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Abstract: The Upper Messinian reservoirs located in the Salma Field of the Nile Delta area contain
variable facies. The key reservoir interval of the Abu Madi Formation was deposited in fluvial to
deltaic environments. These fine-grained facies form significant reservoir heterogeneity within the
reservoir intervals. The main challenges in this study are reservoir characterizing and predicting the
change in reservoir water saturation (SW) with time, while reservoir production life based on the
change in reservoir capillary pressure (Pc). This work applies petrophysical analysis to enable the
definition and calculation of the hydrocarbon reserves within the key reservoir units. Mapping of
SW away from the wellbores within geo-models represents a significant challenge. The rock types
and flow unit analysis indicate that the reservoir is dominated by four hydraulic flow units. HFU#1
represents the highest flow zone indicator (FZI) value. Core analysis has been completed to better
understand the relationship between SW and the reservoir capillary pressure above the fluid contact
and free water level (FWL), which is used to perform saturation height function (SHF) analysis. The
calculated SW values that are obtained from logs are affected by formation water resistivity (Rw)
and log true resistivity (RT), which are influenced by the volume of clay content and mud salinity.
This study introduces an integrated approach, including evaluation of core measurements, well log
analysis covering cored and non-cored intervals, neural analysis techniques (K-mode algorithm),
and permeability prediction in non-cored intervals. The empirical formula was predicted for direct
calculation of dynamic SW profiles and predicted within the reservoir above the FWL based on the
change in reservoir pressure.

Keywords: flow unit; saturation height; J-function; Messinian reservoir; Nile Delta

1. Introduction

The reservoir evaluation is necessary to identify reservoir units and to better under-
stand their relevant reservoir properties [1]. Calculating porosity, permeability, and the
study of dynamic flow is necessary to obtain more accurate estimates of reservoir storage
volumes and gain an improved understanding of flow performance. Characterizing water
saturation (SW) within reservoirs is a key challenge of the hydrocarbon reserves estimation,
which strongly influences the creation of static and dynamic reservoir models [2–6].

Reservoir classification techniques that include combined core analysis and well log
data can also be used to characterize reservoir flow unit parameters [7–9]. Advanced
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rock typing techniques, which are based on flow zone indicators (FZI), can be used to
calculate flow unit identification and characterization [10–12]. Reservoir parameters such
as porosity and permeability have been used to define reservoir hydraulic flow units during
the construction of reservoir models [13,14]. Additionally, applying artificial intelligence
techniques can potentially deliver solutions for predicting petrophysical parameters in the
non-core areas of the reservoir.

The Salma Field is a significant hydrocarbon province in the Nile Delta region [15–18].
Within the Salma Field, the clastic late Messinian Abu Madi Formation is considered as
the primary gas-producing interval (Figure 1). Previous studies include comprehensive
reservoir analysis, property modeling of petrophysical parameters of the reservoir, and
identifying various facies of the flow [19–23]. Calculating water saturation variability
within the model based on reservoir flow units can reduce the uncertainty in reservoir flow
performance and volumetric evaluation in the Salma Field.
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Figure 1. Location map of Salma field.

This study analyzes critical data from the Salma Field and provides an innovative
method that links reservoir flow units with reservoir water saturation. In order to achieve
this, this study (a) provides permeability calculations that are defined by a flow unit-
dependent porosity–permeability correlation; (b) establishes multiple saturation height
function (SHF) by using key reservoir parameters; and (c) considers the variation in rock
quality in relation to the reservoir flow performance.

This method for calculating water saturation is successful and more precise in the
example of the Salma Field, mainly as it decreases the uncertainty in the SW results
calculated from resistivity tool readings, which are influenced by shale distribution and/or
variation in reservoir water salinity. Fundamentally, this study and proposed methodology
are more practical within fields worldwide, mainly when saturation modeling is conducted
within heterogeneous reservoirs containing abundant clastic mudstone facies.
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2. Geological Setting

This study examines a suite of Messinian-aged sedimentary strata from the Delta
region of Egypt (Figure 2). The Messinian section, which comprises the Abu Madi and
Qawasim formations, hosts the most potential reservoirs in the Delta area [24]. The Messe-
nian section in the Nile Delta comprises a complexly layered incised valley filled with
various facies forming the reservoir and sealing lithological units [24]. These sedimentary
successions of the Abu Madi Formation have been interpreted as fluvial to the coastal
marine in origin, deposited in a subsiding basin undergoing transgression. The Abu
Madi Baltim trend in West El Manzala is defined as a sequence of back-stepping fluvial
channels [16,25,26]. The basin follows the same strike as the overall trend of the adjacent
gas-producing system of Abu Madi to the west [27].
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The Abu Madi Formation is a fluvial–estuarine sedimentary rock unit with erosive-
based channel sandstones at the base of the sequence. In the Salma Field, the Miocene cycle
is characterized by the Messinian sandstones, mudstones (shales), and sandy mudstones
(shales) of the Abu Madi Formation, which overlay the marine sedimentary rocks of the Sidi
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Salim Formation. It varies in composition and comprises different lithologies, but mainly is
made up of siltstones and sandstones with variable sedimentary structures. The formation
ranges from fluvial to deltaic environments with various depositional conditions [28,29].
The lithofacies associations indicate subfeldspathic arenite-wacke, sub-lithic arenite, and
lithic arenites distributed across the reservoir; they also indicate reservoir heterogeneity [30].

3. Materials and Methods

A complete set of well log data from six available wells are used in this study. Fifty-
eight core plugs of the Salma-2 well and ninety core plugs of the Salma-4 well were analyzed
at the Corex Laboratories in Egypt. Obtained measurements from the core plugs include
porosity, grain density, and permeability. Additionally, special core analysis (SCAL) was
performed on 32 core plugs of the Salma-2 well and 56 plugs of the Salma-4 well.

Pore throat analysis and capillary pressure measurements were performed on eight
samples obtained by covered mercury injection by Corex, from which data was made
available for the Salma-2 and Salma-4 wells. Porosity and permeability data were corrected
to reservoir net overburden pressure to replicate in situ values [31]. The sedimentology
of the core data was investigated (described and interpreted) (Figure 3), and the reservoir
interval was divided and characterized based on sedimentary facies and depositional
environments (Figure 4). Applying combined and integrated datasets during reservoir
characterization provides a robust methodology for static and dynamic reservoir properties
attribution and modeling [32–34].

3.1. Reservoir Hydraulic Flow Units (HFUs)

Reservoir facies were classified into rock units based on their dynamic behavior [35].
Facies are categorized and defined based on their reservoir quality index (RQI; [36]) and
value of flow zone indicator (FZI) [10,37,38]. The RQI formula is based on the theory that a
package of capillary tubes can represent a flow within a porous medium with an average
radius. The Kozeny–Carman realistic porous media theory was modified by [39]. The
technique to characterize the reservoir quality index (RQI) and determine the FZI was
developed by [10] and can be expressed as follows:

K = Φ3/(1−Φ)2 × FZI2 (1)

√
(K/Φ)= [Φ/(1−Φ)]× FZI (2)

By defining RQI in µm

RQI (µm) = 0.0314√(K/Ø) (3)

FZI (µm) = RQI/Φz (4)

Φz = Φ/(1−Φ) (5)

where

Øz = the normalized porosity in a fraction, and
Φ = porosity in a fraction, K = permeability in milli Darcy (mD).

The hydraulic flow concept is used to divide a reservoir into distinct units with unique
FZI values [40]. The hydraulic flow unit (HFU) is defined as a representative reservoir
volume with consistent petrophysical and fluid properties [10].
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Figure 4. Thin section microphotographs illustrating different sandstones microfacies of Abu Madi
Formation: (A) Feldspathic arenites and wacke stones, (B) Fine- to very fine-grained sandstones,
(C) poorly cemented, conglomeratic kaolinitic pebbly sandstones, (D) subfeldspathic arenites and
wacke stone. Mineral symbols: Anhydrite, An; Quartz, Qz; K-feldspars, K; Glauconite, G; Bioclasts,
B; Plagioclase feldspars, Ps; Lithic fragments, L; Detrital clays, Dc; Porosity (Orange Arrows); Heavy
Minerals (Green Arrows); Residual Hydrocarbons (Red Arrows).
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3.2. Well Log Analysis

Petrophysical analysis (i.e., lithology, clay content, and reservoir fluid saturations) was
carried out for six wells from the Salma Field. A quantitative reservoir evaluation requires
accurately determining shale volume (VSH). Based on mudstone (shale) distribution, mud-
rich sandstones possess different properties under different conditions and constraints [41].
Effective porosity (PHIE) was calculated using a neutron-density end point matrix cross-
plot [42], which was corrected for VSH and gas effects. The lithology and grain density,
which was determined from the core, was used in the evaluation. For reservoir water
saturation, the ‘Indonesian Model’ was applied [43–45]. The calculations were corrected
to clay content, as this can reduce resistivity and increase irreducible water saturation
values [46].

3.3. Neural Log Analysis

An artificial neural network determined the FZI in non-cored intervals and wells.
This was performed using FZIs that were calculated using core analysis and well log
prediction [31]. Reservoir flow unit classification and identification were performed for all
reservoir intervals, and geological models were produced using the TechlogTM software
(Version 2015). Statistical data for reservoir parameters was obtained from the petrophysical
analysis of the well logs [47,48]. FZI measurements were obtained from the core and used
to predict the FZI curve logistically within non-cored intervals.

3.4. Free Water Level (FWL) and Fluid Contacts

The FWL in a water-wet rock is defined as the lower contact level of fluid at which
capillary pressure (CP) is zero [49]. A FWL was used as a reference in modeling the
upper SWH functions, where capillary pressure exceeds zero and, therefore, water can
be displaced by hydrocarbons. The FWL was defined by plotting formation pressure
data against true vertical depth to define different fluid gradients. This is the point at
which formation water pressure gradient lines intersect the hydrocarbon pressure gradient
(Figure 5).
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The CP–SW curve can be predicted and converted into water saturation against height
above the free water contact H–SW curve [50,51]. This point represents a fluid contact level,
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where the capillary pressure was more significant than zero, with the height above FWL.
The various contacts’ positions may differ from those of the FWL due to rock pore throat
sizes, typically where tiny pore throat sizes formed fluid contacts that were marginally
above the FWL.

3.5. Mercury Injection Capillary Pressure (MICP)

The mercury injection capillary pressure (MICP) technique was effectively used to
determine pore throat size distribution [52]. This method uses mercury as a non-wetting
liquid with solids. By applying a pressure up to 2000 psi, mercury can penetrate the pores
spaces of the studied samples. The pore volume distribution was established as a function
of pore throat radius. The interfacial forces were the source of the fluid rise to what is
known as capillary pressure when rock pore volume is occupied with two immiscible fluids.
The relationship between pore size and a given pressure was derived by [53], as

Pc =
2σcosθ

r
(6)

where

r = pore radius, σ = the interfacial tension, θ = contact angle,
Pc = capillary pressure (absolute applied pressure).

Capillary pressure represents the interaction of rock and fluid and is controlled by the
pore size, interfacial tension, and wettability [54]. The free water level (FWL) from water
saturation within the transition zone (the height relation; [49]) is also assumed, as follows:

Pc =
2σcosθ

r
= (ρw− ρo)gh (7)

h (ft.) = Pc/0.434 (ρb−ρc) (8)

where

Pc = capillary pressure (absolute applied pressure), σ = the interfacial tension,
ρ = the density of water and hydrocarbon (gas or oil), g = the gravitational acceleration,
h = the height above FWL, ρb = specific gravity of brine,
ρc = specific gravity of hydrocarbons, 0.434 psi/ft = gradient of water.

MICP and mercury saturation analysis were performed and plotted for samples as-
signed to different flow units for the Salma-2 (Figure 6A) and the Salma-4 wells (Figure 6B).
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3.6. Reservoir Capillary Pressure and Saturation Height Function

Several studies on saturation height were developed and provided different methods
to calculate SW through saturation height (SWH) modeling [51,54]. Different rock types
are linked with different saturation height relationships [55]. A flow unit was defined for
each sample by applying Equations (3)–(5), with laboratory-measured capillary pressure
using mercury injection, where data was corrected from the laboratory fluid system to
the reservoir fluid system using Equation (6) and data in Table 1 to convert Pc from lab
to reservoir condition. Pc data for the reservoir fluid system were converted to a height
above free water level (HAFWL) using Equation (8) and applying a field-free water level
at 3100 m TVDSS (using mean sea level as the mean datum). Finally, samples from two
wells were used to demonstrate the saturation height function. Data for SW-HAFWL were
plotted for the Salma-2 well (Figure 7A) and for the Salma-4 well (Figure 7B).

Table 1. MICP interfacial tension values, contact angles, and descriptions used for laboratory and
reservoir conditions.

Parameter Contact Angles (◦) Parameter Description

σ Res 50 interfacial tension in the reservoir (gas–water)

θ Res 0 contact angle in the reservoir (gas–water)

σ Lab 70 interfacial tension in lab (air–water)

θ Lab 0 contact angle in lab (air–water)

σ Lab 485 interfacial tension in the lab (mercury–air)

θ Lab 140 contact angle in the lab (mercury–air)
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3.7. Leverett J-Function

The capillary pressure measurements of the core samples represent a limited and small
interval of the overall reservoir of the Salma Field. Therefore, additional capillary data must
be collected and combined with the saturation curves to represent different reservoir facies
and units to create a general equation that can define different reservoir units. Leverett
(1941) [36] created a dimensionless capillary pressure–saturation function that they termed
the “J-function”. This can be used to develop a general equation that represents all typical
capillary pressure curves and their dependent factors, including porosity, interfacial tension,
and average pore radius. This can be expressed as follows:

J = 0.2166 × Pc/(σ × cos θ)×
√
(K /Φ) (9)
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where

J = Leverett J-function, Pc = capillary pressure, σ = the interfacial tension, θ = contact angle,
Φ = porosity in a fraction, K = permeability in mile Darcie’s (mD).

In this study, the Leverett J-function was used to convert all capillary-pressure data
to a universal curve for the same formation and remove the variances in Pc–SW curves,
whilst considering the variations in porosity and permeability for reservoir units. However,
J-function SW correlations cannot obtain different formations with a single universal curve
and are unable to represent all the reservoir units, so each flow unit should have its own
independent J-function.

Finally, the Pc data was converted to a J-function using Equation (9) to normalize
Pc within the reservoir system. This included a gas/water fluid system, gas gradient of
0.13 PSI/Ft, and a water gradient 0.434 PSI/ft, which were obtained from the results of
pressure data evaluation. J–SW relationships were plotted for the Salma-2 well (Figure 8A)
and the Salma-4 well (Figure 8B), which represent the variation related to different HFU.
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4. Results
4.1. Facies Evaluation

Analysis of the core samples and integration with the well log data indicated that four
key depositional environments represent the Abu Madi Formation facies and environment.
These environments are defined on the basis of multiple sedimentary facies and/or facies
associations that collectively represent that particular environment.

4.1.1. Flood Plain Environment

Description: Very fine-grained sandstone with symmetrical and asymmetrical ripple
cross-lamination. Heterolithic lamination, tidal mud drapes, and reactivation surfaces are
common (Figure 3A). These facies comprise poorly cemented, moderately compacted sub-
feldspathic arenites and wacke stones (Figure 4A; 2105.7–2106 m). They contain abundant
monocrystalline quartz grains and small amounts of K-feldspar and display moderate to
good pore interconnectivity.

Interpretation: The heterolithic lamination, tidal mud drapes, and reactivation surfaces
indicate the deposition from alternating high and low flow energies and/or changes in
flow direction/regime [56]. The recognition of tidal influence on sedimentation indicates a
transition from fluvial to marine conditions.
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4.1.2. Tidally Influenced Fluvial Channel Environment

Description: Fine- to very fine-grained sandstones with wave ripple cross lamination,
wavy bedding, flaser lamination, and abundant reactivation surfaces with mud drapes
(Figure 3A), (2095.5–2096 m). These sediments are characterized by fining-upwards succes-
sions with erosive bases. These facies are composed of silt to poorly sorted and sub-angular
to rounded granule grade sediments (Figure 4B). The sandstones are poorly cemented and
moderately compacted, with common pore-filling and grain-coating detrital clays.

Interpretation: The presence of fining-upwards sequences with erosive bases suggests
deposition by a sudden event that decelerated rapidly and was erosional at the front and/or
base of the flow. The presence of wave ripples cross lamination, wavy bedding, falser
lamination, and abundant reactivation surfaces suggest a tidal influence on sedimentation.
This suggests that these sediments were deposited in a tidally influenced fluvial channel
setting [57,58].

4.1.3. Fluvial Channel Environment

Description: This environment is composed of massively bedded conglomeratic
kaolinitic pebbly sandstones with sharp bases that generally lack interbedded mudstones
(Figure 3B). The sandstones are poorly cemented and moderately compacted, with common
pore-filling and grain-coating detrital clays (Figure 4C). The sandstones are characterized
by moderate to good pore interconnectivity. There are some minor instances where light
brown parallel laminated mudstones (shales), without bioturbation or trace fossils, exist
within the succession.

Interpretation: The massively bedded conglomerates may have been deposited by a
high sediment load fluvial current [56,59]. The common scour surfaces and absence of mud-
stone interbeds between the channel-fill deposits indicate a stacked channel element formed
from multiple channel incision and infill stages [60]. The instances where light brown hori-
zontal laminates shales are present, and, in particular, the absence of bioturbation or trace
fossils, potentially suggest a continental freshwater depositional setting.

4.1.4. Tidal Channel Environment

Description: The sandstones are very fine-grained and glauconitic and display ripple
cross-lamination and trough cross-bedding (Figure 3A; 2089.5–2090 m). The sandstones
display fining-upwards sequences and mud drapes along the sedimentary fore sets (for
ripple cross-lamination and trough cross-bedding); the presence of mud drapes increases
upwards within these intervals. The sandstones are moderately to poorly sorted, sub-
rounded to sub-angular, poorly cemented, and poorly compacted subfeldspathic arenites
and wacke stones (Figure 4D). These facies display good to moderate pore interconnectivity.

Interpretation: The presence and abundance of bioturbation, an upwards increase
of mud drapes, and glauconite, indicate that these sediments were formed in a shallow
water setting, with significant tidal influence [57,58]. The presence of trough-cross bedding
and ripple cross-lamination suggests that deposition possibly occurred in a channelized
setting, with varying flow rates. Overall, these deposits are deposited in a tidal channel
environment, with glauconite suggesting the marginal marine nature of this facies.

4.2. Hydraulic Flow Units (HFU)

The FZI was calculated using RQI and normalized porosity, using the normal distri-
bution of the FZI values and the cumulative curve of FZI. HFUs were defined where the
change in the slope of the cumulative curve was interpreted as a change in flow unit bound
by the inflexion point. Measured core data for Salma-2 and Salma-4 wells (Figure 9) show
four main HFUs controlling reservoir performance in the Abu Madi Formation reservoir.
The defined HFUs, reservoir facies (Figure 10), and associated data are summarized in
Table 2.
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Table 2. HFU data for the Abu Madi Formation.

Hydraulic Flow
Unit FZI (µm) Porosity (%) Permeability

(mD) Reservoir Quality

HFU# 1 4.5 to 10 25–33 >900 Excellent

HFU# 2 1.7 to 4.5 17–33 70–1000 Good–Very Good

HFU# 3 0.6 to 1.7 12–33 4–100 Moderate–Good

HFU# 4 0.2 to 0.6 15–30 0.6–8 Low

HFU#1: The FZI average value (4.5 to 10 µm) indicates an excellent-quality sandstone
reservoir with a porosity range of 25–33% and a permeability of >900 mD. It suggests the oc-
currence of fluvial channel and tidally influenced fluvial channel facies within the reservoir.

HFU#2: The FZI average value (1.7 to 4.5 µm) is a very good- to good-quality sandstone
reservoir, with a porosity range of 17–33% and a permeability of 70–900 mD. This implies the
presence of fluvial channel and tidally influenced fluvial channel facies within the reservoir.

HFU#3: The FZI average value (0.6 to 1.7 µm) indicates moderate-quality sandstone
reservoirs, with a porosity range of 12–33% and a permeability of 4–100 mD. It is related to
the occurrence of tidal channel and floodplain deposits.

HFU#4: The FZI average value (0.2 to 0.6 µm) represents a low-quality sandstone
reservoir, with a porosity range of 15–30% and a permeability of 0.6–8 mD. This is likely an
indicative of tidal channel and floodplain facies.

4.3. Formation Evaluation

Graphical and computational methods were used to determine the petrophysical
properties of the Abu Madi Formation reservoir. TechlogTM software (Version 2015) was
used to identify various reservoir parameters, including shale volume, lithology, effective
porosity, and water saturation. The raw data of neutron-density cross-plots for the Salma-2
and Salama-4 wells show that many of the data points lie on or close to the sandstone line
(Figure 11).
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the area of clay line to clean sand line).

Points plotted near the limestone lines suggest the presence of calcareous cements.
Other points lie below the dolomite line as they are composed of 100% shale. Due to the
gas effect, some neutron-density points plot away from the sandstone line [28,61,62].



Water 2023, 15, 4204 13 of 22

The core data and well log analysis indicate that the reservoirs are composed mainly
of sandstone and mudstone (shale) intercalations. Sandstone intervals are characterized by
excellent reservoir quality in the Salma-2 well, which is composed of the coarser-grained
sandstones of the fluvial channel (Figure 12A) that have an average porosity of 22%, low
clay content (average shale volume of 18%), and water saturation of 30–42%. The Abu
Madi Formation reservoirs in the Salma-4 well (Figure 12B) vary from argillaceous to clean
sandstone intervals, which were deposited in estuarine, tidal, and fluvial environments.
These display excellent reservoir parameters within the pay zone, with an average porosity
of 24%, an average shale volume of 21%, and water saturations of 35–43%.
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4.4. Neural Log FZI and Permeability Prediction

The neural log application (K-mode) was originally a statistical technique, but its
results are showing to be geologically consistent [28]. Neural log techniques were applied
to data from 148 core samples as input data (PHIE and FZI from the data of core analysis),
to extrapolate and predict FZI values and define HFUs in the non-cored intervals within
the wells using log data (PHIE, Pef, and VSH). Using log and core data within the cored
intervals, as well as applying the neural analysis method to FZI on the log, the values were
then predicted within non-cored intervals [31]. The results of the FZI curve correlated
with the curves produced from the cored intervals after a reasonable number of iterations
were conducted (5 runs; each run included 100 iterations in the internal process), until it
reached a minimum constant accepted error. Permeability (K) values were calculated in the
non-cored intervals as a function of porosity (Φ ) and FZI. Re-write Equation (2) in new
format as follows [10]:

K = 1014 FZI2 ×Φ3/(1−Φ)2 (10)
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The same procedure was applied to the other wells (Salma-1, Salma-3, Salma-5, and
Salma N-1), which only have well logs that predict FZI in the non-cored intervals (i.e.,
those ‘other wells’ are non-cored throughout). The result of predicted FZI on log bases
and permeability calculations (Figures 13 and 14) are summarized in Table 3. Although the
HFUs are defined by different ranges of FZI, each flow unit may display a wide range of
porosity and permeability. Reservoir property model distribution within the entire reservoir
is provided by the distributions of FZI values and is defined by the flow unit model. The
flow units are used as the basis for the distribution of the porosity and permeability within
the range of each unit.
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Table 3. Petrophysical and neural analysis of Abu Madi Formation.

Well Zone Top
(m)

Bottom
(m)

Gross
(m) Net (m) Shale

(%)
PHIE
(%) SW (%) FZI

(µm)
KH

(mD)

Salma-2
Estuarine 2014 2025 11 2.3 24.5 18.9 35.9 3.9 357

Fluvial 2025 2088 63 23.3 18.9 21.5 43.0 4.5 636

Salma-4

Tidally
influenced

Fluvial
2088 2100 12 9.8 21.4 23.9 38.9 3.7 677

Estuarine 2100 2181 67 10.8 25.2 18.8 89.9 2.2 171

Bayhead Delta 2124 2138 14 10.2 24.4 18.4 99.4 1.9 84

Fluvial 2181 2291 110 64.9 21.0 19.7 99.8 3.5 684
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4.5. Saturation Height Model

The saturation height function was defined on the flow unit’s bases to predict water
saturation at different reservoir points based on its position above the free water level.

The goal was to create a saturation model that was more relevant to the change in
facies and reservoir parameters. Firstly, a single equation was created for each flow unit by
registration, to represent the relationship between SW and height above FWL. Secondly,
data were plotted, and the resulting curves were compared to the data for each flow unit
(Figure 15). The red line represents the best linear fit to the data trend. Finally, this study
developed an equation for a water saturation calculation with a direct relation for HAFWL
without detection for capillary pressure and incorporated this for each flow unit as follows:

SW = a × hb (11)

a = 1.4863, b = (−0.432) for HFU#1
a = 1.3103, b = (−0.391) for HFU#2
a = 1.2406, b = (−0.275) for HFU#3 and 4
SW = water saturation (v/v); h = height above free water level (ft).

On this basis, the water saturation (SW) was determined for all wells in the Salma Field.
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4.6. Water Saturation Using J-Function

The Leverett J-function was calculated by considering the change of reservoir porosity
and permeability values within the flow unit and Pc. The values of J–SW data for different
flow units are plotted (Figure 16) and a regression was performed to fit the normalized
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data using a single equation to fit the J–SW data for each flow unit (HFU#1 to HFU#3), with
different parameters (Figure 16A–C). The best fit is represented by the red line.
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Finally, this study developed an equation with the different parameter for each flow
unit, which is as follows:

J = a ×Wb or SW = (J/a)1/b (12)

a = 0.4618, b = (−2.127) for HFU#1
a = 0.1465, b = (−2.8) for HFU#2
a = 0.100, b = (−3.12) for HFU#3 and 4
where SW = water saturation (v/v); J = Leverett J-function.

The water saturation (SW_JF) was computed for all wells in the Salma Field and was
based on predefined flow units, with calculated Pc, and J-function above free water level.
Calculated SW_JF was plotted and correlated with previous SW calculated from resistivity
(Figure 17). When we compared the water saturation predicted by the saturation height
function and the J-function, the J-function was interpreted to be more reliable, largely
as the values were variable depending on the porosity and permeability of the reservoir.
In comparison, the saturation height function varied in response to changes in porosity
and permeability.
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5. Discussion
5.1. Depositional Environments, Flow Units, and Control upon Reservoir Quality

A wide range of facies and different flow units characterize the Abu Madi Formation
reservoir. The variation in the depositional environments principally controls the reservoir
parameters of these flow units. The fluvial channel and tidal channel deposits form the
highest-quality reservoir facies, in which grain sizes range from silt- to granule-grade
sandstones that are occasionally conglomeratic. This variability in grain sizes (poor-sorting)
is typically formed at the base of these facies, with beds becoming moderately sorted in the
upper parts. The sandstone of the fluvial channel facies has very good pore interconnectivity.
The high FZI values indicate very good-quality reservoirs with an effective pore system
dominated by HFU#1 and HFU#2.

However, when the reservoir’s depositional environment transitions into more estuar-
ine conditions, the sedimentary deposits are dominated by siltstone, mudstone (shale), and
some mud-rich sandstones. Despite the higher mud content, these types of deposits have
moderate FZI values (HFU-#3). Abundant in mudstone (shale) and highly argillaceous
sandstone intervals present heterolithic facies of the estuarine environment, with poor
reservoir quality. The reservoir is characterized by low FZI values, with an ineffective pore
system dominated by HFU#4.

5.2. Flow Unit Identification and Validation of Irreducible Water Saturation and SW Estimation

Two methods were used to build the saturation model: the saturation height function
and the J-function. Based on different flow units, three models for each method were ap-
plied. Data from the two methods show that small pores retain a fluid volume regardless of
any existing pressure (irreducible water saturation). Data from the SW–H model (Figure 15)
show that HFU#1 has a minimum irreducible water saturation (10%) and is lower in SW
versus height above free water level. HFU#2 has a minimum irreducible water saturation
(11%) and low to moderate SW values versus height above free water level. HFU#3 has a
minimum irreducible water saturation (20%), with high SW values versus height above
free water level. J–SW curves with different parameters related to different flow units
(Figure 16) and water saturation (SW_JF) were computed for all wells in the Salma Field
based on predefined flow units. Generally, there is a good match between SW predicted by
the two methods and SW calculated based upon the resistivity log data. The Salma-2 and
the Salma-4 well data show good agreement between modelled and calculated SW.

The predicted SW_J show reasonable matching in the deeper and middle zones above
the free water level, where most of the reservoir is blocky and clean sandstones of HFU#1
and HFU#2 are present. SW_J is almost lower than SW in the upper pay zone based on
the resistivity log (Figure 17). The difference in observed value is interpreted to be from an
overestimation of SW from resistivity, largely due to the low-resistivity values of thin beds,
resulting from the shoulder effect of adjacent shale layers, or low resistivity for interbedded
sandstone and mudstones (heterolithic).

6. Conclusions

Rock typing classification, reservoir quality assessment, and petrophysical characteri-
zation aid in the subdivision of the reservoirs into fluid flow units and rock types.

Based on the results of this study, it is concluded that four HFUs control the reservoirs
of the Salma Field in Egypt. These are HFU#1 (excellent reservoir facies), HFU#2 (very good
to good reservoir quality), HFU#3 (moderate quality), and HFU#4 (low quality). The neural
log technique (K-mode) has succeeded in predicting FZI, permeability, and petrophysical
parameters in the un-core interval in the study wells. The capillary pressure analysis and
output of a water saturation curve independent of a resistivity log measurement provided
a more consistent method than the conventional log-based analysis in low-resistivity zones,
the latter having issues around the undefined effect of clay content and shale distribution
within the reservoir.
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Understanding and prediction of the current fluid contacts was achieved by applying
the saturation height and J-function models, and the technique has been shown to be a
successful method for extrapolating water saturation for reservoir zones away from the
well and can predict throw reservoir production life and be used as a base of reservoir
dynamic model.
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