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T h i s  w o r k  i s  l i c e n s e d  u n d e r  a  C r e a t i v e  C o m m o n s  
A t t r i b u t i o n  4 . 0  L i c e n s e .  F o r  m o r e  i n f o r m a t i o n ,  

s e e  h t t p s : //c r e a t i v e c o m m o n s .o r g / l i c e n s e s / b y /4 . 0 /

// In this experience 

report, we explain how 

we take advantage of 

microservices’ inherent 

modular nature to 

accomplish a highly 

adaptable software 

architecture that can 

deal with the trials 

and tribulations often 

occurring in marine 

research environments, 

and we show our 

journey to develop a 

web system to remotely 

operate marine 

autonomous vehicles.// 

OPERATING OCEAN ROBOTS for 
scientific or commercial purposes is 
becoming more and more common; 
academia, defense, and industry spend 
time and money developing under-
water and surface autonomous ve-
hicles to cover a variety of scenarios, 
including environmental monitor-
ing, water quality assessment, climate 
change studies, fauna identification, 
or oil rig decommissioning.

Introduction
At the National Oceanography Cen-
ter (NOC), we host the U.K. Na-
tional Marine Facilities (NMF). NMF 
oversees and operates the National 
Marine Equipment Pool, providing 
operational services and developing 
state-of-the-art technology enabling 
the U.K. marine science community 
to produce world-class research. We 
are part of the Maritime Autonomous 
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Robotics Systems (MARS), and we 
operate the most extensive fleet of 
marine autonomous systems (MAS) 
for research in Europe, with more 
than 35 commercial ocean gliders and 
eight in-house developed autonomous 
underwater vehicles (AUVs), includ-
ing the famous Boaty McBoatface. 
To do remote operations, we require 
wireless technologies, including local  
Wi-Fi, remote satellite, and acoustic 
communications, to send execution 
plans to the vehicles. Our pilots uti-
lize each MAS technology using the 
software provided by the manufac-
turer, which, in most cases, is not in-
teroperable with other technologies. 
This lack of interoperability is not a 
problem piloting each MAS platform 
individually, but deploying fleets of 
vehicles from different vendors is be-
coming more common. Our opera-
tions span varying timeframes, from 
weeks to potentially years. Manag-
ing diverse MAS fleets presents the 
challenge of transitioning between 
different piloting applications, risk-
ing mistakes due to shifting visual 
paradigms. The constant change in 
contexts burdens cognitive load and 
demands more human resources. 
Rather than having a unified opera-
tor pool, we’re forced to assign dedi-
cated pilots to minimize errors, which 
is unsustainable. 

The lack of standardized machine- 
to-machine interfaces complicates 
automation via machine learning or 
probabilistic path planning. Develop-
ers struggle to integrate diverse ro-
botic platforms.

In 2016, the National Environmental 
Council (NERC) launched Oceanids, 
funding the Command and Control 
(C2) initiative. Its aim was a unified 
MAS operations software, reducing 
context switching for pilots (see Figure 1).

This report outlines C2’s develop-
ment, our experiences, and technical 

decisions. We offer insights into 
creating a Microservice system for 
marine research and software de-
velopment within an ocean research 
institution, hoping to benefit IEEE 
Software readers.

The C2 Team
To build the C2, our team was cre-
ated. We are part of a large marine 
research institution, where we develop 
software that supports ocean sciences. 
The C2 falls under the category of sci-
entific software with users not fully 
understanding the domain with no 
precise upfront requirements.1,2

When starting the C2 project, two 
software engineers were on the team. 
At that time in the United Kingdom 
(2016), there was a big push in sci-
ence communities to embrace the 
research software engineer (RSE)3 
profile, trying to recognize software 
practitioners developing scientific 
software. Our management believed 
we could integrate other RSEs from 
other departments and organizations 
to build the C2.

The team has expanded from two 
engineers to seven, including front-
end developers, back-end engineers, 
and RSEs. This diverse team has con-
tributed to shaping the architecture 
and functionalities of C2 with the 
front-end engineers helping us to or-
ganize back-end development around 
end-user features, or the RSEs with 
expertise on robotics influencing the 
application programming interface 
(API) design to abstract the MAS pi-
loting and enable the future connec-
tion of generic piloting algorithms. 
The team’s growth has been organic, 
with new members bringing valuable 
skills to meet evolving demands.

The System
We embarked on the project with 
the primary objective of unifying 

piloting systems for different MAS 
platforms. To achieve this, we rec-
ognized the critical need for unin-
terrupted access to the system. MAS 
platforms are typically operated from 
ships nearby, but we wanted to enable 
remote piloting, allowing operators 
to command MAS from their base or 
home, leveraging satellite communi-
cation. Ensuring around-the-clock 
availability became paramount as op-
erators needed to periodically check 
vehicle behavior, collect accurate data, 
and intervene in real time to address 
changes in tracked ocean features or 
vehicle malfunctions, all while preserv-
ing platform safety. We strategically 
decided to build a web system in-
stead of a traditional desktop-based 
application to meet this requirement.

Additionally, we identified the fu-
ture potential for developing differ-
ent applications tailored to specific 
user communities. These included a 
piloting app for operators, a science 
app for real-time data analysis, a 
risk and reliability app for engineer-
ing fault analysis, and visualization 
portals for the general public. De-
spite their unique user interfaces and 
functionalities, these applications 
would share a significant amount of 
underlying information. Hence, we 
decided to develop individual back 
ends encapsulated with restful APIs. 
This approach allowed us to reuse 
and share components across mul-
tiple applications, ensuring efficient 
development and maintenance.

Due to limited resources, our small 
team developed the system using small, 
easily integrated, and maintainable 
components. We planned to build 
prototypes to gather feedback from 
MAS operators and iterate quickly on 
requirements. Considering the flex-
ibility required, we adopted the mi-
croservice pattern,4 which enables the 
development of independent, loosely 
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coupled services. This approach allows 
developers to break down problems into 
manageable subsystems, test them in-
dependently, and add new functional-
ity without disrupting the rest of the 
system. Using microservices not only 
offered us flexibility, but we thought 
we would increase reliability by hav-
ing smaller subsystems to maintain. 
We also liked the idea of portability 
(we will touch on containerization), 
as we thought we could deploy on 

different clouds. However, as we will 
see later, we exploded portability 
slightly differently.

Although we had an existing appli-
cation built in Symphony, a precursor 
to the C2 system, we decided against 
a monolithic approach.  Integrating 
the work of other groups would be 
more complex in a monolithic sys-
tem, requiring deep knowledge of 
the entire system. We briefly consid-
ered service-oriented-architecture but 

found it too complex for our small 
team. Ultimately, the Microservice pat-
tern aligned with our requirements, 
allowing us to develop RESTful web 
APIs as small, manageable systems 
and enabling external contributions 
while maintaining oversight of service 
integration.

Developing the System
We wanted a system that would allow 
us to quickly integrate work from 

Command & Control

Field Operations Operations

FIGURE 1. The Command and Control (C2) concept: Vehicles are operating remotely at sea, they call back to their control base 

stations, and the telemetry data sent back gets aggregated by our C2 system, allowing pilots to interact with the vehicles through a 

web application from anywhere in the world.
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others, which was an important con-
sideration when we researched ar-
chitectural patterns. Initially, our 
architecture wasn’t very complex, 
and we focused on integrating the 
microservices to create front-end apps 
easily. We decided to do it using the 
API gateway pattern,5 which puts an 
intermediate entity (the gateway) in 
the middle of clients and services. 
The gateway pattern allows the im-
plementation of the authentication, 
load balancing, and service discov-
ery within the gateway itself. We will 
talk more about the gateway in the 
next section.

We started without a defined de-
velopment stack. In our first year, 
while designing the architecture, we 
investigated different technologies to 
develop the system.

We made the conscious decision to 
begin developing our microservices in 
Python, a well-established program-
ming language in RSE communities, 
providing tools for web development 
and with increasing traction within 
data science and RSEs, with the use 
of popular libraries such as numpy, 
pandas, scipy, matplotlib, Tensor-
Flow and PyTorch. In recent years, 
the RSE community had tended to 
prefer open source, free and general-
use tools, such as Python and its 
libraries, over licensed or domain-
specific languages (Matlab, R), mak-
ing it an attractive choice when we 
considered that we would likely want 
to integrate code written as outputs 
of research projects. We considered 
the use of Python would make it eas-
ier for RSEs to get introduced to de-
velop our systems and, at the same 
time, help external project collabora-
tors to contribute code.

We chose Flask as the framework 
to develop microservices; while it 
is true that Python is not as fast as 
other languages (Golang, Scala, and 

so on), as Flask is a lightweight Py-
thon framework it helped us to keep 
microservices lean. We slowly incor-
porated the libraries we needed, like 
the sqlalchemy ORM or flask-restx 
to automatically generate Swagger/
OpenAPI schemas. We now have an 
easy-to-use framework to speed up 
new functionality development and 
consistent maintainable code across 
our services. This framework pro-
vides us with everything we need 
when building microservices, from 
access control to database access; 
we call this framework Microserver. 
Microserver offers more than just 
Python scaffolding for business 
logic. It includes the tools to contain-
erize and deploy the services within 
our Kubernetes cluster. We build 
most of our microservices with our 
Microserver, but it is not mandatory; 
we can use any language or frame-
work, but Microserver makes our 
work easier.

We chose Postgres as our data-
base due to its versatility. While we 
considered other options like Mon-
goDB, InfluxDB, and ElasticSearch 
for specific use cases, maintaining 
multiple technologies proved chal-
lenging for our small team. Post-
gres, with plugins like PostGIS and 
Timescale, met our needs for storing 
geographical and time-series data 
efficiently. It offers flexibility while 
being well-documented and mature. 
If necessary, we can easily integrate 
new database technologies alongside 
Postgres using microservices.

We brought the architecture to-
gether using RabbitMQ(AMQP) 
real-time messaging, allowing the 
microservices to publish events to 
be picked up and processed by other 
microservices.

For front-end development, we 
use Vue.js. We experimented with 
Angular and native JavaScript first. 

Still, either option was more complex 
or bare-bones, with Vue giving us a 
mix of modern patterns and simplic-
ity that we judged optimal then.

Our stack (see Figure 2) was built 
using well-tested open source tech-
nologies to create new functionality 
efficiently and can be adapted for 
different applications. In Figures 3 
and 4, we show slightly different ap-
plications of the same technologies.

Kubernetes and DevOps
Much of our journey has revolved 
around learning how to orchestrate 
our containerized microservices. Our 
original plan was to deploy our sys-
tem in the cloud. Still, the complex-
ity of estimating cloud bills upfront, 
the fact that research infrastruc-
ture projects have a fixed length, 
and the uncertainty of no follow-up 
money made us deploy and manage 
in-house.

Mastering the usage of Docker 
as our container solution took little 
time, but the orchestration with Ku-
bernetes was a whole different story. 
It took us three iterations until we 
developed a stable solution.

The first iteration was a proto-
type Kubernetes installation to 
learn the technology and compare it 
with Docker Swarm, the built-in or-
chestration that used to come with 
Docker. Docker Swarm was simple 
to use, but the rise of Kubernetes as a 
preferred option in the industry came 
with plenty of online documentation, 
making it easier for us to understand 
how to configure it. In this first clus-
ter, we deployed our prototype pilot-
ing app. However, we soon realized 
that this cluster would not be sus-
tainable in the long run. It ran on a 
single virtual machine (VM) node, 
limiting our growth, and was poorly 
configured due to its prototyping na-
ture. Additionally, we decided that 
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using the WSO2 gateway and the au-
thentication system, both maintained 
by a different department, was un-
suitable for us as we had no control 
over configuring and customizing 
them. Therefore, we decided to build 
a new cluster.

For the second iteration, our goal 
was to create a production-ready solu-
tion. We designed the cluster with three 
VM nodes and deployed the Ambas-
sador gateway (now called Emissary) 
in its open source version, replacing 
the WSO2 gateway. Ambassador was 
straightforward to configure and was 
deployed as part of the Kubernetes 
cluster, allowing us to easily add new 
API endpoints to the gateway using an-
notations in the Kubernetes services. 
To automate this process, we added 
a default template service file to Mi-
croserver, which simplified the creation 
of services by allowing programmers to 
configure specific environmental vari-
ables. The services were automatically 
deployed and loaded in the cluster, and 

the API endpoints were added auto-
matically to the gateway. While Ambas-
sador lacked some features compared 
to WSO2, it provided us with what 
we needed: the ability to configure the 
gateway as code, deploy it within the 
Kubernetes cluster, and easily add APIs. 
We reimplemented the authentication 
by integrating an OAuth workflow 
with Auth0, a software as a service 
(SaaS). This freed us from implement-
ing and maintaining an authentication 
system in-house.

Although the second iteration solved 
several crucial problems, it also brought 
new challenges. We underestimated 
the knowledge required to configure 
and maintain a Kubernetes installa-
tion, as the multiple layers involved 
in providing functionality to multiple 
systems (microservices) running on 
containers and communicating with 
each other through internal Kuber-
netes networks proved complex, es-
pecially when troubleshooting issues. 
Our cluster was unstable, with pods 

randomly going down and not recov-
ering. We attempted to implement ob-
servability tools using Elasticsearch, 
Logstash, and Kibana (ELK) or Pro-
metheus. Still, these systems’ in-house 
configuration and maintenance added 
more work for the team, exacerbating 
the issues.

Despite the challenges, the second 
iteration hosted our first semiopera-
tional piloting application, which was 
used in the field for trials with posi-
tive results, allowing us to operate 
the different vehicles. However, frus-
trations arose, particularly during a 
Loch Ness Trial, which experienced 
half-hour downtime in the morning 
almost daily. We recognized the need 
for improvement.

We had plans for the third itera-
tion in June 2020, but an unforeseen 
opportunity presented itself due to the 
COVID-19 pandemic. With the world 
coming to a halt, our operational pro-
gram was put on hold, allowing us to 
reevaluate our working practices and 

FIGURE 2. This is our stack at the beginning of 2023. We used the same microservices for our central Internet-based solution (C2) 

and C2iAB, the system we use for operations without Internet connectivity (ships, remote areas, and so on). The only difference is that 

C2iAB runs the entire system on virtual machines (VMs) without the overhead of Kubernetes, and some of the services connect to 

hardware directly to talk to the robots in the field. 

API

M1 Mn

Kubernetes / VM(C2iAB)

Database
Message

Broker
Auth

API



 JULY/AUGUST 2024  |  IEEE SOFTWARE  165

address the stability issues in our Ku-
bernetes cluster.

We faced several challenges in our 
Kubernetes environment,  including 
difficult-to-track configuration changes, 
manual deployment of microservices 
leading to a slow and cumbersome 
change process, a testing environ-
ment that differed significantly from 
production, infrequent deployment 
of microservices causing delays in 
user improvements and necessitating 
large release deployments, inadequate 
observability of the cluster with inef-
fective ELK and Prometheus tools, 
difficulties in updating Kubernetes 
resulting in being stuck on outdated 

versions with associated problems, 
and random pod failures without 
clear causes.

We identified the lack of processes 
as the main problem; releasing code 
into production was a manual and 
convoluted process and challenging to 
manage. To address these issues, we 
decided to implement best practices 
used in the software industry, par-
ticularly by DevOps practitioners,6,7 
focusing on automation and stability.

We implemented several key ac-
tions to enhance our Kubernetes en-
vironment. First, we designed two 
identical Kubernetes clusters dedicated 
to testing and production. To facilitate 

cluster deployment, administration, 
updates, and monitoring, we chose 
Rancher, a Kubernetes distribution that 
offered a user-friendly GUI.

Next, we adopted a code manage-
ment workflow based on Git Flow. 
This approach involved two branches: 
“main” for recording releases and 
“develop” for integration. Developers 
create feature branches for new func-
tionality, eventually merging into the 
development branch and releasing to 
the main branch. For improved ver-
sion alignment, we release and version 
all microservices simultaneously. This 
aids in change tracking and stable ver-
sion rollbacks. All code changes pass 

FIGURE 3. This is our piloting app, operating an ocean glider in the north sea. The robot calls using satellite communications to 

a base station. Our C2 system monitors the base station with a microservice managing incoming and outcoming communications. 

When an incoming communication arrives, the communication microservices tell the rest of the microservices using RabbitMQ, and 

each interested microservice accesses the information from the communication microservice using APIs. All the microservices use 

the same communication flow. Our front end calls the different microservices APIs to show pilots the operational state and then sends 

operator instructions to the vehicles. In this figure, we are still showing our old authentication provider. The whole system is running on 

a Kubernetes cluster. 
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through peer reviews and merge re-
quests before merging into the develop-
ment branch. 

We embraced an infrastructure- 
as-code approach to configure our 
Kubernetes clusters. Configuration 
files were stored in Git repositories, 
following the Git Flow model. This 
facilitated version control and en-
abled us to roll back to stable states 
when necessary easily.

Furthermore, we automated merg-
ing code into development and re-
leasing it using GitLab CI and Argo 
CD.  Although the human interven-
tion was still required to trigger de-
ployments to production, the overall 

process became significantly more 
automated. Rolling back to the pre-
vious version followed the same 
streamlined process if needed.

Throughout 2020, we dedicated 
most of our efforts to implementing 
these changes and adapting to new 
work practices. Although continuous 
delivery has not been fully achieved, 
we have embraced many similar prac-
tices. We deploy to production at least 
once a month, experiencing minimal 
downtime and increased cluster reli-
ability. While isolated service issues 
may occur occasionally, cluster-wide 
problems are rare, and Rancher assists 
in faster error detection and resolution.

Reconfiguring the 
System
Our primary focus from the begin-
ning of the project was developing 
a centralized system to perform over 
the-horizon piloting. While tradition-
ally, AUVs are operated from ships, 
we deliberately ignored that use case 
as operational teams were explor-
ing adopting an off-the-shelf solution 
(commercial or open source). Still, 
none of the plans progressed, and the 
need to operate newly in-house devel-
oped AUVs became a priority as the 
Autosub Long Range (ALR) Boaty 
McBoatFace was going to Antarctica 
to be part of one of the most ambitious 

FIGURE 4. An example of how we have reconfigured our microservice system to accommodate the case of piloting from a ship. 

We have adapted our microservices to connect directly to the hardware in the ship (in this case, the RSS Discovery) using our 

communication microservice, we wrote integrations for Wi-Fi, to talk to the AUVs when on deck or in the water near the ship, and then 

USBL (ultrashort baseline, an underwater acoustics system), to track the AUVs underwater and send short commands to them (like 

emerge or start a mission). The example shown is during the cruise DY152. The integration of GeoServer allows us to show layers 

locally without needing an Internet connection; in the map on the piloting in a box app, we are showing high-density bathymetric layers 

provided by the ship instruments.
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and high-profile environmental studies 
in recent years; a joint operation be-
tween the U.S. NSF and U.K. NERC, 
TARSAN. In 2021, we needed to de-
velop a tool to operate Boaty and the 
rest of our AUVs from ships.

In this section, we demonstrate 
adapting microservices for offline use, 
which is vital for research ships with 
limited or no Internet. Our solution is 
dubbed “C2 in a box” (C2iAB).

With some modifications, our orig-
inal system functionality could serve 
as a minimum viable product. Lever-
aging the modularity of microservices, 
we swiftly integrated third-party sys-
tems to enable the C2iAB functional-
ity. While utilizing Auth0, it became 
evident that the system needed to op-
erate independently of an Internet 
connection. We opted to replace the 
SaaS OAuth solution with an offline 
system to address this. Keycloak, an 
open source identity and access man-
agement service with a strong repu-
tation and a large user community, 
was our chosen solution. Its OAuth 
flows closely resembled our existing 
implementation, ensuring a relatively 
straightforward replacement process. 
This change was implemented within 
our primary C2 solution, promoting 
architectural unity and reducing reli-
ance on external providers.

Quickly including new exter-
nally developed services showed 
the adaptability of the microservice 
architecture; C2 uses online maps 
(Leaflet) to show operators the vehi-
cle positions and other environmen-
tal information, but “disconnecting” 
the system from the Internet also 
removed our access to maps. De-
ploying a GeoServer as a local geo-
information systems solution allows 
us to cache and show maps and 
map layers locally. Using GeoServer 
proved successful as we integrated 
products from the ship systems like 

real-time bathymetry, enriching our 
operators’ visualization and situ-
ational awareness.

We decided to strip Kubernetes 
from C2iAB as it did not work when 
trying to connect to local ship net-
works with their own dynamic host 
configuration protocol and, in gen-
eral, as we did not need features like 
the high availability. We deployed 
the C2iAB directly on VMs as a 
single node. We managed the local 
infrastructure by combining docker-
compose with ansible scripts. One 
of the challenges was how to “repli-
cate” a lot of the features dependent 
on Kubernetes, like the API gateway; 

to do it, we run a series of scripts 
that for through all our microservice 
repositories and extract things from 
them, for example, the annotations 
defining the API endpoints, assem-
bling them on the docker-compose 
script to create an NGINX reverse 
proxy acting as a local gateway.

The development of C2iAB helped 
us refine the whole C2 system, and all 
the changes we made for C2iAB have 
made their way back to the original 
C2 except for some particular con-
figurations, like Kubernetes. Figure 2 
shows the current unified stack (2023) 
with all the changes described. Mi-
croservices for C2 and C2iAB remain 
under the same codebases, and it is a 

matter of choosing in which configu-
ration we want to use them on deploy-
ment time.

In January 2022, we sent a C2iAB 
to its first science campaign, en-
visioned initially to operate the 
ALR (Boaty McBoatface) under the 
Thwaites glacier.

Lessons Learned and 
Future Directions
After seven years of development, 
we have produced stable solutions 
that get used to operating MAS plat-
forms on the field; further details are 
in Table. 1, and we picked up some 
lessons along the way.

Developing software in science-
driven organizations is different, with 
no systematic approach to software 
development or use of software de-
velopment best practices. In our case, 
the requirements were not precise. 
Microservices have allowed us to 
manage some uncertainty as we built 
our system on small systems through 
iterative phases. We think this is an 
excellent way to develop scientific 
software. This approach can help to 
change course if new requirements 
arrive, as we have shown with the 
C2iAB; we took a classical microser-
vice web application and turned it 
into an offline system with direct ac-
cess to hardware devices.

While isolated service issues may 
occur occasionally, cluster-wide 
problems are rare, and Rancher 
assists in faster error detection  

and resolution.
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A hard lesson for us has been the 
adoption of software best practices 
(like using open source technologies 
or the adoption of DevOps); this was 
not common in our organization, and 
we dare to say it wasn’t common in 
most science-driven organizations at 
the time, but we are a clear example 
that it can be done. It pays off, making 
software development more robust.

We praise the use of microser-
vices, but we also must warn peo-
ple to be careful when using them 
on public-funded scientific orga-
nizations; if teams can deploy the 
microservices on commercially man-
aged Kubernetes instances, opera-
tions become easier, but if your team 
is small (as ours) the only way to 
manage a complex microservice ar-
chitecture is implementing very good 
DevOps practices and at least for us 
the use of Kubernetes distributions 
(Rancher)8 helped a lot.

One of our regrets has been not 
open sourcing all our code from the 
beginning; we believe other people 
working in similar environments 

would benefit from our technology 
(things like Microserver), but when 
we started, we did not have enough 
time to do it. Our organization and 
we are committed to open source the 
system, but it will take some time as 
we do it while still delivering new 
functionality.

Our principal founder, U.K. Re-
search and Innovation, has set very 
ambitious plans and projects to tran-
sition the U.K. research infrastructure 
to net zero carbon emissions. One of 
the projects is the Net Zero Ocean 
Capability (NZOC), which aims to 
reshape the paradigm of using tradi-
tional research vessels as the center 
of oceanographic activities, dramat-
ically increasing the use of ocean 
autonomy. A key component will 
be automating the observing system 
operations, leveraging the introduc-
tion of Digital Twins of the Ocean 
(DiTTO) to command MAS plat-
forms based on science criteria, such 
as acquiring observations to im-
prove an ocean model. While there 
is still not much-published work on 

DiTTOs, they are grouped under 
Digital Twins of the Earth9 to cre-
ate a digital representation of exten-
sive environmental systems to assist 
in the research. There have been a 
few experiments following the ap-
proach we got in mind, both done 
from the R.V. Falkor; a deployment 
of MAS in the Pacific,10 combining 
multiple MAS platforms doing sam-
pling guided by a model, and one in 
the Baltic Sea,11 with a DiTTO on 
the ship been fed information from 
platforms around and again lead-
ing the observational campaign. We 
aspire to make C2 the layer con-
necting DiTTOs with the observing 
system, allowing them to reconfig-
ure it automatically. 
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Table 1. Examples of relevant operations since 2019 to showcase the kind of field 
operations our system handles. More operations have already been completed  

using the system, but we showcase the most relevant ones here.

Field Operations

Operation name Dates C2 variant Area of operation Vehicles
Days at 
sea Operators

Altereco Summer 2019 C2 North Sea Two gliders 74 5+

A68 Iceberg Tracking February 2021 C2 Southern Ocean Two gliders 143 10+

TARSAN January 2022 C2iAB Antarctica ALR 6 2

Long distance proving 
trial

May 2022 C2 U.K. shelf ALR 36 7+

DY152 June 2022 C2iAB U.K. shelf ALR, autosub-5, and 2 
gliders

15 5+

In-site at sea September 2022 C2 North Sea ALR 42 5



 JULY/AUGUST 2024  |  IEEE SOFTWARE  169

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

ALVARO LORENZO LOPEZ is a senior 

software engineer at the National Ocean-

ography Center, SO14 3ZH Southampton, 

U.K. His research interests include stan-

dardizing command and control systems 

and their interoperability. Lopez received 

his degree in computer science from the 

University of Las Palmas de Gran Canaria, 

where he is currently a Ph.D. candidate. 

Contact him at alvaro.lorenzo@noc.ac.uk. 

ALEXANDER B. PHILLIPS  is the head 

of development in the MARS Department, 

National Oceanography Center, SO14 3ZH 
Southampton, U.K. His research interests 

include artificial intelligence and software 

engineering. Phillips received his Ph.D. 

in hydrodynamics of underwater vehicles 

from Southampton University. Contact him 

at abp@noc.ac.uk. 

ASHLEY MORRIS  is a software engineer 

at the National Oceanography Center, 

SO14 3ZH  Southampton, U.K. His re-

search interests include human–machine 

interfaces, autonomous underwater ve-

hicle operations, front-end web technolo-

gies, software engineering principles, and 

the software development lifecycle. Morris 

received his B.Sc. in computing from the 

Bournemouth University. Contact him at 

ashley.morris@noc.ac.uk. 

FRANCISCO MARIO HERNÁNDEZ 

TEJERA is a professor of computation 

and artificial intelligence sciences at the 

University of Las Palmas de Gran Canaria, 

35017 Las Palmas, Spain. His research 

interests include real-time artificial vision, 

image processing, shape recognizing, and 

automatic learning. Tejera received his 

Ph.D. in informatics from the University of 

Las Palmas de Gran Canaria. Contact him 

at mhernandez@iusiani.ulpgc.es.

OWAIN JONES  is a software engineer at 

the National Oceanography Center, SO14 

3ZH  Southampton, U.K. His research 

interests include remote sensing, Earth 

observation, geoinformation  

systems, distributed computing, and  

artificial intelligence/machine learning  

pipelines. Jones received his M.Sc. in 

computer science from Abersytwyth 

University. Contact him at owain.jones@

noc.ac.uk.

ADRIAN PENATE-SANCHEZ is a 

lecturer at the University of Las Palmas de 

Gran Canaria, 35017 Las Palmas, Spain. 

His research interests include machine 

learning and general artificial intelligence. 

Penate-Sanchez received his Ph.D. in 

computer science and artificial intel-

ligence from the Universitat Politecnica de 

Catalunya. Contact him at adrian.penate@

ulpgc.es. 

thank and acknowledge the work and 
contributions of Dr. Catherine Ann 
Harris (NOC, United Kingdom), Dr. 
Justin Buck (NOC, United Kingdom), 
Jack Farley (DOC, New Zealand), 
Jim Bacon (CEH, United Kingdom), 
Izzat Kamarudzman (NOC, United 
Kingdom), Trishna  Saeharaseelan 
(NOC, United Kingdom), James T. 

Kirk (NOC, United Kingdom) and Dan 
Jones (NOC, United Kingdom). They 
have contributed to the system de-
sign or work in the code itself. Special 
thanks to Dr. Harris and Dr. Buck, 
who have played pivotal roles in mak-
ing this work possible, being part of the 
team, listening, and advising through-
out the journey. Finally, we would like 

to thank Dr. Kristian Thaller, the Oce-
anids program manager, for always 
being patient with this team of crazy 
software engineers, and to Dr. Maaten 
Furlong (current director of NMF) 
and Leigh Storey (previous director of 
NMF) for giving the opportunity of 
developing the C2 and trust us in all 
our decisions.



170 IEEE SOFTWARE  |  W W W.COMPUTER.ORG/SOFT WARE   |  @IEEESOFT WARE

FEATURE: MICROSERVICES IN ROBOTICS FOR 
ENVIRONMENTAL RESEARCH

References
 1. Segal and C. Morris, “Developing 

scientific software,” IEEE Softw.,  

vol. 25, no. 4, pp. 18–20, Jul./Aug. 

2008, doi: 10.1109/MS.2008.85.

 2. J. C. Carver et al., “Software devel-

opment environments for scientific 

and engineering software: A series 

of case studies,” in Proc. 29th Int. 

Conf. Softw. Eng. (ICSE), 2007, pp. 

550–559, doi: 10.1109/ICSE.2007.77.

 3. S. Crouch et al., “The Software 

Sustainability Institute: Changing 

research software attitudes and prac-

tices,” Comput. Sci. Eng., vol. 15, 

no. 6, pp. 74–80, Nov./Dec. 2013, 

doi: 10.1109/MCSE.2013.133.

 4. “Microservices a definition of 

this new architectural term.” 

MartinFowler. [Online]. Available: 

https://martinfowler.com/articles/

microservices.html 

 5. “What are microservices?” Mi-

croservice Architecture. [Online]. 

Available: https://microservices.io/ 

 6. L. Bass, “The software architect and 

DevOps,” IEEE Softw., vol. 35, no. 

1, pp. 8–10, Jan./Feb. 2018, doi: 

10.1109/MS.2017.4541051.

 7. F. Beetz and S. Harrer, “GitOps:  

The evolution of DevOps?” IEEE 

Softw., vol. 39, no. 4, pp. 70–75, 

Jul./Aug. 2022, doi: 10.1109/

MS.2021.3119106.

 8. M. Moravcik et al., “Kubernetes-

evolution of virtualization,” in Proc. 

20th Int. Conf. Emerg. eLearn-

ing Technol. Appl. (ICETA), 

2022, pp. 454–459, doi: 10.1109/

ICETA57911.2022.9974681.

 9. J. Hoffmann et al., “Destination 

earth – A digital twin in support of 

climate services,” Climate Services, 

vol. 30, Apr. 2023, Art. no. 100394, 

doi: 10.1016/j.cliser.2023.100394.

 10. J. Pinto et al., “Coordinated robotic 

exploration of dynamic open ocean 

phenomena,” Field Robot., vol. 2, 

no. 1, pp. 843–871, Mar. 2022, doi: 

10.55417/fr.2022028.

 11. A. Barbie et al., “Developing an un-

derwater network of ocean observation 

systems with digital twin prototypes—

A field report from the Baltic Sea,” 

IEEE Internet Comput., vol. 26, no. 

3, pp. 33–42, May/Jun. 2022, doi: 

10.1109/MIC.2021.3065245.

IEEE Computer Graphics and Applications bridges the theory 
and practice of computer graphics. Subscribe to CG&A and

• stay current on the latest tools and applications and gain
invaluable practical and research knowledge,

• discover cutting-edge applications and learn more about
the latest techniques, and

• benefi t from CG&A’s active and connected editorial board.

AA&&GGCC
www.computer.org/cga

Digital Object Identifier 10.1109/MS.2024.3399376


	160_41ms04-lorenzolopez-3317065

