
160 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y

T h i s w o r k i s l i c e n s e d u n d e r a C r e a t i v e C o m m o n s
A t t r i b u t i o n 4 . 0 L i c e n s e . F o r m o r e i n f o r m a t i o n ,

s e e h t t p s : //c r e a t i v e c o m m o n s .o r g / l i c e n s e s / b y /4 . 0 /

// In this experience

report, we explain how

we take advantage of

microservices’ inherent

modular nature to

accomplish a highly

adaptable software

architecture that can

deal with the trials

and tribulations often

occurring in marine

research environments,

and we show our

journey to develop a

web system to remotely

operate marine

autonomous vehicles.//

OPERATING OCEAN ROBOTS for
scientific or commercial purposes is
becoming more and more common;
academia, defense, and industry spend
time and money developing under-
water and surface autonomous ve-
hicles to cover a variety of scenarios,
including environmental monitor-
ing, water quality assessment, climate
change studies, fauna identification,
or oil rig decommissioning.

Introduction
At the National Oceanography Cen-
ter (NOC), we host the U.K. Na-
tional Marine Facilities (NMF). NMF
oversees and operates the National
Marine Equipment Pool, providing
operational services and developing
state-of-the-art technology enabling
the U.K. marine science community
to produce world-class research. We
are part of the Maritime Autonomous

Developing a
Reconfigurable
Architecture
for the Remote
Operation
of Marine
Autonomous
Systems
Alvaro Lorenzo Lopez , National Oceanography Center and
Universidad de Las Palmas de Gran Canaria

Ashley Morris , Owain Jones , and Alexander B. Phillips ,
National Oceanography Center

Francisco Mario Hernández Tejera and Adrian Penate-Sanchez
, SIANI, Universidad de Las Palmas de Gran Canaria

Digital Object Identifier 10.1109/MS.2023.3317065
Date of publication 17 October 2023; date of current version 12 June 2024.

FEATURE: MICROSERVICES IN ROBOTICS FOR
ENVIRONMENTAL RESEARCH

©SHUTTERSTOCK.COM/ANDREY SUSLOV

https://orcid.org/0000-0003-2723-8775
https://orcid.org/0000-0003-3340-3159
https://orcid.org/0000-0002-2813-4647
https://orcid.org/0000-0003-3234-8506
https://orcid.org/0000-0001-9717-8048
https://orcid.org/0000-0003-2876-3301

 JULY/AUGUST 2024 | IEEE SOFTWARE 161

Robotics Systems (MARS), and we
operate the most extensive fleet of
marine autonomous systems (MAS)
for research in Europe, with more
than 35 commercial ocean gliders and
eight in-house developed autonomous
underwater vehicles (AUVs), includ-
ing the famous Boaty McBoatface.
To do remote operations, we require
wireless technologies, including local
Wi-Fi, remote satellite, and acoustic
communications, to send execution
plans to the vehicles. Our pilots uti-
lize each MAS technology using the
software provided by the manufac-
turer, which, in most cases, is not in-
teroperable with other technologies.
This lack of interoperability is not a
problem piloting each MAS platform
individually, but deploying fleets of
vehicles from different vendors is be-
coming more common. Our opera-
tions span varying timeframes, from
weeks to potentially years. Manag-
ing diverse MAS fleets presents the
challenge of transitioning between
different piloting applications, risk-
ing mistakes due to shifting visual
paradigms. The constant change in
contexts burdens cognitive load and
demands more human resources.
Rather than having a unified opera-
tor pool, we’re forced to assign dedi-
cated pilots to minimize errors, which
is unsustainable.

The lack of standardized machine-
to-machine interfaces complicates
automation via machine learning or
probabilistic path planning. Develop-
ers struggle to integrate diverse ro-
botic platforms.

In 2016, the National Environmental
Council (NERC) launched Oceanids,
funding the Command and Control
(C2) initiative. Its aim was a unified
MAS operations software, reducing
context switching for pilots (see Figure 1).

This report outlines C2’s develop-
ment, our experiences, and technical

decisions. We offer insights into
creating a Microservice system for
marine research and software de-
velopment within an ocean research
institution, hoping to benefit IEEE
Software readers.

The C2 Team
To build the C2, our team was cre-
ated. We are part of a large marine
research institution, where we develop
software that supports ocean sciences.
The C2 falls under the category of sci-
entific software with users not fully
understanding the domain with no
precise upfront requirements.1,2

When starting the C2 project, two
software engineers were on the team.
At that time in the United Kingdom
(2016), there was a big push in sci-
ence communities to embrace the
research software engineer (RSE)3
profile, trying to recognize software
practitioners developing scientific
software. Our management believed
we could integrate other RSEs from
other departments and organizations
to build the C2.

The team has expanded from two
engineers to seven, including front-
end developers, back-end engineers,
and RSEs. This diverse team has con-
tributed to shaping the architecture
and functionalities of C2 with the
front-end engineers helping us to or-
ganize back-end development around
end-user features, or the RSEs with
expertise on robotics influencing the
application programming interface
(API) design to abstract the MAS pi-
loting and enable the future connec-
tion of generic piloting algorithms.
The team’s growth has been organic,
with new members bringing valuable
skills to meet evolving demands.

The System
We embarked on the project with
the primary objective of unifying

piloting systems for different MAS
platforms. To achieve this, we rec-
ognized the critical need for unin-
terrupted access to the system. MAS
platforms are typically operated from
ships nearby, but we wanted to enable
remote piloting, allowing operators
to command MAS from their base or
home, leveraging satellite communi-
cation. Ensuring around-the-clock
availability became paramount as op-
erators needed to periodically check
vehicle behavior, collect accurate data,
and intervene in real time to address
changes in tracked ocean features or
vehicle malfunctions, all while preserv-
ing platform safety. We strategically
decided to build a web system in-
stead of a traditional desktop-based
application to meet this requirement.

Additionally, we identified the fu-
ture potential for developing differ-
ent applications tailored to specific
user communities. These included a
piloting app for operators, a science
app for real-time data analysis, a
risk and reliability app for engineer-
ing fault analysis, and visualization
portals for the general public. De-
spite their unique user interfaces and
functionalities, these applications
would share a significant amount of
underlying information. Hence, we
decided to develop individual back
ends encapsulated with restful APIs.
This approach allowed us to reuse
and share components across mul-
tiple applications, ensuring efficient
development and maintenance.

Due to limited resources, our small
team developed the system using small,
easily integrated, and maintainable
components. We planned to build
prototypes to gather feedback from
MAS operators and iterate quickly on
requirements. Considering the flex-
ibility required, we adopted the mi-
croservice pattern,4 which enables the
development of independent, loosely

162 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: MICROSERVICES IN ROBOTICS FOR
ENVIRONMENTAL RESEARCH

coupled services. This approach allows
developers to break down problems into
manageable subsystems, test them in-
dependently, and add new functional-
ity without disrupting the rest of the
system. Using microservices not only
offered us flexibility, but we thought
we would increase reliability by hav-
ing smaller subsystems to maintain.
We also liked the idea of portability
(we will touch on containerization),
as we thought we could deploy on

different clouds. However, as we will
see later, we exploded portability
slightly differently.

Although we had an existing appli-
cation built in Symphony, a precursor
to the C2 system, we decided against
a monolithic approach. Integrating
the work of other groups would be
more complex in a monolithic sys-
tem, requiring deep knowledge of
the entire system. We briefly consid-
ered service-oriented-architecture but

found it too complex for our small
team. Ultimately, the Microservice pat-
tern aligned with our requirements,
allowing us to develop RESTful web
APIs as small, manageable systems
and enabling external contributions
while maintaining oversight of service
integration.

Developing the System
We wanted a system that would allow
us to quickly integrate work from

Command & Control

Field Operations Operations

FIGURE 1. The Command and Control (C2) concept: Vehicles are operating remotely at sea, they call back to their control base

stations, and the telemetry data sent back gets aggregated by our C2 system, allowing pilots to interact with the vehicles through a

web application from anywhere in the world.

 JULY/AUGUST 2024 | IEEE SOFTWARE 163

others, which was an important con-
sideration when we researched ar-
chitectural patterns. Initially, our
architecture wasn’t very complex,
and we focused on integrating the
microservices to create front-end apps
easily. We decided to do it using the
API gateway pattern,5 which puts an
intermediate entity (the gateway) in
the middle of clients and services.
The gateway pattern allows the im-
plementation of the authentication,
load balancing, and service discov-
ery within the gateway itself. We will
talk more about the gateway in the
next section.

We started without a defined de-
velopment stack. In our first year,
while designing the architecture, we
investigated different technologies to
develop the system.

We made the conscious decision to
begin developing our microservices in
Python, a well-established program-
ming language in RSE communities,
providing tools for web development
and with increasing traction within
data science and RSEs, with the use
of popular libraries such as numpy,
pandas, scipy, matplotlib, Tensor-
Flow and PyTorch. In recent years,
the RSE community had tended to
prefer open source, free and general-
use tools, such as Python and its
libraries, over licensed or domain-
specific languages (Matlab, R), mak-
ing it an attractive choice when we
considered that we would likely want
to integrate code written as outputs
of research projects. We considered
the use of Python would make it eas-
ier for RSEs to get introduced to de-
velop our systems and, at the same
time, help external project collabora-
tors to contribute code.

We chose Flask as the framework
to develop microservices; while it
is true that Python is not as fast as
other languages (Golang, Scala, and

so on), as Flask is a lightweight Py-
thon framework it helped us to keep
microservices lean. We slowly incor-
porated the libraries we needed, like
the sqlalchemy ORM or flask-restx
to automatically generate Swagger/
OpenAPI schemas. We now have an
easy-to-use framework to speed up
new functionality development and
consistent maintainable code across
our services. This framework pro-
vides us with everything we need
when building microservices, from
access control to database access;
we call this framework Microserver.
Microserver offers more than just
Python scaffolding for business
logic. It includes the tools to contain-
erize and deploy the services within
our Kubernetes cluster. We build
most of our microservices with our
Microserver, but it is not mandatory;
we can use any language or frame-
work, but Microserver makes our
work easier.

We chose Postgres as our data-
base due to its versatility. While we
considered other options like Mon-
goDB, InfluxDB, and ElasticSearch
for specific use cases, maintaining
multiple technologies proved chal-
lenging for our small team. Post-
gres, with plugins like PostGIS and
Timescale, met our needs for storing
geographical and time-series data
efficiently. It offers flexibility while
being well-documented and mature.
If necessary, we can easily integrate
new database technologies alongside
Postgres using microservices.

We brought the architecture to-
gether using RabbitMQ(AMQP)
real-time messaging, allowing the
microservices to publish events to
be picked up and processed by other
microservices.

For front-end development, we
use Vue.js. We experimented with
Angular and native JavaScript first.

Still, either option was more complex
or bare-bones, with Vue giving us a
mix of modern patterns and simplic-
ity that we judged optimal then.

Our stack (see Figure 2) was built
using well-tested open source tech-
nologies to create new functionality
efficiently and can be adapted for
different applications. In Figures 3
and 4, we show slightly different ap-
plications of the same technologies.

Kubernetes and DevOps
Much of our journey has revolved
around learning how to orchestrate
our containerized microservices. Our
original plan was to deploy our sys-
tem in the cloud. Still, the complex-
ity of estimating cloud bills upfront,
the fact that research infrastruc-
ture projects have a fixed length,
and the uncertainty of no follow-up
money made us deploy and manage
in-house.

Mastering the usage of Docker
as our container solution took little
time, but the orchestration with Ku-
bernetes was a whole different story.
It took us three iterations until we
developed a stable solution.

The first iteration was a proto-
type Kubernetes installation to
learn the technology and compare it
with Docker Swarm, the built-in or-
chestration that used to come with
Docker. Docker Swarm was simple
to use, but the rise of Kubernetes as a
preferred option in the industry came
with plenty of online documentation,
making it easier for us to understand
how to configure it. In this first clus-
ter, we deployed our prototype pilot-
ing app. However, we soon realized
that this cluster would not be sus-
tainable in the long run. It ran on a
single virtual machine (VM) node,
limiting our growth, and was poorly
configured due to its prototyping na-
ture. Additionally, we decided that

164 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: MICROSERVICES IN ROBOTICS FOR
ENVIRONMENTAL RESEARCH

using the WSO2 gateway and the au-
thentication system, both maintained
by a different department, was un-
suitable for us as we had no control
over configuring and customizing
them. Therefore, we decided to build
a new cluster.

For the second iteration, our goal
was to create a production-ready solu-
tion. We designed the cluster with three
VM nodes and deployed the Ambas-
sador gateway (now called Emissary)
in its open source version, replacing
the WSO2 gateway. Ambassador was
straightforward to configure and was
deployed as part of the Kubernetes
cluster, allowing us to easily add new
API endpoints to the gateway using an-
notations in the Kubernetes services.
To automate this process, we added
a default template service file to Mi-
croserver, which simplified the creation
of services by allowing programmers to
configure specific environmental vari-
ables. The services were automatically
deployed and loaded in the cluster, and

the API endpoints were added auto-
matically to the gateway. While Ambas-
sador lacked some features compared
to WSO2, it provided us with what
we needed: the ability to configure the
gateway as code, deploy it within the
Kubernetes cluster, and easily add APIs.
We reimplemented the authentication
by integrating an OAuth workflow
with Auth0, a software as a service
(SaaS). This freed us from implement-
ing and maintaining an authentication
system in-house.

Although the second iteration solved
several crucial problems, it also brought
new challenges. We underestimated
the knowledge required to configure
and maintain a Kubernetes installa-
tion, as the multiple layers involved
in providing functionality to multiple
systems (microservices) running on
containers and communicating with
each other through internal Kuber-
netes networks proved complex, es-
pecially when troubleshooting issues.
Our cluster was unstable, with pods

randomly going down and not recov-
ering. We attempted to implement ob-
servability tools using Elasticsearch,
Logstash, and Kibana (ELK) or Pro-
metheus. Still, these systems’ in-house
configuration and maintenance added
more work for the team, exacerbating
the issues.

Despite the challenges, the second
iteration hosted our first semiopera-
tional piloting application, which was
used in the field for trials with posi-
tive results, allowing us to operate
the different vehicles. However, frus-
trations arose, particularly during a
Loch Ness Trial, which experienced
half-hour downtime in the morning
almost daily. We recognized the need
for improvement.

We had plans for the third itera-
tion in June 2020, but an unforeseen
opportunity presented itself due to the
COVID-19 pandemic. With the world
coming to a halt, our operational pro-
gram was put on hold, allowing us to
reevaluate our working practices and

FIGURE 2. This is our stack at the beginning of 2023. We used the same microservices for our central Internet-based solution (C2)

and C2iAB, the system we use for operations without Internet connectivity (ships, remote areas, and so on). The only difference is that

C2iAB runs the entire system on virtual machines (VMs) without the overhead of Kubernetes, and some of the services connect to

hardware directly to talk to the robots in the field.

API

M1 Mn

Kubernetes / VM(C2iAB)

Database
Message

Broker
Auth

API

 JULY/AUGUST 2024 | IEEE SOFTWARE 165

address the stability issues in our Ku-
bernetes cluster.

We faced several challenges in our
Kubernetes environment, including
difficult-to-track configuration changes,
manual deployment of microservices
leading to a slow and cumbersome
change process, a testing environ-
ment that differed significantly from
production, infrequent deployment
of microservices causing delays in
user improvements and necessitating
large release deployments, inadequate
observability of the cluster with inef-
fective ELK and Prometheus tools,
difficulties in updating Kubernetes
resulting in being stuck on outdated

versions with associated problems,
and random pod failures without
clear causes.

We identified the lack of processes
as the main problem; releasing code
into production was a manual and
convoluted process and challenging to
manage. To address these issues, we
decided to implement best practices
used in the software industry, par-
ticularly by DevOps practitioners,6,7
focusing on automation and stability.

We implemented several key ac-
tions to enhance our Kubernetes en-
vironment. First, we designed two
identical Kubernetes clusters dedicated
to testing and production. To facilitate

cluster deployment, administration,
updates, and monitoring, we chose
Rancher, a Kubernetes distribution that
offered a user-friendly GUI.

Next, we adopted a code manage-
ment workflow based on Git Flow.
This approach involved two branches:
“main” for recording releases and
“develop” for integration. Developers
create feature branches for new func-
tionality, eventually merging into the
development branch and releasing to
the main branch. For improved ver-
sion alignment, we release and version
all microservices simultaneously. This
aids in change tracking and stable ver-
sion rollbacks. All code changes pass

FIGURE 3. This is our piloting app, operating an ocean glider in the north sea. The robot calls using satellite communications to

a base station. Our C2 system monitors the base station with a microservice managing incoming and outcoming communications.

When an incoming communication arrives, the communication microservices tell the rest of the microservices using RabbitMQ, and

each interested microservice accesses the information from the communication microservice using APIs. All the microservices use

the same communication flow. Our front end calls the different microservices APIs to show pilots the operational state and then sends

operator instructions to the vehicles. In this figure, we are still showing our old authentication provider. The whole system is running on

a Kubernetes cluster.

API

Comms Message
Broker

Timeseries File Service
Map

Configuration

API API API

166 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: MICROSERVICES IN ROBOTICS FOR
ENVIRONMENTAL RESEARCH

through peer reviews and merge re-
quests before merging into the develop-
ment branch.

We embraced an infrastructure-
as-code approach to configure our
Kubernetes clusters. Configuration
files were stored in Git repositories,
following the Git Flow model. This
facilitated version control and en-
abled us to roll back to stable states
when necessary easily.

Furthermore, we automated merg-
ing code into development and re-
leasing it using GitLab CI and Argo
CD. Although the human interven-
tion was still required to trigger de-
ployments to production, the overall

process became significantly more
automated. Rolling back to the pre-
vious version followed the same
streamlined process if needed.

Throughout 2020, we dedicated
most of our efforts to implementing
these changes and adapting to new
work practices. Although continuous
delivery has not been fully achieved,
we have embraced many similar prac-
tices. We deploy to production at least
once a month, experiencing minimal
downtime and increased cluster reli-
ability. While isolated service issues
may occur occasionally, cluster-wide
problems are rare, and Rancher assists
in faster error detection and resolution.

Reconfiguring the
System
Our primary focus from the begin-
ning of the project was developing
a centralized system to perform over
the-horizon piloting. While tradition-
ally, AUVs are operated from ships,
we deliberately ignored that use case
as operational teams were explor-
ing adopting an off-the-shelf solution
(commercial or open source). Still,
none of the plans progressed, and the
need to operate newly in-house devel-
oped AUVs became a priority as the
Autosub Long Range (ALR) Boaty
McBoatFace was going to Antarctica
to be part of one of the most ambitious

FIGURE 4. An example of how we have reconfigured our microservice system to accommodate the case of piloting from a ship.

We have adapted our microservices to connect directly to the hardware in the ship (in this case, the RSS Discovery) using our

communication microservice, we wrote integrations for Wi-Fi, to talk to the AUVs when on deck or in the water near the ship, and then

USBL (ultrashort baseline, an underwater acoustics system), to track the AUVs underwater and send short commands to them (like

emerge or start a mission). The example shown is during the cruise DY152. The integration of GeoServer allows us to show layers

locally without needing an Internet connection; in the map on the piloting in a box app, we are showing high-density bathymetric layers

provided by the ship instruments.

API API API

Auth

API

Comms Message
Broker

Timeseries File Service
Map

Configuration

 JULY/AUGUST 2024 | IEEE SOFTWARE 167

and high-profile environmental studies
in recent years; a joint operation be-
tween the U.S. NSF and U.K. NERC,
TARSAN. In 2021, we needed to de-
velop a tool to operate Boaty and the
rest of our AUVs from ships.

In this section, we demonstrate
adapting microservices for offline use,
which is vital for research ships with
limited or no Internet. Our solution is
dubbed “C2 in a box” (C2iAB).

With some modifications, our orig-
inal system functionality could serve
as a minimum viable product. Lever-
aging the modularity of microservices,
we swiftly integrated third-party sys-
tems to enable the C2iAB functional-
ity. While utilizing Auth0, it became
evident that the system needed to op-
erate independently of an Internet
connection. We opted to replace the
SaaS OAuth solution with an offline
system to address this. Keycloak, an
open source identity and access man-
agement service with a strong repu-
tation and a large user community,
was our chosen solution. Its OAuth
flows closely resembled our existing
implementation, ensuring a relatively
straightforward replacement process.
This change was implemented within
our primary C2 solution, promoting
architectural unity and reducing reli-
ance on external providers.

Quickly including new exter-
nally developed services showed
the adaptability of the microservice
architecture; C2 uses online maps
(Leaflet) to show operators the vehi-
cle positions and other environmen-
tal information, but “disconnecting”
the system from the Internet also
removed our access to maps. De-
ploying a GeoServer as a local geo-
information systems solution allows
us to cache and show maps and
map layers locally. Using GeoServer
proved successful as we integrated
products from the ship systems like

real-time bathymetry, enriching our
operators’ visualization and situ-
ational awareness.

We decided to strip Kubernetes
from C2iAB as it did not work when
trying to connect to local ship net-
works with their own dynamic host
configuration protocol and, in gen-
eral, as we did not need features like
the high availability. We deployed
the C2iAB directly on VMs as a
single node. We managed the local
infrastructure by combining docker-
compose with ansible scripts. One
of the challenges was how to “repli-
cate” a lot of the features dependent
on Kubernetes, like the API gateway;

to do it, we run a series of scripts
that for through all our microservice
repositories and extract things from
them, for example, the annotations
defining the API endpoints, assem-
bling them on the docker-compose
script to create an NGINX reverse
proxy acting as a local gateway.

The development of C2iAB helped
us refine the whole C2 system, and all
the changes we made for C2iAB have
made their way back to the original
C2 except for some particular con-
figurations, like Kubernetes. Figure 2
shows the current unified stack (2023)
with all the changes described. Mi-
croservices for C2 and C2iAB remain
under the same codebases, and it is a

matter of choosing in which configu-
ration we want to use them on deploy-
ment time.

In January 2022, we sent a C2iAB
to its first science campaign, en-
visioned initially to operate the
ALR (Boaty McBoatface) under the
Thwaites glacier.

Lessons Learned and
Future Directions
After seven years of development,
we have produced stable solutions
that get used to operating MAS plat-
forms on the field; further details are
in Table. 1, and we picked up some
lessons along the way.

Developing software in science-
driven organizations is different, with
no systematic approach to software
development or use of software de-
velopment best practices. In our case,
the requirements were not precise.
Microservices have allowed us to
manage some uncertainty as we built
our system on small systems through
iterative phases. We think this is an
excellent way to develop scientific
software. This approach can help to
change course if new requirements
arrive, as we have shown with the
C2iAB; we took a classical microser-
vice web application and turned it
into an offline system with direct ac-
cess to hardware devices.

While isolated service issues may
occur occasionally, cluster-wide
problems are rare, and Rancher
assists in faster error detection

and resolution.

168 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: MICROSERVICES IN ROBOTICS FOR
ENVIRONMENTAL RESEARCH

A hard lesson for us has been the
adoption of software best practices
(like using open source technologies
or the adoption of DevOps); this was
not common in our organization, and
we dare to say it wasn’t common in
most science-driven organizations at
the time, but we are a clear example
that it can be done. It pays off, making
software development more robust.

We praise the use of microser-
vices, but we also must warn peo-
ple to be careful when using them
on public-funded scientific orga-
nizations; if teams can deploy the
microservices on commercially man-
aged Kubernetes instances, opera-
tions become easier, but if your team
is small (as ours) the only way to
manage a complex microservice ar-
chitecture is implementing very good
DevOps practices and at least for us
the use of Kubernetes distributions
(Rancher)8 helped a lot.

One of our regrets has been not
open sourcing all our code from the
beginning; we believe other people
working in similar environments

would benefit from our technology
(things like Microserver), but when
we started, we did not have enough
time to do it. Our organization and
we are committed to open source the
system, but it will take some time as
we do it while still delivering new
functionality.

Our principal founder, U.K. Re-
search and Innovation, has set very
ambitious plans and projects to tran-
sition the U.K. research infrastructure
to net zero carbon emissions. One of
the projects is the Net Zero Ocean
Capability (NZOC), which aims to
reshape the paradigm of using tradi-
tional research vessels as the center
of oceanographic activities, dramat-
ically increasing the use of ocean
autonomy. A key component will
be automating the observing system
operations, leveraging the introduc-
tion of Digital Twins of the Ocean
(DiTTO) to command MAS plat-
forms based on science criteria, such
as acquiring observations to im-
prove an ocean model. While there
is still not much-published work on

DiTTOs, they are grouped under
Digital Twins of the Earth9 to cre-
ate a digital representation of exten-
sive environmental systems to assist
in the research. There have been a
few experiments following the ap-
proach we got in mind, both done
from the R.V. Falkor; a deployment
of MAS in the Pacific,10 combining
multiple MAS platforms doing sam-
pling guided by a model, and one in
the Baltic Sea,11 with a DiTTO on
the ship been fed information from
platforms around and again lead-
ing the observational campaign. We
aspire to make C2 the layer con-
necting DiTTOs with the observing
system, allowing them to reconfig-
ure it automatically.

Acknowledgment
The development of the C2 infra-
structure was funded by the U.K.’s
Industrial Strategy Challenge Fund
(ISCF)—Natural Environment Re-
search Council (NERC) Oceanids Cap-
ital investment in Marine Autonomous
Systems. The authors would like to

Table 1. Examples of relevant operations since 2019 to showcase the kind of field
operations our system handles. More operations have already been completed

using the system, but we showcase the most relevant ones here.

Field Operations

Operation name Dates C2 variant Area of operation Vehicles
Days at
sea Operators

Altereco Summer 2019 C2 North Sea Two gliders 74 5+

A68 Iceberg Tracking February 2021 C2 Southern Ocean Two gliders 143 10+

TARSAN January 2022 C2iAB Antarctica ALR 6 2

Long distance proving
trial

May 2022 C2 U.K. shelf ALR 36 7+

DY152 June 2022 C2iAB U.K. shelf ALR, autosub-5, and 2
gliders

15 5+

In-site at sea September 2022 C2 North Sea ALR 42 5

 JULY/AUGUST 2024 | IEEE SOFTWARE 169

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

ALVARO LORENZO LOPEZ is a senior

software engineer at the National Ocean-

ography Center, SO14 3ZH Southampton,

U.K. His research interests include stan-

dardizing command and control systems

and their interoperability. Lopez received

his degree in computer science from the

University of Las Palmas de Gran Canaria,

where he is currently a Ph.D. candidate.

Contact him at alvaro.lorenzo@noc.ac.uk.

ALEXANDER B. PHILLIPS is the head

of development in the MARS Department,

National Oceanography Center, SO14 3ZH
Southampton, U.K. His research interests

include artificial intelligence and software

engineering. Phillips received his Ph.D.

in hydrodynamics of underwater vehicles

from Southampton University. Contact him

at abp@noc.ac.uk.

ASHLEY MORRIS is a software engineer

at the National Oceanography Center,

SO14 3ZH Southampton, U.K. His re-

search interests include human–machine

interfaces, autonomous underwater ve-

hicle operations, front-end web technolo-

gies, software engineering principles, and

the software development lifecycle. Morris

received his B.Sc. in computing from the

Bournemouth University. Contact him at

ashley.morris@noc.ac.uk.

FRANCISCO MARIO HERNÁNDEZ

TEJERA is a professor of computation

and artificial intelligence sciences at the

University of Las Palmas de Gran Canaria,

35017 Las Palmas, Spain. His research

interests include real-time artificial vision,

image processing, shape recognizing, and

automatic learning. Tejera received his

Ph.D. in informatics from the University of

Las Palmas de Gran Canaria. Contact him

at mhernandez@iusiani.ulpgc.es.

OWAIN JONES is a software engineer at

the National Oceanography Center, SO14

3ZH Southampton, U.K. His research

interests include remote sensing, Earth

observation, geoinformation

systems, distributed computing, and

artificial intelligence/machine learning

pipelines. Jones received his M.Sc. in

computer science from Abersytwyth

University. Contact him at owain.jones@

noc.ac.uk.

ADRIAN PENATE-SANCHEZ is a

lecturer at the University of Las Palmas de

Gran Canaria, 35017 Las Palmas, Spain.

His research interests include machine

learning and general artificial intelligence.

Penate-Sanchez received his Ph.D. in

computer science and artificial intel-

ligence from the Universitat Politecnica de

Catalunya. Contact him at adrian.penate@

ulpgc.es.

thank and acknowledge the work and
contributions of Dr. Catherine Ann
Harris (NOC, United Kingdom), Dr.
Justin Buck (NOC, United Kingdom),
Jack Farley (DOC, New Zealand),
Jim Bacon (CEH, United Kingdom),
Izzat Kamarudzman (NOC, United
Kingdom), Trishna Saeharaseelan
(NOC, United Kingdom), James T.

Kirk (NOC, United Kingdom) and Dan
Jones (NOC, United Kingdom). They
have contributed to the system de-
sign or work in the code itself. Special
thanks to Dr. Harris and Dr. Buck,
who have played pivotal roles in mak-
ing this work possible, being part of the
team, listening, and advising through-
out the journey. Finally, we would like

to thank Dr. Kristian Thaller, the Oce-
anids program manager, for always
being patient with this team of crazy
software engineers, and to Dr. Maaten
Furlong (current director of NMF)
and Leigh Storey (previous director of
NMF) for giving the opportunity of
developing the C2 and trust us in all
our decisions.

170 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: MICROSERVICES IN ROBOTICS FOR
ENVIRONMENTAL RESEARCH

References
 1. Segal and C. Morris, “Developing

scientific software,” IEEE Softw.,

vol. 25, no. 4, pp. 18–20, Jul./Aug.

2008, doi: 10.1109/MS.2008.85.

 2. J. C. Carver et al., “Software devel-

opment environments for scientific

and engineering software: A series

of case studies,” in Proc. 29th Int.

Conf. Softw. Eng. (ICSE), 2007, pp.

550–559, doi: 10.1109/ICSE.2007.77.

 3. S. Crouch et al., “The Software

Sustainability Institute: Changing

research software attitudes and prac-

tices,” Comput. Sci. Eng., vol. 15,

no. 6, pp. 74–80, Nov./Dec. 2013,

doi: 10.1109/MCSE.2013.133.

 4. “Microservices a definition of

this new architectural term.”

MartinFowler. [Online]. Available:

https://martinfowler.com/articles/

microservices.html

 5. “What are microservices?” Mi-

croservice Architecture. [Online].

Available: https://microservices.io/

 6. L. Bass, “The software architect and

DevOps,” IEEE Softw., vol. 35, no.

1, pp. 8–10, Jan./Feb. 2018, doi:

10.1109/MS.2017.4541051.

 7. F. Beetz and S. Harrer, “GitOps:

The evolution of DevOps?” IEEE

Softw., vol. 39, no. 4, pp. 70–75,

Jul./Aug. 2022, doi: 10.1109/

MS.2021.3119106.

 8. M. Moravcik et al., “Kubernetes-

evolution of virtualization,” in Proc.

20th Int. Conf. Emerg. eLearn-

ing Technol. Appl. (ICETA),

2022, pp. 454–459, doi: 10.1109/

ICETA57911.2022.9974681.

 9. J. Hoffmann et al., “Destination

earth – A digital twin in support of

climate services,” Climate Services,

vol. 30, Apr. 2023, Art. no. 100394,

doi: 10.1016/j.cliser.2023.100394.

 10. J. Pinto et al., “Coordinated robotic

exploration of dynamic open ocean

phenomena,” Field Robot., vol. 2,

no. 1, pp. 843–871, Mar. 2022, doi:

10.55417/fr.2022028.

 11. A. Barbie et al., “Developing an un-

derwater network of ocean observation

systems with digital twin prototypes—

A field report from the Baltic Sea,”

IEEE Internet Comput., vol. 26, no.

3, pp. 33–42, May/Jun. 2022, doi:

10.1109/MIC.2021.3065245.

IEEE Computer Graphics and Applications bridges the theory
and practice of computer graphics. Subscribe to CG&A and

• stay current on the latest tools and applications and gain
invaluable practical and research knowledge,

• discover cutting-edge applications and learn more about
the latest techniques, and

• benefi t from CG&A’s active and connected editorial board.

AA&&GGCC
www.computer.org/cga

Digital Object Identifier 10.1109/MS.2024.3399376

	160_41ms04-lorenzolopez-3317065

