An Arctic natural oil seep investigated from space to the seafloor

Panieri, Giuliana; Argentino, Claudio; Ramalho, Sofia P.; Vulcano, Francesca; Savini, Alessandra; Fallati, Luca; Brekke, Trond; Galimberti, Giulia; Riva, Federica; Balsa, João; Eilertsen, Mari H.; Stokke, Runar; Steen, Ida H.; Sahy, Diana; Kalenitchenko, Dimitri; Büenz, Stefan; Mattingsdal, Rune. 2024 An Arctic natural oil seep investigated from space to the seafloor. Science of The Total Environment, 907, 167788.

Before downloading, please read NORA policies.
Text (Open Access Paper)
1-s2.0-S004896972306415X-main.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (5MB) | Preview


Due to climate change, decreasing ice cover and increasing industrial activities, Arctic marine ecosystems are expected to face higher levels of anthropogenic stress. To sustain healthy and productive ocean ecosystems, it is imperative to build baseline data to assess future climatic and environmental changes. Herein, a natural oil seep site offshore western Svalbard (Prins Karls Forland, PKF, 80–100 m water depth), discovered using satellite radar images, was investigated using an extensive multiscale and multisource geospatial dataset collected by satellite, aerial, floating, and underwater platforms. The investigated PKF seep area covers roughly a seafloor area of 30,000 m2 and discharges oil from Tertiary or younger source rocks. Biomarker analyses confirm that the oil in the slicks on the sea surface and from the seep on the seafloor have the same origin. Uranium/Thorium dating of authigenic carbonate crusts indicated that the seep had emanated since the Late Pleistocene when ice sheet melting unlocked the hydrocarbons trapped beneath the ice. The faunal communities at the PKF seep are a mix of typical high latitude fauna and taxa adapted to reducing environments. Remarkably, the inhospitable oil-impregnated sediments were also colonized by abundant infaunal organisms. Altogether, in situ observations obtained at the site provide essential insights into the characteristics of high–latitude oil seeps and can be used as a natural laboratory for understanding the potential impacts of human oil discharge into the ocean.

Item Type: Publication - Article
Digital Object Identifier (DOI):
ISSN: 00489697
Date made live: 17 Jan 2024 13:19 +0 (UTC)

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...