens (Gray 2018). 
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Geoconservation includes the following: the creation of 
protected areas such as the UNESCO Global Geoparks Net-
works; the promotion of education on geodiversity and its 
conservation; and the in situ management of sites such as 
the construction of physical barriers to restrict public access 
(Gray 2008a; Henriques et al. 2011). Though the concept of 
geoconservation is starting to be adopted globally, a deeper 
understanding of the value of the contribution of geodiver-
sity to society would promote greater uptake of geoconserva-
tion practices (Gordon et al. 2018).

Geodiversity has value also because it plays an integral 
role in the delivery and maintenance of ecosystem services 
(ES)— the benefits we receive from nature (Gray 2011; Fox 
et al. 2020b). First, geodiversity underpins ES, providing 
the foundations for all other services to occur (Parks and 
Mulligan 2010). Second, geodiversity actively contributes, 
through interactions with biodiversity, people and society, 
to provisioning services (e.g. food, fibre and fuels), regulat-
ing services (e.g. dispersal and dilution of pollutants) and 
cultural ecosystem services (CES, e.g. aesthetic views) (Fox 
et al. 2020b). Third, geodiversity can provide services in the 
absence of any interactions with biodiversity. These geo-
system services provide a range of goods and benefits for 
society, including provisioning services (e.g. construction 
materials and rare-earth metals), regulating services (e.g. 
the regulation of thermal flows) and cultural services (e.g. 
religious sites and recreational activities) (Gray 2011; Van 
Ree and van Beukering 2016; van Ree et al. 2017; Fox et al. 
2020b).

Here, we will focus on the relationship between geodiver-
sity and the CES subcategory of recreational activities (Mil-
lennium Ecosystem Assessment 2005; Milcu et al. 2013), 
which provide physical health and psychological well-being 
benefits obtained through interactions with the natural envi-
ronment (Hermes et al. 2018). In particular, we focus on 
hiking, a recreational activity that is generally described as 
the act of walking for an extended amount of time through 
natural or rural areas (Mitten et al. 2018). King et al. (2017) 
identified six pathways from which CES benefits can arise: 
cognitive, creative, intuitive, retrospective, regenerative and 
communicative. Here, we classify hiking under the regenera-
tive pathway, which includes opportunities for recreation, 
leisure and tourism that provide direct restorative benefits 
like reducing emotional stress (King et al. 2017). We also 
acknowledge that some of the benefits of recreational activi-
ties can also be linked to other CES through other pathways, 
including accessing aesthetic views, spiritual and religious 
motivations, or a sense of place (Collins-Kreiner and Kliot 
2017; Wilcer et al. 2019).

Some CES that geodiversity provides, such as recrea-
tional activities, may, in turn, exacerbate anthropogenic 
threats to geodiversity (Figueroa-Alfaro and Tang 2017). 
For example, iconic and geodiverse landscapes, such as the 

Grand Canyon which attracts thousands of visitors annu-
ally, provide a range of CES including as a popular destina-
tion for hiking. Through the provision of these services, the 
landscapes are at higher risk of damage from overuse and 
exploitation (Gray 2008a). However, quantifying the scale of 
the threat of human activity on geodiversity and the services 
it provides is difficult. First, the relationship between geodi-
versity and ES, and also the service being assessed, varies 
over the spatial scale assessed as well as across different 
locations (Alahuhta et al. 2018). Second, indirect damage to 
geodiversity, such as impacts on downstream hydrological 
and geomorphological processes, may not be easily assessed 
(Hjort et al. 2015; Fox et al. 2020b). Therefore, we need to 
develop a deeper understanding of the complex relationship 
between geodiversity, ecosystem services and anthropogenic 
threats.

To develop our understanding of the relationship between 
geodiversity, ecosystem services and anthropogenic threats 
over large spatial and temporal scales, there is a need for 
suitable datasets. However, current data collection meth-
ods for ES assessments, including geodiversity, biodiver-
sity and social-demographic datasets, have several limita-
tions not only at larger spatial and temporal scales but also 
across smaller scales (Hjort et al. 2012). Many traditional 
CES assessments, such as monetary assessments or social 
surveys, are expensive and time-intensive to implement 
(Tenerelli et al. 2016; Figueroa-Alfaro and Tang 2017). Fur-
thermore, as CES vary based on the individual experiencing 
them, quantifying their perceived benefits and values is more 
difficult than for provisioning and regulating services (Dan-
iel et al. 2012; Lee et al. 2019; Havinga et al. 2020). Here, 
data from social media websites provide advantages over 
traditional ecological assessments and social surveys, pro-
viding large spatial and temporal datasets relatively quickly 
and at minimal financial cost (Barve 2014; Fox et al. 2020a). 
These approaches can provide a more objective approach 
to assessing CES compared to survey data, as they show 
revealed preferences as opposed to stated preferences. Social 
media websites have therefore started to become established 
as a reliable source of data for a vast array of CES studies 
(Ghermandi and Sinclair 2019).

Data from social media sites can be used in a range of 
methods. For example, using geolocated posts to assess the 
spatial variation in CES (Tieskens et al. 2017); using con-
tent analysis to assess human-nature interactions depicted in 
photographs (Richards and Tunçer 2018); and using textual 
analysis to better understand opinions on CES (Becken et al. 
2017; Wilson et al. 2019). Previous work in the field has 
examined the effectiveness of a variety of different social 
media platforms. Flickr, an image and video hosting website, 
has been used to assess aesthetic ecosystem services (Van 
Zanten et al. 2016; Van Berkel et al. 2018) and recreational 
ecosystem services (Graham and Eigenbrod 2019; Mancini 
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et al. 2019). Twitter, a microblogging site, has been used to 
assess urban greenspace services (Roberts 2017; Johnson 
et al. 2019). Reddit, a discussion-based forum, has been used 
to look at recreational, aesthetic and spiritual CES (Fox et al. 
2021a). The different platforms all have different strengths 
in assessing CES and these strengths and weaknesses should 
be acknowledged and accounted for in analyses. Fox et al. 
(2021a) demonstrated that Flickr data is more suited to 
assessing spatial variation and image content analysis, while 
Reddit is more suited to assessing textual metadata.

Geolocated posts from social media can be analysed 
using species distribution modelling methods to gain an 
understanding of the distributions and drivers of CES. Rich-
ards and Tunçer (2018) used maximum entropy modelling 
(MaxEnt) to plot the potential distributions of CES from 
Flickr photographs. Their study assessed four criteria: dis-
tance from attractions, presence of parks, forest cover and 
managed vegetation cover. They found that distance from 
attraction had the largest contribution to the distribution 
of photographs of plants and animals. Walden-Schreiner 
et al. (2018) used MaxEnt to assess visitor distributions to 
national parks, including both infrastructure and environ-
mental features as factors, highlighting that infrastructure 
variables such as visitor centres are more important than 
environmental variables. Arslan and Örücü (2020) also used 
MaxEnt, finding that CES distribution based on geotagged 
Flickr images is most influenced by roads, religious places 
and historical and cultural areas. As there is a range of dif-
ferent distribution models available, all with different pre-
dictive performance, choosing one individual model may 
not provide robust results, and therefore, many studies have 
now taken an ensemble approach by combing the outputs 
of multiple model algorithms (Hao et al. 2019). However, 
the authors are not aware of any studies that use multiple 
modelling algorithms to assess CES from social media data.

Here, we focus on Wales, UK, which is known for its high 
levels of geodiversity. This geodiversity is protected through 
various geoconservation instruments, for example, through 
statutorily regulated areas such as Geological Sites of Spe-
cial Scientific Interest as well as European Geoparks, such as 
GeoMôn on the island of Anglesey and Fforest Fawr in the 
Brecon Beacons (Prosser et al. 2010). The geodiversity of 
Wales, in particular the high geological and landscape diver-
sity, makes it a popular tourist destination (Burek 2012). 
Through funding and community engagement, geotourism 
and education are promoted in the iconic landscapes and 
areas of cultural significance in Wales (Evans et al. 2018). 
Previous work using social media data to assess CES in 
Wales (Gliozzo et al. 2016) found that views of geodiver-
sity features, such as peaks and beaches, the presence of 
historic human structures and formal biodiversity protection 
areas, are important drivers of CES in non-urban areas. Fur-
thermore, studies assessing social media posts have found 

relationships between recreational activities and geodiversity 
features, in particular, geomorphological and hydrological 
features (Van Zanten et al. 2016; Oteros-Rozas et al. 2018; 
Van Berkel et al. 2018; Muñoz et al. 2020). However, due to 
the multifaceted nature of CES, these analyses, while useful, 
do not enable us to identify how the use of the landscapes for 
CES could affect the maintenance of geodiversity.

In this paper, we aim to be the first study to apply an 
ensemble species distribution modelling approach to under-
standing what natural and human features drive the distri-
bution of CES derived from geolocated social media data. 
We aim to quantify which aspects of geodiversity are most 
important in contributing to the distribution of hiking in 
Wales, UK. Furthermore, through analysis of the contents of 
images of hiking, we aim to understand which geodiversity 
features people interact with to inform focused geoconserva-
tion efforts on these potentially at-risk features.

Methods

Social Media Data

Launched in 2004, Flickr is a photograph and video hosting 
website, with a large and diverse user base that contributes 
over 25 million new uploads a day (Oteros-Rozas et al. 2018; 
Ding and Fan 2019). Photographs uploaded to Flickr have a 
range of available metadata including temporal information, 
in the form of the time and date the image was taken, as well 
as spatial information in the form of the latitude and longi-
tude at which the image was taken (Fox et al. 2020a). The 
high availability of metadata from Flickr means that it has 
become the most widely used social media site for assess-
ing CES (Langemeyer et al. 2018; Ghermandi and Sinclair 
2019). Data from Flickr can be accessed through its Appli-
cation Planning Interface (API), a computing interface that 
allows researchers to access the application. Here, data from 
Flickr was obtained using the “photosearcher” package (Fox 
et al. 2020a) within the R environment (R Core Team 2020). 
Our image search was limited to any georeferenced images 
falling within Wales, delimited by a shapefile (Ordnance 
Survey 2020), taken between the  1st of January 2010 and 
the  1st of January 2021, uploaded before the  1st of February 
2021 and containing a given keyword in the images title, 
tags or description. To ensure that all images of hiking were 
captured our keyword search included synonyms of hiking: 
“hike”, “hiking”, “walk”, “walking”, “trek”, “trekking”, 
“ramble”, “rambling”.

Not all posts returned from social media sites are use-
ful for CES assessments. Many posts to social media sites 
contain images taken inside buildings or images of people, 
while other posts may relate to a negative experience (Fox 
et al. 2021b). To extract only images relating to the natural 

Page 3 of 16    27Geoheritage (2022) 14: 27



1 3

environment, the contents of images were automatically 
tagged using the Google Cloud Vision API (Google Cloud 
Vision API 2020) within the R environment using the 
imgrec package (Schwemmer 2019). The Google Cloud 
Vision API is a machine learning model which can label 
the contents of images with over 1 million different tags 
based on a pre-trained dataset. Here, we returned labels 
for the first 10 features detected in each image. Each label 
is returned with a given confidence score, scaled between 
0 and 1. To select accurate labels without manual vali-
dation, we only retained labels with a confidence score 
of greater than 0.6 (Gosal et al. 2019). We classified the 
automatically generated labels into biophysical aspects of 
nature, such as features of biodiversity (e.g. tree or bird) 
or features of geodiversity (e.g. mountain or lake) and 
non-biophysical nature labels (e.g. building, car, person, 
sky) (for a full list of classification see Supporting Infor-
mation 2). To remove images that are not predominantly 
of human-nature interactions (e.g. photographs focused 
on buildings or people), we calculated the ratio of bio-
physical nature labels to non-biophysical natural labels. 
Images containing more nature labels than non-nature 
labels were deemed to be an image focused on nature and 
were retained for further analysis. Choosing a threshold of 
at least 50% biophysical nature labels provides a suitable 
dataset representing human-nature relationships (Fox et al. 
2021b). Furthermore, to ensure that users were experienc-
ing a benefit from the hiking experience, we carried out 
a textual sentiment analysis on the title, description and 
tags of each image. Here, we used the AFINN diction-
ary (Nielsen 2011), a collection of words ranked from + 5 
(positive words) to − 5 (negative words), to calculate the 
sum sentiment expressed in the textual metadata of each 

image. Images in which the user expresses an overall posi-
tive sentiment towards the activity were retained for fur-
ther analysis.

Predictor Variables

To assess the contribution of geodiversity to recreational 
activities, we chose spatial layers to represent geodiversity 
features where the relationship with CES has previously 
been highlighted (Van Zanten et al. 2016; Oteros-Rozas et al. 
2018; Van Berkel et al. 2018), as well as features that have 
not been previously assessed. These are as follows: count of 
lakes; count of rivers; Euclidian distance to coast; range in 
elevation; range in slope; count of landscape types; count 
of bedrock types; count of geosites; and count of soil types 
(Table 1). Geosites were defined as any Regionally Impor-
tant Geological and Geomorphological Sites (RIGS) (NRW 
2021). Furthermore, as previous studies have found that 
infrastructure and accessibility are associated with CES dis-
tribution (Richards and Tunçer 2018; Muñoz et al. 2020), we 
also included variables representing these Euclidian distance 
from roads and Euclidian distance from greenspaces access 
points. Here, greenspace access points are the entrance 
to any allotments or community growing spaces, bowling 
green, cemetery, religious grounds, golf course, other sports 
facility, play space, playing field, public park or garden and 
tennis court (Ordnance Survey 2020). Other studies have 
found that historic sites can also influence the CES distribu-
tion obtained from Flickr images (Gliozzo et al. 2016; Van 
Berkel et al. 2018), so we included the count of scheduled 
monuments, which are sites of archaeological importance 
such as burial mounds, castles and churches (NRW 2021). 
Furthermore, as recreation and CES can be influenced by 

Table 1  Predictor variables chosen for species distribution modelling

Grouping Category Variable Description

Geodiversity variables Geomorphology elevRange Range in elevation derived from a DEM (Copernicus 2021)
slopeRange Range in slope derived from a DEM (Copernicus 2021)
landCount Count of different landscape types (NRW 2021)

Geology rockCount Count of different bedrock types (Ordnance Survey 2020)
geoDist Count of differnt RIGs (NRW 2021)

Hydrology lakeCount Count of differnt lakes (NRW 2021)
riverCount Count of differnt rivers (NRW 2021)
coastDist Euclidean distance from the coast (Ordnance Survey 2020)

Soil soilCount Count of different soil types (Cranfield University 2021)
Non-geodiversity variables Accessibility and 

infrastructure
roadDist Euclidean distance from a road (Ordnance Survey 2020)
greenDist Euclidean distance from a greenspace access point (Ordnance Survey 2020)

Heritage monuDist Count of different scheduled monuments (NRW 2021)
Biodiversity natvegArea Area of natural or semi-natural vegetation derived from a landcover map 

(Copernicus 2021)
paDist Euclidean distance from a protected area (UNEP-WCMC and IUCN 2021)

27   Page 4 of 16 Geoheritage (2022) 14: 27



1 3

biodiversity and areas designated for its protection, we also 
included the area of natural vegetation (Copernicus 2021) 
and distance to a protected area (Protected Planet 2021). 
Natural and semi-natural vegetation were any areas of broad-
leaved forest, coniferous forest, mixed forest, natural grass-
land, moors and heathland, transitional woodland-shrub, 
sparsely vegetated areas, inland marshes, peat bogs and 
salt marshes (Copernicus 2021). As recreational activities 
can be impacted by landscape diversity at a spatial scale of 
around 10 km (Graham and Eigenbrod 2019), here, predic-
tor variables were summarised into 10  km2 grid cells, e.g. 
elevation range within the 10  km2 grid cell. To transform 
the individual variables raster to a comparable scale, each of 
the raster maps was normalized to a 0–1 scale (Supporting 
information 3 and 4).

Distribution Modelling

Within the R environment, the BIOMOD2 package (Thu-
iller et al. 2009, 2012) can be used to perform ensemble 
distribution modelling using 10 models: generalized linear 
model (GLM), generalized additive model (GAM), gen-
eralized boosting model (GBM), classification tree analy-
sis (CTA), artificial neural network (ANN), surface range 
envelop (SRE), flexible discriminant analysis (FDA), multi-
ple adaptive regression splines (MARS), random forest (RF), 
and MaxEnt. The settings for each model were set to the 
BIOMOD2 default (Hodd et al. 2014). The different models 
stem from different mathematical backgrounds, for exam-
ple, CTA is a classification-based model, GLM a regression-
based model and MaxEnt is a machine learning-based model 
(Guisan et al. 2002; Thuiller et al. 2003; Phillips et al. 2006).

Many of the models require both presence and absence 
data to model the distribution. However, as geotagged pho-
tographs from Flickr are a presence-only dataset, there 
is a need to generate pseudo-absences. The accuracy of 
each type of model can be influenced by the number of 
pseudo-absences used, with each model type having a 
potential optimal number. For example, Barbet-Massin 
(et al. 2012) suggest using a large number of pseudo-
absences for regression models and an equal number of 
pseudo-absences to presences for classification techniques. 
However, using the individual optimal number of pseudo-
absences for each model type cannot be applied to the 
ensemble as the models cannot be compared in an unbi-
ased manner unless the same data is used on all the models 
(Barbet-Massin et al. 2012). Čengić et al. (2020), found 
that the number of pseudo-absences does not have a strong 
effect on model performance across multiple model types 
and recommend choosing a fixed value. Therefore, we gen-
erated an equal number of pseudo-absences to the number 
of presence points. Furthermore, model performance can 
be influenced by the prevalence (weighting of presences/

pseudo-absences). Here, the modelled prevalence was set 
at 0.50, which gives the presence and pseudo-absence 
points equal weighting in the models, as this is recom-
mended for most model types (Barbet-Massin et al. 2012).

To assess each model’s performance the data was split 
into two groups, 80% for training and 20% for testing 
(Hodd et al. 2014). We used three common metrics to eval-
uate model performance, the kappa statistic, the true skill 
score (TSS) and the area under the receiver operating char-
acteristic curve (AUC). The kappa statistic measures the 
difference in the observed agreement from the model and 
the expected agreement on a standardized scale of -1 to + 1 
scale, with 1 representing perfect agreement, 0 agreement 
expected by chance, and negative values indicate agree-
ment less than chance (Viera and Garrett 2005). The TSS 
assesses model performance through the model’s sensitiv-
ity (probability the model correctly classifies a presence) 
and specificity (probability the model correctly classifies 
an absence) (Allouche et al. 2006). The TSS is also on a 
standardized scale between -1 and + 1, with higher scores 
indicating better model performance and scores close to 
or less than zero indicating that the model is no better than 
random (Allouche et al. 2006; Kaky et al. 2020). The AUC 
curve is the plot of the sensitivity against (1-specificity) 
across a series of cut-off points, and the AUC calculates 
a single number across all thresholds with 0 represent-
ing a model where the prediction is 100% incorrect and a 
value of 1 a model where the predictions are 100% correct 
(Lobo et al. 2008). To minimise uncertainties arising from 
subsampling, we carried out 10 replications of each algo-
rithm for cross-validation, with the mean kappa statistic, 
TSS score and AUC for the testing data for each algorithm 
used to assess model performance (Kaky et al. 2020). The 
ensemble models were then built using any model runs 
with kappa and TSS scores of > 0.6 and an AUC of > 0.8, 
the minimum acceptable standard of accuracy for the met-
rics (Hodd et al. 2014).

Here, we wish to assess the importance of the predic-
tor variables for the distribution of recreational activity. 
However, methods for assessing variable contribution are 
model-specific and therefore limits the comparison between 
models. Instead, BIOMOD2 calculates the variable contri-
bution to the model independent of the model algorithm 
(Thuiller et al. 2009). Variable importance is calculated by 
Pearson’s correlation between the standard prediction (fitted 
values) and prediction where the variable being assessed is 
randomly generated. Predictor variables are considered not 
important when there are higher correlation values—indicat-
ing that there is little variation in the standard predictions 
and the randomly permutated predictions (Thuiller et al. 
2009). Here, we assessed the variable importance based on 
the model algorithms with a mean kappa and TSS score 
of > 0.6 and an AUC of > 0.8. Furthermore, for these model 
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algorithms, we generated response curves for the predictor 
variables.

Mapping Geodiversity Indices

A spatial index for geodiversity can be calculated by adding 
up normalised partial geodiversity indices e.g. normalised 
elevation range and normalised bedrock type count (Melelli 
et al. 2017). These geodiversity index maps can be useful 
indicators for informing geoconservation efforts (Melelli 
et al. 2017). However, mapping all geodiversity features with 
equal importance as each other may introduce biases and not 
highlight areas with high conservation value (e.g. areas of 
geodiversity with high CES value). Therefore, a common 
approach to mapping geodiversity is to weight indices based 

on the conservation goal (Jankowski et al. 2020). Often 
geodiversity partial indices are combined into themes; e.g., 
the count of different lakes and rivers are combined into a 
hydrology partial index (dos Santos et al. 2020). However, 
this may decrease the relative importance of each feature 
type to the final geodiversity index. Therefore, we create 
normalised partial geodiversity indices for each of the 9 geo-
diversity variables: count of lakes; count of rivers; Euclidian 
distance to coast; range in elevation; range in slope; count of 
landscape types; count of bedrock types; count of geosites; 
and count of soil types (Fig. 1).

We made two overall geodiversity indices, one where 
the partial indices had equal weighting and another where 
we weighted the partial indices based on their mean vari-
able contribution to the distribution model algorithms with 

Fig. 1  Methods for creating unweighted and weighted geodiversity indices
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a mean kappa and TSS score of > 0.6 and AUC > 0.8. To 
compare between the equally weighted geodiversity index 
and the weighted geodiversity index, the two geodiversity 
indices were reclassified into five classes defined by equal 
intervals: very low, low, medium, high and very high geodi-
versity (Pereira et al. 2013; dos Santos et al. 2020; Jankowski 
et al. 2020).

Understanding Human‑Nature Interactions

As well as understanding where people hike, it is also 
important to understand which aspects of the natural and 
human-made environment people interact with while hiking 
in these locations. Purely assessing photograph distribution 
does account for what the subject of the image is (Yan et al. 
2019). For example, people hiking in areas of high elevation 
may not be interested in topography, but instead they are in 
that location to take photographs of large-scale vegetation 
such as a forest (Aiba et al. 2019). To reduce biases intro-
duced by overactive users, following a method similar to the 
photo user days metric (Wood et al. 2013), we grouped all 
the images a single user took on a single day as one. For each 
unique grouping of images by a single user on a single day, 
we summarised the unique labels returned by the Google 
Vision Cloud API (e.g. if a single user took 60 images 
labelled “mountain” a single day, this would be reduced to 
one “mountain” label). We calculated the frequency of the 
labels across all users and days and ranked them based on 
the number of images. Furthermore, to understand which 

features provide a more positive hiking experience, for each 
label we calculated the mean textual sentiment value of the 
images containing that feature.

Results

Social Media Data

There were 20,910 images taken in Wales between the  1st 
of January 2010 and the  1st of January 2021 which had the 
chosen hiking synonyms found within the images title, tags 
or description. Of these, 16,591 (79.34%) were images we 
deemed to have a focus on natural or semi-natural areas with 
some biophysical nature features. Of these, 4,919 (23.52% 
of the full hiking dataset) images had an overall positive 
sentiment expressed in the image’s textual metadata (Fig. 2).

Distribution Models

Model performance varied between model algorithms, with 
RF performing the best based on the kappa statistic, TSS and 
AUC, while the SRE algorithm performed the worst. Out of 
all the model's RF, CTA, ANN and GMB had a mean kappa 
statistic and TSS > 0.6 and AUC > 0.8. If using the AUC 
metric alone, FDA, GAM, MARS and MAXENT would 
have also been selected (Supporting Information 3).

The order of the most important predictor variables 
varied with the model algorithm used, though overall the 

Fig. 2  Distribution of hiking 
images in Wales; these images 
are classed as a CES as they 
have both a focus on biophysical 
features of nature and contain 
a positive textual sentiment 
expressed in the metadata. The 
inset map shows the location of 
Wales in comparison to the rest 
of the UK
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distance to the coast was consistently the most impor-
tant predictor (Fig. 3; for individual models see Support-
ing Information 5). The other most important variables 
were range in elevation, range in slope, distance from a 
greenspace entrance and distance from a road. Count of 
different landscape types, bedrock types, soil types, rivers, 
lakes and monuments all had relatively low importance 
across the models. Though the biodiversity measures, 
area of vegetation and distance to protected area, had a 
relatively higher mean importance than some of the geo-
diversity measures, they also had a relatively low overall 
importance.

Inspection of the response curves demonstrates that the 
probability of images of hiking decreases with distances 
further away from the coast (Fig. 4, for individual model 
responses, see Supporting Information 6). Furthermore, all 
model algorithms show an increase in the probability of hik-
ing images with larger ranges in slope and elevation. For 
the accessibility predictors, the probability of hiking images 
increases when closer to a greenspace entrance, however, 
the probability of images of hiking increases further away 
from roads. The models’ response curves also show that 
being closer to a greenspace access point also increases the 
probability of hiking images. There is a small increase in 
the probability of hiking images in areas with more lakes 
and geosites. Furthermore, for biodiversity, there is some 
increase in probability when closer to protected areas, but 
there is no real change depending on how much natural or 
semi-natural vegetation is present. There seems to be no 
change in response when the varying, count of rivers, count 
of bedrock types, count of landscape types, count of soil 
types and count of scheduled monuments.

Geodiversity Map

The final geodiversity weightings vary based on the method 
chosen (Table 2). When all the geodiversity partial indices 
(count of lakes; count of rivers; Euclidian distance to coast; 
range in elevation; range in slope; count of landscape types; 
count of bedrock types; count of geosites; and count of soil 
types) are given equal weighting, there are small pockets 
of high geodiversity scattered across Wales (Fig. 5). In 
general, the two indices agree (45.41% of pixels remained 
unchanged), with both indices showing very high geodi-
versity in the Snowdonia National Parks. However, when 
weighted to the mean variable importance for the distribu-
tion models, there is also a relatively large number of areas 
showing higher geodiversity, with 48.19% of pixels showing 
an increase. When the geodiversity index is weighted, the 
higher geodiversity values tend to be within the GeoMôn 
Geopark or the Pembrokeshire Coast National Park. How-
ever, some of the higher geodiversity areas along coastal 
areas fall outside of any of the larger protected area bounda-
ries. Some areas experienced a decrease in the geodiversity 
index, with 6.40% pixels having a decline in geodiversity 
when using the model weightings.

Human‑Nature Interactions

In total, there were 1105 different image content labels 
returned by the Google Vision Cloud API. While hiking, 
people take photographs of both geodiversity and bio-
diversity features (Fig. 6). For geodiversity, people more 
frequently photograph elements of topography and water 
bodies. Furthermore, images containing river landforms 

Fig. 3  Normalised variable 
importance for ANN, CTA, 
GBM and RF (model algo-
rithms with a mean kappa 
statistic and TSS value > 0.6 and 
AUC value > 0.8)
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(e.g. “fluvial landforms of streams”) and lakes (e.g. “lake”) 
appear relatively frequently (in the most frequent 30 labels 
out of a possible 1,105). The features of biodiversity photo-
graphed most by hikers were primarily of flora, with none 
of the most frequently photographed features relating to 
animals. Furthermore, there were some images contain-
ing human features, with the most photographed features 

being “building” (234 images) and “people in nature” (253 
images).

There was little variation in the mean sentiment score 
between images relating to the 30 most frequently photo-
graphed features (Fig. 6). Images associated with “building”, 
“nautre” and “coastal and oceanic landforms” have the large 
associated mean sentiment. Images of topographic features 

Fig. 4  Mean, ± 1 SD response curves for all variables from all runs 
of the ANN, CTA, GBM and RF models. The normalized raster val-
ues were created for comparable scale for each variable summarised 
within the  10km2 square: for distance variables, the larger normalized 
values are, the closer to the feature in question; for the count variables 

the larger the value the more different types of the feature; for range 
variable the larger the value the greater the range of that feature and 
for the area variable the larger the value the greater the area of cover-
age by that feature
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such as “highland” and “mountain”, and those relating to 
rivers, such as “fluvial landforms of streams”, also have 
relatively high associated sentiment scores. Images contain-
ing features labelled as “grassland”, “terrestrial plant” and 
“grass” have the lowest mean sentiment values. We note that 
the mean sentiment score of most labels has a relatively large 
associated standard deviation.

Discussion

By using big data from social media sites, we have begun to 
untangle the complex relationship between geodiversity and 
CES. First, we have highlighted which natural and human-
made features are important in driving the distribution of 
the locations where people choose to go hiking. Second, 
we have demonstrated what aspects of the natural and built 
environment are interacted with while hiking. These are key 
findings because they can provide information on where geo-
conservation efforts should be focused and which features 
of geodiversity should be prioritised. By highlighting areas 
of high geodiversity in our geodiversity index maps, policy 
and decision-makers can combine these outputs with other 
sources of data (e.g. visitation rates) in order to highlight 
areas that are potentially at risk of loss to the integrity of 
geodiversity (Bétard and Peulvast 2019). These findings 
could then guide sustainable decision making to ensure that 
geodiversity and the ES that it provides can be consumed 
sustainably, such as the goals of the UNESCO Global Geop-
ark Program (Prosser 2013).

We found that distance from the coast was the biggest 
driver of the distribution of hiking in Wales. The impor-
tance of the coast on the distribution of CES is similar to 
other studies using social media data to assess CES. Van 
Berkel et al. (2018) found that beaches were the most vis-
ited area in a coastal-inland gradient, while Ghermandi 
et al. (2020b) found a higher positive sentiment expressed 
in coastal images when compared to other landscape types. 

Furthermore, survey data has demonstrated that people in 
the UK are happiest in natural coastal environments com-
pared to other natural and non-natural areas (MacKerron 
and Mourato 2013) and that coastal parks in South Africa 
offer more opportunities for recreational activities such as 
hiking (Roux et al. 2020). Our results highlight the impor-
tance of coastal regions in driving CES, while the image 
content and sentiment analysis revealed that many people 
take photographs of coastal and oceanic landforms and that 

Table 2  Weightings used on the geodiversity indices

Variable Equally weighted map Weighted based on 
distribution models

elevRange 1.00 0.50
slopeRange 1.00 0.57
landCount 1.00 0.05
rockCount 1.00 0.15
geoCount 1.00 0.03
lakeCount 1.00 0.09
riverCount 1.00 0.13
coastDist 1.00 0.96
soilCount 1.00 0.05

Fig. 5  Normalised geodiversity index—partial indices: count of 
lakes; count of rivers; Euclidian distance to coast; range in eleva-
tion; range in slope; count of landscape types; count of bedrock 
types; count of geosites; and count of soil types. a Partial indices 
unweighted; b partial indices weighted by their mean variable con-
tribution to the ANN, CTA, GBM and RF models; c difference in 
weightings (weighted – unweighted); d location of national parks, 
and GeoMon Geopark (the Fforest Fawr Geopark is located within 
the boundaries of the Brecon Beacons National Park)
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these photographs have a relatively high associated senti-
ment value. This aligns with Ghermandi et al. (2020a), who 
found that coastal landforms such as lagoons play an impor-
tant role in CES and tourism. Future studies should build 
upon this and assess coastal sites at a finer resolution to 
further untangle smaller scale relationships between geodi-
versity and CES.

Our findings also highlight that geomorphological fea-
tures such as elevation and slope are important determinants 
in the distribution of recreation. In our study, highly var-
ied slope and elevation increased the probability of hiking 
images. Other studies have found similar relationships, such 
as (Van Zanten et al. 2016) who found that features such as 
hills and mountains were the best predictors of recreational 
value and (Aiba et al. 2019) who found that the height of 
mountains plays an important role in the hiking experience. 
However, these relationships may vary between individuals; 
for example, some people may find low geomorphological 

variation boring for hiking, while less experienced hikers 
may prefer flatter terrain that does not present too great a 
challenge (Chhetri 2015). As not all demographics are cap-
tured by social media data, with those of lower socioeco-
nomic status often underrepresented (Oteros-Rozas et al. 
2018; Hargittai 2020), these results may not be reflective 
of the entire population and management decisions need to 
ensure that the opinions of theses demographics are also 
represented (Graham and Eigenbrod 2019).

Previous studies have also found that water bodies such 
as lakes and rivers can be an important driver of recrea-
tional activities such as hiking (Oteros-Rozas et al. 2018; 
Schirpke et al. 2018). Nevertheless here, we found that the 
number of lakes and river was less important in driving 
distribution compared to other variables. The difference in 
hydrological features driving recreational activities may be 
due to the location of the study, demographics of users, 
or the scale at which we assessed the interactions. For 

Fig. 6  The 30 most frequently 
photographed features based on 
the Google Vision Cloud API 
labels, and the mean textual 
sentiment of all images contain-
ing those features
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example, Ghermandi et al. (2020a) found that locals were 
more likely to take images of coastal habitats than inter-
national tourists, which may account for the importance 
of the coast when compared to freshwater features. Fur-
thermore, though many of the hiking images were taken 
close to rivers or lakes, here we assessed the relationship 
between these as geodiversity and ES at a landscape scale 
 (10km2). As the relationship between geodiversity and 
ES varies over the spatial scale assessed, the relationship 
between rivers and hiking may be better explained at a 
smaller spatial scale (Alahuhta et al. 2018).

We also found that two accessibility variables were 
important in determining the distribution of hiking in 
Wales. First, our models suggested that people are more 
likely to hike closer to the entrance to a greenspace. This 
further highlights that recreational opportunities and CES 
are facilitated with access to nature (Roux et al. 2020). 
Second, here there was a greater increase in the proba-
bility of images taken further away from roads. This has 
also been found by other studies which find high levels 
of CES in areas that are not accessible by, or close, to 
roads (Muñoz et al. 2020). However, other social media 
and CES studies, or those using citizen science data (e.g. 
nature observation applications such as eBird and iNatu-
ralist), where observations are found closer to infrastruc-
ture such as roads (Jacobs and Zipf 2017; Havinga et al. 
2020; Muñoz et al. 2020). This complex relationship may 
be due to the differences in motivations for hiking (Wilcer 
et al. 2019); for example, novice hikers may not travel 
far from where they parked or people seeking a tranquil 
experience may travel much further. These relationships 
with human infrastructure further demonstrate that CES 
are co-produced through complex human-nature interac-
tions (Fischer and Eastwood 2016).

Other studies have often found that heritage sites are 
related to social media posts. For example, Gliozzo et al. 
(2016) found that viewpoints of historic human structures 
can influence the distribution of social media uploads in 
Wales and Van Berkel et al. (2018) found that within coastal 
environments cultural heritage features were important driv-
ers of CES. However, here, heritage sites were less important 
at driving CES than natural features such as geomorphology 
and hydrology, which is consistent with other studies (Kim 
et al. 2019). Our findings agree with Gliozzo et al. (2016), 
who suggested that distance to protected areas is relatively 
important in driving the distribution of CES in Wales. Fur-
thermore, as with other studies, we also found that vegeta-
tion cover is generally not the most important driving of hik-
ing (Aiba et al. 2019). Overall, many factors are contributing 
to the distribution of hiking in Wales, demonstrating that 
CES are not just influenced by the interactions of geodi-
versity and biodiversity, but co-produced through complex 
interactions with society, built infrastructure and heritage 

(Fischer and Eastwood 2016; Haines-Young and Potschin 
2018; Fox et al. 2020b).

As expected, there were differences between the driv-
ers of where people go hiking (based on the location of the 
images) and what they photograph when there (Yan et al. 
2019). Many of the images do contain features found to be 
important in driving CES distribution such as geomorpho-
logical features. However, some of the drivers of distribution 
were less represented in the image content. For example, 
though still being one of the most frequently photographed 
features (in the top 30), there were relatively few images 
of coastal landforms compared to other features such as 
trees and mountains. This may indicate that though people 
generally go to coastal areas, there may be other smaller-
scale natural or human features that contribute to this pat-
tern. Conversely, though scheduled monuments were not an 
important driver of distribution, we found that images of 
buildings had the highest relative sentiment score. As we 
filtered images to represent natural or semi-natural areas, 
this may suggest that the overall number of human-made 
features may not be important in driving the hiking experi-
ence, but rather individual historic or iconic buildings can 
contribute to sentimental value and provide extremely posi-
tive experiences.

We found that the most photographed feature of geodi-
versity was water, with many images being of rivers and 
lakes. There were also a relatively high number of images 
concerning geological and hydrological landforms, includ-
ing bedrock and fluvial landforms. As well as being highly 
photographed images of coastal and oceanic landforms and 
fluvial landforms of streams had relatively high associated 
sentiments. This suggests that though variety in geodiversity 
features, e.g. many different lakes or geological landforms, 
may not drive the general distribution of hiking in Wales 
when people are on their hike they appreciate and interact 
with individual features, e.g. a single lake or geological land-
form. The larger-scale distribution of hiking may therefore 
be driven by people choosing to hike in areas of high geo-
morphological variation to receive restorative benefits from 
physical exercise, while at the local scale, people receive 
additional creative benefits from hiking in areas with aes-
thetic views of hydrological and geological features (King 
et al. 2017; Oteros-Rozas et al. 2018; Schirpke et al. 2018; 
Wilcer et al. 2019).

As recreational activities such as hiking can cause dam-
age to landforms and hydrological systems (Gray 2008b; 
Hjort et al. 2015; Wu et al. 2021), these findings have impor-
tant geoconservation implications. Suitable geoconservation 
strategies in Wales should continue to promote hiking in a 
way that maximises the CES benefits, but in a sustainable 
way that minimise damage caused to the geodiversity fea-
tures people most interact with. For example, hiking trails 
could benefit from the construction of educational signage 
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that encourages hikers not to touch at risk landforms and 
refrain from littering to prevent the contamination of hydro-
logical systems, or from the creation of lookout points that 
physically restrict hikers from interacting with at-risk fea-
tures while still providing views that contribute to the CES 
benefits (Gray 2008a).

A range of different spatially explicit methods of calculat-
ing geodiversity indices exist across the literature, from counts 
of different elements to specific diversity indices (Zwoliński 
et al. 2018). For example, some studies calculated partial indi-
ces by counting up the variety of a feature (e.g. geological 
units and soil orders) within a grid (e.g. Hjort et al. 2012; 
Pereira et al. 2013), some calculate geodiversity using stand-
ard diversity measures, such as Simpson’s Diversity Index and 
Simpson’s Evenness Index (e.g. Benito-Calvo et al. 2009), 
while other studies apply variations of the geodiversity index 
introduced by Serrano and Ruiz-Flaño (2007). Since our 
objective was to understand what drives the distribution of 
where people go hiking, some of our geodiversity partial indi-
ces were calculated using count or distance and not a specific 
diversity measure. For example, by using distance as a partial 
index measure, we were able to untangle the finer importance 
of being close to the coastline for recreational hiking in Wales 
that would not have been possible if we calculated diversity 
across all hydrological features. Further work should therefore 
quantify how the differences in geodiversity measures impact 
their usefulness to differing study contexts (Zwoliński et al. 
2018).

Though here we have demonstrated the main geodiver-
sity drivers of hiking (distance to coast and topography) are 
unmanageable, these results can still be useful for guiding 
future geoconservation strategies (Fox et al. 2020b). By com-
bining information on where people go hiking, with informa-
tion on what they interact with when hiking we can better 
inform geoconservation methods. Here, our results indicate 
that geoconservation efforts to mitigate against any damage 
from hiking in Wales may be best focused in coastal and moun-
tainous areas, with targeted management strategies for protect-
ing geomorphological, geological and hydrological features 
and landforms. Furthermore, as many hikers took photographs 
of flora, any geoconservation strategies should be undertaken 
holistically to ensure the future protection of biodiversity as 
well (Anderson et al. 2015; Lawler et al. 2015). Many areas of 
high geodiversity already fall within protected areas, primarily 
in the larger sites such as the Snowdonia National Park, the 
Pembrokeshire Coast National Park and the GeoMôn Geopark 
(particularly when weighted based on the distribution models), 
suggesting that Wales is undertaking good steps in protecting 
geodiversity from damage caused by recreational activities 
(Prosser et al. 2010; Evans et al. 2018). However, there are 
several areas with a high geodiversity, where potential dam-
age is not yet mitigated. Here, these areas may benefit from 
the creation of geoconservation in the form of a protected area 

that promotes the sustainable use of geodiversity for tourism 
and recreation activities, such as the goals of some UNESCO 
Global Geoparks (Henriques and Brilha 2017; Gordon 2018; 
Gray 2019). Though here we have assessed geoconservation 
in Wales with a focus on promoting sustainable recreation, 
these methods are transferable to studies with different regions 
and different management goals. For example, one could use 
geodiversity variables to predict species distribution (Bailey 
et al. 2017) and use the results of the analysis to inform geo-
conservation management strategies that also benefit biodiver-
sity conservation (Anderson et al. 2015; Lawler et al. 2015).

Conclusion

Geodiversity plays an integral role in the delivery of hiking as 
a CES, both driving the general trends in its distribution as well 
as the features of nature that people interact with while hiking. 
Here, we have shown that geomorphological features including 
the range in slope and the range in elevation and hydrological 
features such as distance to the coast can play an important 
role in determining the distribution of hiking. We also note the 
importance of the co-production of CES through human-nature 
interactions, with access to nature being key to driving recrea-
tional activity distribution. Here, both distance to roads and 
distance to greenspace access points contributed highly to the 
distribution of hiking in Wales. While hiking, people tend to 
interact with geomorphological, geological and hydrological 
landforms. Geoconservation management strategies should 
therefore focus on promoting hiking in a suitable manner that 
maximises the CES benefits received while ensuring the future 
of the geodiversity features that contribute to these. Future work 
should apply these methods to different activities, conservation 
goals and study sites to help inform more tailored geoconserva-
tion management plans.
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