
Feature Article: Microservices in robotics for environmental research

Developing a re-configurable architecture for
the remote operation of marine autonomous
systems
Alvaro Lorenzo Lopez, National Oceanography Centre (UK) and Universidad de Las Palmas de Gran Canaria
(Spain)

Ashley Morris, National Oceanography Centre (UK)

Owain Jones, National Oceanography Centre (UK)

Alexander B. Phillips, National Oceanography Centre (UK)

Francisco Mario Hernandez Tejera, SIANI, Universidad de Las Palmas de Gran Canaria (Spain)

Adrian Penate-Sanchez, SIANI, Universidad de Las Palmas de Gran Canaria (Spain)

Abstract—In this experience report, we explain how we take advantage of
microservices’ inherent modular nature to accomplish a highly adaptable software
architecture that can deal with the trials and tribulations often occurring in marine
research environments. We will show the National Oceanography Centre’s journey
to develop a web system to remotely operate marine autonomous vehicles
from anywhere in the world with an internet connection and how, due to new
unforeseen requirements, we took the microservice pattern into a new direction to
allow for standalone offline operations of Autonomous Underwater Vehicles (AUV)
from research ships in some of the most challenging environments in the world.

INTRODUCTION

O perating ocean robots for scientific or com-
mercial purposes is becoming more and
more common; academia, defence, and in-

dustry spend time and money developing underwater
and surface autonomous vehicles to cover a variety
of scenarios, including environmental monitoring, wa-
ter quality assessment, climate change studies, fauna
identification or oil rig decommissioning.

At the National Oceanography Centre (NOC) we
host the UK National Marine Facilities (NMF). NMF
oversees and operates the National Marine Equipment
Pool (NMEP), providing operational services and de-
veloping state-of-the-art technology enabling the UK
marine science community to produce world-class
research. We are part of the Maritime Autonomous
Robotics Systems (MARS), and we operate the most
extensive fleet of marine autonomous systems (MAS)
for research in Europe, with more than 35 commer-

XXXX-XXX © 2023 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

cial ocean gliders and eight in-house developed Au-
tonomous Underwater Vehicles (AUVs), including the
famous Boaty McBoatface. To do remote operations,
we require wireless technologies, including local Wi-Fi,
remote satellite, and acoustic communications, to send
execution plans to the vehicles. Our pilots utilize each
MAS technology using the software provided by the
manufacturer, which, in most cases, is not interopera-
ble with other technologies. This lack of interoperability
is not a problem piloting each MAS platform individu-
ally, but deploying fleets of vehicles from different ven-
dors is becoming more common. Our operations span
varying timeframes, from weeks to potentially years.
Managing diverse MAS fleets presents the challenge
of transitioning between different piloting applications,
risking mistakes due to shifting visual paradigms. The
constant change in contexts burdens cognitive load
and demands more human resources. Rather than
having a unified operator pool, we’re forced to assign
dedicated pilots to minimize errors, which is unsustain-
able.

The lack of standardized machine-to-machine in-
terfaces complicates automation via machine learning

Month Published by the IEEE Computer Society IEEE Software 1

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3317065

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



FEATURE

FIGURE 1. The Command and Control (C2) concept: Vehicles are operating remotely at sea, they call back to their control
base stations and the telemetry data sent back gets aggregated by our C2 system, allowing pilots to interact with the vehicles
through a web application from anywhere in the world.

or probabilistic path planning. Developers struggle to
integrate diverse robotic platforms.

In 2016, the National Environmental Council
(NERC) launched Oceanids, funding the Command
and Control (C2) initiative. Its aim was a unified MAS
operations software, reducing context switching for
pilots (see Figure 1).

This report outlines C2’s development, our experi-
ences, and technical decisions. We offer insights into
creating a Microservice system for marine research
and software development within an ocean research
institution, hoping to benefit IEEE Software readers.

The C2 Team
To build the C2, our team was created. We are part of
a large marine research institution, where we develop
software that supports ocean sciences. The C2 falls
under the category of scientific-software with users not
fully understanding the domain with no precise upfront
requirements [1] [2].

When starting the C2 project, two software en-
gineers were on the team. At that time in the UK
(2016), there was a big push in science communities
to embrace the Research Software Engineer (RSE) [3]

2 IEEE Software Month 2023

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3317065

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



FEATURE

profile, trying to recognize software practitioners de-
veloping scientific-software. Our management believed
we could integrate other RSEs from other departments
and organizations to build the C2.

team has expanded from two engineers to seven,
including frontend developers, backend engineers, and
RSEs. This diverse team has contributed to shaping
the architecture and functionalities of C2 with the
frontend engineers helping us to organize backend
development around end-user features, or the RSEs
with expertise on robotics influencing the API design
to abstract the MAS piloting and enable the future
connection of generic piloting algorithms. The team’s
growth has been organic, with new members bringing
valuable skills to meet evolving demands.

THE SYSTEM
We embarked on the project with the primary objective
of unifying piloting systems for different MAS platforms.
To achieve this, we recognized the critical need for
uninterrupted access to the system. MAS platforms are
typically operated from ships nearby, but we wanted to
enable remote piloting, allowing operators to command
MAS from their base or home, leveraging satellite com-
munication. Ensuring round-the-clock availability be-
came paramount as operators needed to periodically
check vehicle behaviour, collect accurate data, and
intervene in real-time to address changes in tracked
ocean features or vehicle malfunctions, all while pre-
serving platform safety. We strategically decided to
build a web system instead of a traditional desktop-
based application to meet this requirement.

Additionally, we identified the future potential for
developing different applications tailored to specific
user communities. These included a piloting app for
operators, a science app for real-time data analysis,
a risk and reliability app for engineering fault analysis,
and visualization portals for the general public. Despite
their unique user interfaces and functionalities, these
applications would share a significant amount of un-
derlying information. Hence, we decided to develop
individual backends encapsulated with restful APIs.
This approach allowed us to reuse and share compo-
nents across multiple applications, ensuring efficient
development and maintenance.

Due to limited resources, our small team devel-
oped the system using small, easily integrated and
maintainable components. We planned to build pro-
totypes to gather feedback from MAS operators and
iterate quickly on requirements. Considering the flex-
ibility required, we adopted the Microservice pattern
[4], which enables the development of independent,

loosely coupled services. This approach allows de-
velopers to break down problems into manageable
subsystems, test them independently, and add new
functionality without disrupting the rest of the system.
Using microservices not only offered us flexibility, but
we thought we would increase reliability by having
smaller subsystems to maintain. We also liked the idea
of portability (we will touch on containerization), as we
thought we could deploy on different clouds. However,
as we will see later, we exploded portability slightly
differently.

Although we had an existing application built in
Symphony, a precursor to the C2 system, we decided
against a monolithic approach. Integrating the work of
other groups would be more complex in a monolithic
system, requiring deep knowledge of the entire system.
We briefly considered SOA but found it too complex
for our small team. Ultimately, the Microservice pattern
aligned with our requirements, allowing us to develop
RESTful web APIs as small, manageable systems
and enabling external contributions while maintaining
oversight of service integration.

DEVELOPING THE SYSTEM
We wanted a system that would allow us to quickly in-
tegrate work from others, which was an important con-
sideration when we researched architectural patterns.
Initially, our architecture wasn’t very complex, and we
focused on integrating the microservices to create
frontend apps easily. We decided to do it using the API
gateway pattern [5], which puts an intermediate entity
(the gateway) in the middle of clients and services.
The gateway pattern allows the implementation of the
Authentication, load balancing, and service discovery
within the gateway itself. We will talk more about the
gateway in the next section.

We started without a defined development stack.
In our first year, while designing the architecture, we
investigated different technologies to develop the sys-
tem.

We made the conscious decision to begin devel-
oping our microservices in Python, a well-established
programming language in RSE communities, providing
tools for web development and with increasing traction
within data science and RSEs, with the use of popular
libraries such as numpy, pandas, scipy, matplotlib,
TensorFlow and PyTorch. In recent years, the RSE
community had tended to prefer open-source, free and
general-use tools, such as Python and its libraries,
over licensed or domain-specific languages (Matlab,
R), making it an attractive choice when we considered
that we would likely want to integrate code written as

Month 2023 IEEE Software 3

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3317065

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



FEATURE

FIGURE 2. This is our stack at the beginning of 2023. We used the same microservices for our central internet-based solution
(C2) and C2iAB, the system we use for operations without internet connectivity (Ships, remote areas, etc.). The only difference
is that C2iAB run the entire system on virtual machines without the overhead of Kubernetes, and some of the services connect
to hardware directly to talk to the robots in the field.

outputs of research projects. We considered the use of
Python would make it easier for RSEs to get introduced
to develop our systems and, at the same time, help
external project collaborators to contribute code.

We chose Flask as the framework to develop mi-
croservices; while it is true that Python is not as fast
as other languages (Golang, Scala ...), as Flask is a
lightweight Python framework it helped us to keep mi-
croservices lean. We slowly incorporated the libraries
we needed, like the sqlalchemy ORM or flask-restx
to automatically generate Swagger/OpenAPI schemas.
We now have an easy-to-use framework to speed up
new functionality development and consistent main-
tainable code across our services. This framework
provides us with everything we need when building mi-
croservices, from access control to database access;
we called this framework Microserver. Microserver of-
fers more than just Python scaffolding for business
logic. It includes the tools to containerize and deploy
the services within our Kubernetes cluster. We build
most of our microservices with our Microserver, but
it is not mandatory; we can use any language or
framework, but Microserver makes our work easier.

We chose Postgres as our database due to its
versatility. While we considered other options like Mon-
goDB, InfluxDB, and ElasticSearch for specific use
cases, maintaining multiple technologies proved chal-
lenging for our small team. Postgres, with plugins like
PostGIS and Timescale, met our needs for storing
geographical and time-series data efficiently. It offers
flexibility while being well-documented and mature.

If necessary, we can easily integrate new database
technologies alongside Postgres using microservices.

We brought the architecture together using Rab-
bitMQ(AMQP) real-time messaging, allowing the mi-
croservices to publish events to be picked up and
processed by other microservices.

For frontend development, we use Vue.js. We ex-
perimented with Angular and native JavaScript first.
Still, either option was more complex or bare-bones,
with Vue giving us a mix of modern patterns and
simplicity that we judged optimal then.

Our stack (see Figure 2) build using well-tested
open-source technologies to create new functionality
efficiently and can be adapted for different applications.
In figures 3 and 4, we show slightly different applica-
tions of the same technologies.

KUBERNETES AND DEVOPS
Much of our journey has revolved around learning how
to orchestrate our containerized microservices. Our
original plan was to deploy our system in the cloud.
Still, the complexity of estimating cloud bills upfront,
the fact that research infrastructure projects have a
fixed length, and the uncertainty of no follow-up money
made us deploy and manage in-house.

Mastering the usage of Docker as our container
solution took little time, but the orchestration with Ku-
bernetes was a whole different story. It took us three
iterations until we developed a stable solution.

The first iteration was a prototype Kubernetes in-

4 IEEE Software Month 2023

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3317065

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



FEATURE

FIGURE 3. This is our piloting App, operating an ocean glider in the north sea. The robot calls using satellite communications
to a base station. Our C2 system monitors the base station with a microservice managing incoming and outcoming
communications. When an incoming communication arrives, the communication microservices tell the rest of the microservices
using RabbitMQ, and each interested microservice accesses the information from the communication microservice using APIs.
All the microservices use the same communication flow. Our frontend calls the different microservices APIs to show pilots the
operational state and then sends operator instructions to the vehicles. In this figure, we are still showing our old authentication
provider. The whole system is running on a Kubernetes cluster.

stallation to learn the technology and compare it with
Docker Swarm, the built-in orchestration that used to
come with Docker. Docker Swarm was simple to use,
but the rise of Kubernetes as a preferred option in
the industry came with plenty of online documentation,
making it easier for us to understand how to configure
it. In this first cluster, we deployed our prototype pilot-
ing app. However, we soon realized that this cluster
would not be sustainable in the long run. It ran on a
single VM node, limiting our growth, and was poorly
configured due to its prototyping nature. Additionally,
we decided that using the WSO2 gateway and the
authentication system, both maintained by a different
department, was unsuitable for us as we had no control
over configuring and customizing them. Therefore, we
decided to build a new cluster.

For the second iteration, our goal was to create
a production-ready solution. We designed the cluster
with three VM nodes and deployed the Ambassador
gateway (now called Emissary) in its open-source ver-
sion, replacing the WSO2 gateway. Ambassador was

straightforward to configure and was deployed as part
of the Kubernetes cluster, allowing us to easily add
new API endpoints to the gateway using annotations
in the Kubernetes services. To automate this process,
we added a default template service file to Microserver,
which simplified the creation of services by allowing
programmers to configure specific environmental vari-
ables. The services were automatically deployed and
loaded in the cluster, and the API endpoints were
added automatically to the gateway. While Ambas-
sador lacked some features compared to WSO2, it pro-
vided us with what we needed: the ability to configure
the gateway as code, deploy it within the Kubernetes
cluster, and easily add APIs. We re-implemented the
authentication by integrating an OAuth workflow with
Auth0, a Software as a Service (SaaS). This freed us
from implementing and maintaining an authentication
system in-house.

Although the second iteration solved several cru-
cial problems, it also brought new challenges. We
underestimated the knowledge required to configure

Month 2023 IEEE Software 5

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3317065

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



FEATURE

and maintain a Kubernetes installation, as the multiple
layers involved in providing functionality to multiple
systems (microservices) running on containers and
communicating with each other through internal Ku-
bernetes networks proved complex, especially when
troubleshooting issues. Our cluster was unstable, with
pods randomly going down and not recovering. We
attempted to implement observability tools using ELK
(Elasticsearch, Logstash, and Kibana) or Prometheus.
Still, these systems’ in-house configuration and main-
tenance added more work for the team, exacerbating
the issues.

Despite the challenges, the second iteration hosted
our first semi-operational piloting application, which
was used in the field for trials with positive results,
allowing us to operate the different vehicles. However,
frustrations arose, particularly during a Loch Ness Trial,
which experienced half-hour downtime in the morning
almost daily. We recognized the need for improvement.

We had plans for the third iteration in June 2020,
but an unforeseen opportunity presented itself due to
the COVID-19 pandemic. With the world coming to a
halt, our operational program was put on hold, allowing
us to reevaluate our working practices and address the
stability issues in our Kubernetes cluster.

We faced several challenges in our Kubernetes
environment, including difficult-to-track configuration
changes, manual deployment of microservices leading
to a slow and cumbersome change process, a testing
environment that differed significantly from production,
infrequent deployment of microservices causing delays
in user improvements and necessitating large release
deployments, inadequate observability of the cluster
with ineffective ELK and Prometheus tools, difficulties
in updating Kubernetes resulting in being stuck on out-
dated versions with associated problems, and random
pod failures without clear causes.

We identified the lack of processes as the main
problem; releasing code into production was a manual
and convoluted process, challenging to manage. To
address these issues, we decided to implement best
practices used in the software industry, particularly by
DevOps practitioners [6] [7], focusing on automation
and stability.

We implemented several key actions to enhance
our Kubernetes environment.

First, we designed two identical Kubernetes clus-
ters dedicated to testing and production. To facilitate
cluster deployment, administration, updates, and mon-
itoring, we chose Rancher, a Kubernetes distribution
that offered a user-friendly GUI.

Next, we adopted a code management work-
flow based on Git Flow. This approach involved two

branches: "main" for recording releases and "develop"
for integration. Developers create feature branches for
new functionality, eventually merging into the develop-
ment branch and releasing to the main branch. For
improved version alignment, we release and version
all microservices simultaneously. This aids in change
tracking and stable version rollbacks. All code changes
pass through peer reviews and merge requests be-
fore merging into the development branch. All code
changes underwent peer reviews and merge requests
before merging into the development branch.

We embraced an infrastructure-as-code approach
to configure our Kubernetes clusters. Configuration
files were stored in Git repositories, following the Git
Flow model. This facilitated version control and en-
abled us to roll back to stable states when necessary
easily.

Furthermore, we automated merging code into de-
velopment and releasing it using GitLab CI and Argo
CD. Although the human intervention was still required
to trigger deployments to production, the overall pro-
cess became significantly more automated. Rolling
back to the previous version followed the same stream-
lined process if needed.

Throughout 2020, we dedicated most of our efforts
to implementing these changes and adapting to new
work practices. Although Continuous Delivery has not
been fully achieved, we have embraced many similar
practices. We deploy to production at least once a
month, experiencing minimal downtime and increased
cluster reliability. While isolated service issues may
occur occasionally, cluster-wide problems are rare, and
Rancher assists in faster error detection and resolu-
tion.

RE-CONFIGURING THE SYSTEM
Our primary focus from the beginning of the project
was developing a centralized system to perform over-
the-horizon piloting. While traditionally, AUVs are op-
erated from ships, we deliberately ignored that use
case as operational teams were exploring adopting
an off-the-shelf solution (commercial or open source).
Still, none of the plans progressed, and the need
to operate newly in-house developed AUVs became
a priority as the Autosub Long Range (ALR) Boaty
McBoatFace was going to Antarctica to be part of one
of the most ambitious and high-profile environmental
studies in recent years; a joint operation between the
US NSF and UK NERC, TARSAN. In 2021, we needed
to develop a tool to operate Boaty and the rest of our
AUVs from ships.

In this section, we demonstrate adapting microser-

6 IEEE Software Month 2023

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3317065

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



FEATURE

FIGURE 4. An example of how we have reconfigured our microservice system to accommodate the case of piloting from a ship;
We have adapted our microservices to connect directly to the hardware in the ship (in this case, the RSS Discovery) using our
communication microservice, we wrote integrations for Wi-Fi, to talk to the AUVs when on deck or in the water near the ship, and
then USBL (ultra-short baseline, an underwater acoustics system), to track the AUVs underwater and send short commands to
them (like emerge or start a mission). The example shown is during the cruise DY152. The integration of GeoServer allows us to
show layers locally without needing an internet connection; in the map on the piloting in a box app, we are showing high-density
bathymetric layers provided by the ship instruments.

vices for offline use, which is vital for research ships
with limited or no internet. Our solution is dubbed "C2
in a box" (C2iAB).

With some modifications, our original system func-
tionality could serve as a minimum viable product
(MVP). Leveraging the modularity of microservices,
we swiftly integrated third-party systems to enable the
C2iAB functionality. While utilizing Auth0, it became
evident that the system needed to operate indepen-
dently of an internet connection. We opted to replace
the SaaS OAuth solution with an offline system to
address this. Keycloak, an open-source identity and
access management service with a strong reputation
and a large user community, was our chosen solu-
tion. Its OAuth flows closely resembled our existing
implementation, ensuring a relatively straightforward
replacement process. This change was implemented
within our primary C2 solution, promoting architectural
unity and reducing reliance on external providers.

Quickly including new externally developed ser-
vices showed the adaptability of the microservice ar-

chitecture; C2 uses online maps (Leaflet) to show op-
erators the vehicle positions and other environmental
information, but "disconnecting" the system from the
internet also removed our access to maps. Deploying
a GeoServer as a local GIS solution allows us to
cache and show maps and map layers locally. Using
GeoServer proved successful as we integrated prod-
ucts from the ship systems like real-time bathymetry,
enriching our operators’ visualization and situational
awareness.

We decided to strip Kubernetes from C2iAB as
it did not work when trying to connect to local ship
networks with their own DHCP and, in general, as
we did not need features like the high availability. We
deployed the C2iAB directly on virtual machines as a
single node. We managed the local infrastructure by
combining docker-compose with ansible scripts. One
of the challenges was how to "replicate" a lot of the fea-
tures dependent on Kubernetes, like the API gateway;
to do it, we run a series of scripts that for through all
our microservice repositories and extract things from

Month 2023 IEEE Software 7

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3317065

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



FEATURE

Field Operations
Operation
name

Dates C2 Variant Area of oper-
ation

Vehicles Days at sea Operators

Altereco Summer 2019 C2 North Sea Two Gliders 74 5+
A68 Iceberg
Tracking

February 2021 C2 Southern
Ocean

Two Gliders 143 10+

TARSAN January 2022 C2iAB Antarctica ALR 6 2
Long distance
proving trial

May 2022 C2 UK Shelf ALR 36 7+

DY152 June 2022 C2iAB UK Shelf ALR, Autosub-
5 and 2 gliders

15 5+

In-site at sea September
2022

C2 North Sea ALR 42 5

TABLE 1. Examples of relevant operations since 2019 to showcase the kind of field operations our system handles. More
operations have already been completed using the system, but we showcase the most relevant ones here.

them, for example, the annotations defining the API
endpoints, assembling them on the docker-compose
script to create an NGINX reverse proxy acting as a
local gateway.

The development of C2iAB helped us refine the
whole C2 system, and all the changes we made for
C2iAB have made their way back to the original C2
except for some particular configurations, like Kuber-
netes. Figure 2 shows the current unified stack (2023)
with all the changes described. Microservices for C2
and C2iAB remain under the same codebases, and it
is a matter of choosing in which configuration we want
to use them on deployment time.

In January 2022, we sent a C2iAB to its first
science campaign, envisioned initially to operate the
ALR (Boaty McBoatface) under the Thwaites glacier.

LESSONS LEARNED AND FUTURE
DIRECTIONS

After seven years of development, we have produced
stable solutions that get used to operating MAS plat-
forms on the field; further details are in Table. 1, and
we have picked up some lessons along the way.

Developing software in science-driven organiza-
tions is different, with no systematic approach to soft-
ware development or use of software development best
practices. In our case, the requirements were not pre-
cise. Microservices have allowed us to manage some
uncertainty as we built our system on small systems
through iterative phases. We think this is an excellent
way to develop scientific-software. This approach can
help to change course if new requirements arrive, as
we have shown with the C2iAB; we took a classical
microservice web application and turned it into an
offline system with direct access to hardware devices.

A hard lesson for us has been the adoption of

software best practices (like using open-source tech-
nologies or the adoption of DevOps); this was not
common in our organization, and we dare to say it
wasn’t common in most science-driven organizations
at the time, but we are a clear example that it can be
done. It pays off, making software development more
robust.

We praise the use of microservices, but we also
must warn people to be careful when using them
on public-funded scientific organizations; if teams can
deploy the microservices on commercially managed
Kubernetes instances, operations become easier, but
if your team is small (as ours) the only way to manage
a complex microservice architecture is implementing
very good DevOps practices and at least for us the
use of Kubernetes distributions (Rancher) [8] helped a
lot.

One of our regrets has been not open-sourcing
all our code from the beginning; we believe other
people working in similar environments would benefit
from our technology (things like Microserver), but when
we started, we had not enough time to do it. Our
organization and we are committed to open source the
system, but it will take some time as we do it while still
delivering new functionality.

Our principal founder, UK Research and Innovation,
has set very ambitious plans and projects to transition
the UK research infrastructure to net zero carbon emis-
sions. One of the projects is the Net Zero Ocean Ca-
pability (NZOC), which aims to reshape the paradigm
of using traditional research vessels as the centre of
oceanographic activities, dramatically increasing the
use of ocean autonomy. A key component will be au-
tomating the observing system operations, leveraging
the introduction of Digital Twins of the Ocean (DiTTO)
to command MAS platforms based on science criteria,
such as acquiring observations to improve an ocean

8 IEEE Software Month 2023

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3317065

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



FEATURE

model. While there is still not much-published work on
DiTTOs, they are grouped under Digital Twins of the
Earth [9] to create a digital representation of extensive
environmental systems to assist in the research. There
have been a few experiments following the approach
we got in mind, both done from the R.V. Falkor; a
deployment of MAS in the Pacific [10], combining
multiple MAS platforms doing sampling guided by a
model, and one in the Baltic Sea [11], with a DiTTO
on the ship been fed information from platforms around
and again leading the observational campaign. We
aspire to make C2 the layer connecting DiTTOs with
the observing system, allowing them to reconfigure it
automatically.

ACKNOWLEDGMENTS
The development of the C2 infrastructure was
funded by the UK’s Industrial Strategy Challenge
Fund (ISCF)—Natural Environment Research Council
(NERC) Oceanids Capital investment in Marine Au-
tonomous Systems.

The authors want to thank and acknowledge the
work and contributions of Dr Catherine Ann Harris
(NOC, UK), Dr Justin Buck (NOC, UK), Jack Farley
(DOC, NZ), Jim Bacon (CEH, UK), Izzat Kamarudzman
(NOC, UK), Trishna Saeharaseelan (NOC, UK), James
T Kirk (NOC, UK) and Dan Jones (NOC, UK). They
have contributed to the system design or work in the
code itself. Special thanks to Dr Harris and Dr Buck,
who have played pivotal roles in making this work
possible, being part of the team, listening and advising
throughout the journey.

Finally, we would like to thank Dr Kristian Thaller,
the Oceanids program manager, for always being pa-
tient with this team of crazy software engineers, and
to Dr Maaten Furlong (current director of NMF) and
Leigh Storey (previous director of NMF) for giving the
opportunity of developing the C2 and trust us in all our
decisions.

REFERENCES
[1] Judith Segal and Chris Morris. “Developing sci-

entific software”. In: IEEE software 25.4 (2008),
pp. 18–20.

[2] Jeffrey C Carver et al. “Software development
environments for scientific and engineering soft-
ware: A series of case studies”. In: 29th In-
ternational Conference on Software Engineering
(ICSE’07). IEEE. 2007, pp. 550–559.

[3] Stephen Crouch et al. “The Software Sustainabil-
ity Institute: Changing Research Software Atti-

tudes and Practices.” In: Comput. Sci. Eng. 15.6
(2013), pp. 74–80.

[4] Microservices a definition of this new architec-
tural term. URL: https://martinfowler.com/articles/
microservices.html.

[5] Microservice Architecture. URL: https : / /
microservices.io/.

[6] Len Bass. “The software architect and DevOps”.
In: IEEE Software 35.1 (2017), pp. 8–10.

[7] Florian Beetz and Simon Harrer. “GitOps: The
Evolution of DevOps?” In: IEEE Software 39.4
(2021), pp. 70–75.

[8] Marek Moravcik et al. “Kubernetes-evolution of
virtualization”. In: 2022 20th International Con-
ference on Emerging eLearning Technologies
and Applications (ICETA). IEEE. 2022, pp. 454–
459.

[9] Jörn Hoffmann et al. “Destination Earth – A
digital twin in support of climate services”. In:
Climate Services 30 (2023), p. 100394. ISSN:
2405-8807. DOI: https://doi.org/10.1016/j.cliser.
2023.100394.

[10] Jose Pinto et al. “Coordinated Robotic Explo-
ration of Dynamic Open Ocean Phenomena”. In:
Field Robotics 2 (Mar. 2022), pp. 843–871. DOI:
10.55417/fr.2022028.

[11] Alexander Barbie et al. “Developing an underwa-
ter network of ocean observation systems with
digital twin prototypes—a field report from the
baltic sea”. In: IEEE Internet Computing 26.3
(2021), pp. 33–42.

Alvaro Lorenzo Lopez is a senior software engineer
at the National Oceanography Centre, United Kingdom,
leading the NOC-MARS Development C2 team and
the research presented in this paper. His current re-
search interests include standardizing command and
control systems and their interoperability. He holds a
degree in Computer science from the University of Las
Palmas de Gran Canaria (Spain) and is currently a
PhD candidate at that same University. Contact him at
alvaro.lorenzo@noc.ac.uk

Ashley Morris is a Software Engineer at the Na-
tional Oceanography Centre, United Kingdom, part of
the NOC-MARS Development C2 team. Ashley has
led the technical development of C2iAB. His current
research interests include Human-Machine Interfaces,
AUV operations, frontend web technologies, Software
Engineering principles and the Software Development
Lifecycle. He holds a BSc in Computing from the
Bournemouth University (UK). Contact him at ash-
ley.morris@noc.ac.uk

Month 2023 IEEE Software 9

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3317065

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://microservices.io/
https://microservices.io/
https://doi.org/https://doi.org/10.1016/j.cliser.2023.100394
https://doi.org/https://doi.org/10.1016/j.cliser.2023.100394
https://doi.org/10.55417/fr.2022028


FEATURE

Owain Jones is a software engineer at the National
Oceanography Centre, United Kingdom, part of the
NOC-MARS Development C2 team. Owain leads the
C2 infrastructure and DevOps. His current research
interests include remote sensing, earth observation,
geoinformation systems (GIS), distributed computing
and AI/ML pipelines. He holds an MSc in Computer
Science from Abersytwyth University (UK). Contact him
at owain.jones@noc.ac.uk

Alexander Philips is the head of development at
the MARS department in the National Oceanography
Centre, United Kingdom. He oversees a big portfolio
of autonomy development projects, including C2. His
current research interests include AI and software engi-
neering. He holds a PhD in hydrodynamics of underwa-
ter vehicles from Southampton University (UK). Contact
him at abp@noc.ac.uk

Francisco Mario Hernández Tejera is a professor
at the University of Las Palmas de Gran Canaria in
the area of Computation and Artificial Intelligence Sci-
ences. His research interests are Real-Time Artificial
Vision, Image Processing, Shape Recognizing and Au-
tomatic Learning. He is an Industrial Engineer with a
PhD. in Informatics from the University of Las Palmas
de Gran Canaria (Spain). Contact him at mhernan-
dez@iusiani.ulpgc.es.

Adrian Penate-Sanchez is a lecturer at the Uni-
versity of Las Palmas de Gran Canaria, Spain. His
current research interests include Machine Learning
and general Artificial Intelligence. He holds a PhD in
computer science and artificial intelligence from the
Universitat Politecnica de Catalunya (Spain). Contact
him at adrian.penate@ulpgc.es

10 IEEE Software Month 2023

This article has been accepted for publication in IEEE Software. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MS.2023.3317065

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


	INTRODUCTION
	The C2 Team
	THE SYSTEM
	DEVELOPING THE SYSTEM
	KUBERNETES AND DEVOPS
	RE-CONFIGURING THE SYSTEM
	LESSONS LEARNED AND FUTURE DIRECTIONS
	ACKNOWLEDGMENTS
	REFERENCES
	Biographies
	Alvaro Lorenzo Lopez
	Ashley Morris
	Owain Jones
	Alexander Philips
	Francisco Mario Hernández Tejera
	Adrian Penate-Sanchez


