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Abstract 

Humans have transformed ecosystems through habitat modification, harvesting, spe-

cies introduction, and climate change. Changes in species distribution and composi-

tion are often thought to induce biotic homogenization, defined as an increase in the 
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spatial similarity of species compositions through time. However, it is unclear whether 

homogenization is common in ocean ecosystems and if changes in similarity exhibit 

linear or more complex dynamics. Here, we assessed patterns of homogenization or 

its converse (differentiation) across more than 175,000 samples of 2,006 demersal 

fish species from 34 regions spanning six decades and 20% of the planet’s continen-

tal shelf area. While ten regions (29%) recorded significant homogenization, eleven 

(32%) recorded significant differentiation. Non-monotonic temporal fluctuations in 

species composition occurred in 15 regions, highlighting complex dynamics missed 

by before-and-after snapshots that can drive spurious conclusions about trends 

in similarity. Fishing pressure and temperature helped explain variance in similar-

ity across years and regions. However, the strength and direction of these effects 

differed by region. Here we showed that, despite intense anthropogenic impacts on 

the oceans, the majority of demersal marine fish communities do not follow the global 

homogenization paradigm common in other realms.

Introduction

As ecosystems face unprecedented changes driven by human activities, commu-
nities of organisms are reorganizing across space and time [1–4]. Many studies 
report that communities are experiencing an increase in spatial similarity through a 
process termed biotic homogenization, defined more technically as a reduction in 
beta diversity among species assemblages across space [5–7]. Similarity increases 
with an increase in the proportion of shared species among assemblages, thereby 
causing loss of uniqueness of individual communities [5,6]. A trend in spatial beta 
diversity towards either homogenization or its opposite, differentiation, can transform 
overall ecosystem function, but homogenization can also lead to instability due to 
heightened synchrony among communities [7,8]. Biotic homogenization is often con-
sidered to be a widespread phenomenon [9], but most research to date has focused 
on terrestrial and freshwater realms [6,10–19]. We currently lack understanding for 
whether biotic homogenization is common across a wide range of marine ecosys-
tems [20].

In addition, homogenization has often been characterized by comparing only two 
sampling events [6,21,22], limiting our ability to understand temporal dynamics and 
possibly leading to spurious conclusions [23,24]. Marine continental shelf ecosystems 
have consistent, long-term, and spatially extensive scientific monitoring programs 
[25], and therefore provide a unique opportunity to reveal the temporal dynamics 
of homogenization. Research on marine ecosystems has found evidence of biotic 
homogenization in a handful of cases [26–32], most often in highly modified near-
shore zones such as estuaries, wetlands, and coral reefs (but see Ellingsen et al. 
2015, 2020 & Magurran et al. 2015). Because marine biomes exhibit faster rates of 
species redistribution than terrestrial and freshwater biomes [33], we may expect that 
homogenization is occurring more rapidly in the ocean despite the small number of 
documented cases.
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The mechanisms leading to homogenization in the ocean may differ from those acting in terrestrial and freshwater 
systems. Biotic homogenization has often been linked to the spread of invasive species across space [34], but in marine 
communities, high impact invasions are uncommon by comparison [35,36]; but see [37–40]). In addition, habitat heteroge-
neity frequently shapes spatial beta diversity by providing niche opportunities and a variety of resources to support differ-
ent species assemblages [41–43]. While temperature gradients are steeper in terrestrial environments, nutrient and light 
availability vary dramatically more in marine environments [44,45]. Landscape homogenization (e.g., conversion of natural 
landscapes to farmland or the loss of structured or biogenic habitat) can also lead to biotic homogenization [42,46–50]. In 
the ocean, however, human impacts on many seascapes lag substantially behind impacts on terrestrial ecosystems and 
has been substantially less extensive to date [51].

In marine ecosystems, changes in species composition have been triggered by changes in temperature, fishing, and 
other factors [42,51–54]. Both press (i.e., warming or eutrophication) and pulse disturbances (i.e., a heat wave or oil spill) 
have led to biotic homogenization within marine communities [55–60]. Marine ectotherms are highly sensitive to water 
temperature due to metabolic constraints and their relative thermal specialization compared to terrestrial and freshwater 
species [61,62]. Declining spatial heterogeneity in temperature, therefore, may drive biotic homogenization as opportuni-
ties for niche differentiation and coexistence decline [28,63,64]. Alternatively, expansions at the leading (e.g., poleward) 
range edge that are faster than trailing-edge contractions in response to rising temperatures [65] could escalate species 
overlap and therefore homogenization. Homogenization may also result from fishing in regions where fisheries target 
endemic species with small range sizes [66,67]. In contrast, fishing may induce differentiation in regions where fisher-
ies target mobile, large-bodied consumers due to the release of mesopredators that often exhibit less stable population 
dynamics [26,27,68]. Whether changes in temperature and fishing consistently impact spatial beta diversity in the ocean 
remains unclear.

Here, we used an extensive dataset of scientific bottom trawl surveys to assess the prevalence and dynamics of biotic 
homogenization across the coastal ocean of four continents (Tables S1-S2 in S1 File). Our primary hypotheses were 
that 1) marine bottom fish communities would show high prevalence of biotic homogenization because species range 
shifts are widespread and rapid, 2) time series of biotic homogenization would reveal complex and non-linear temporal 
dynamics not apparent from comparisons of two time points, 3) changes in biotic homogenization and differentiation in 
the ocean would be related to changes in spatial temperature heterogeneity because temperature strongly affects marine 
community structure, and 4) fishing would affect changes in biotic homogenization, though the effects would differ across 
regions because fisheries target species with different geographic range sizes and trophic levels in different regions (Fig 
A in S1 File). An alternative Hypothesis #3 was that a metric of average or extreme annual temperature conditions, rather 
than spatial temperature heterogeneity, would be related to homogenization, since marine range shifts can drive homog-
enization. The surveys included observations of 2,006 marine fish species across 178,531 independent samples from 34 
time-series in tropical, temperate, and subpolar regions in the Americas, Europe, Africa, and Oceania. Surveys had one 
to six decades of consistent sampling and spatial extents from 16,000–670,000 km2. The sampling in total covered 20% 
of the area of shelf ecosystem habitat worldwide (Supporting Text). We tested for homogenization and differentiation by 
calculating annual spatial dissimilarity in each survey using beta diversity indices and estimated the effects of fishing and 
temperature on dissimilarity; lower beta diversity (lower dissimilarity) indicated a more homogenized community across 
space. We found that homogenization and differentiation were similarly common in bottom fish communities worldwide, 
but that most regions were not experiencing a directional change in spatial beta diversity.

Methods

Spatial beta diversity calculations

We used long-term scientific bottom trawl survey data for marine fishes recently compiled and integrated as FISH-
GLOB [25,69]. These are fisheries-independent surveys with standardized statistical designs. We omitted surveys that 
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only reported metadata and those that had inconsistent sampling methods and locations through time. Surveys were 
only included if they had at least 10 years of sampling to facilitate detection of long term trends [70]. Seven regions 
were surveyed in multiple seasons and, to avoid pseudoreplication, we only included the season with the highest 
number of tows (Tables S1-S2 in S1 File). In total, 34 regions were included in this analysis (Fig 1a & Table S1 in S1 
File). All surveys were limited to the three most-sampled months–representative of a single season–except in the case 
of the West Coast United States survey for which we retained four months because of consistent sampling across 
those months.

Each sample was a single tow, i.e., a drag of a bottom trawl net along the sea bottom. In the case where multiple 
samples occurred at the same latitude and longitude on the same day, we averaged abundance observations for all 
species and considered this to be a single sampling event. Additionally, we excluded low quality tows that did not 
match the standard area swept or duration for a given survey, which occasionally occur due to mechanical issues, 
oceanographic conditions, or other logistical constraints. We eliminated years, samples, and taxa unsuitable for tem-
poral and spatial biodiversity analysis using author expertise and previous publications on survey data (see Support-
ing Text).

Because we were interested in temporal trends in dissimilarity, it was important to have a consistent spatial extent over 
time for each survey. To establish a standardized spatial extent in each region through time, we assigned each sample to 
a 7,774.2 km2 hexagonal spatial cell, (except for the Norwegian survey of the Barents Sea for which we used a cell size of 
23,322.2 km2 due to low sampling density [25]). For each survey, we excluded years in which the survey sampled fewer 
than 70% of the hexagonal cells ever sampled by that survey (Fig Ba-b in S1 File, Table C in S1 File). Next, we excluded 
cells that were sampled in fewer than 70% of the remaining years (Fig Bc in S1 File, Table C in S1 File). Finally, we 
excluded regional surveys for which this standardization process excluded over 50% of the samples across the full time 
period (Table C in S1 File). This spatial extent standardization procedure resulted in 178,531 unique samples (tow events) 
across 34 regions between 1968 and 2021 (Table B-C in S1 File). We used tows as the basis for further spatial beta diver-
sity analyses.

Each tow included species observations recorded as number of individuals or biomass, depending on the survey. We 
used both abundance and biomass to determine each species occurrence (presence or absence). A small number of tows 
(0.2%) did not include either abundance (count) or biomass (kilograms) values and were therefore removed. Cleaning and 
standardizing the data led some samples to have biomass or abundance values of zero for all observations. These tows 
were excluded from the analyses (0.03% of all tows) because dissimilarity calculations on communities with zeros across 
all observations are often meaningless [75].

All taxonomic names were standardized using WoRMS [76,77]. Only observations identified at the species-level were 
included in the analyses, leaving a total of 2,006 unique species. We performed two sensitivity tests to assess the impact 
of the inclusion of uncommon species and/or low abundance species on the results, as species identification quality can 
be lower for infrequently encountered species. First, we examined patterns in dissimilarity while excluding the bottom 
15% species when ranked by abundance or biomass in each region (leaving 1,861 unique species). Second, we repeated 
analyses while excluding any species present in less than one-third of the years that a survey occurred (leaving 1,429 
unique species).

We calculated beta diversity in each year of each region as the average pairwise dissimilarity between samples (tows) 
using Jaccard dissimilarity based on species occurrences (Fig A in S1 File). Therefore, the unit of analysis was the aver-
age dissimilarity value across all pairs of tows in a given region in a given year. The sample size varied between 10 years 
for Queen Charlotte Sound and the Rockall Plateau up to 52 years for the Northeast United States for a total of 705 sam-
ples (unique survey and year combinations). Average pairwise dissimilarity is widely used for quantifying regional hetero-
geneity in community composition, has the intuitive interpretation as the expected dissimilarity of a randomly selected pair 
of samples, and is not sensitive to differences in sample size [78–87]. Average pairwise metrics, however, do not account 
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Fig 1. Distribution of biotic homogenization and differentiation across surveyed continental shelf regions. (a) Map of temporal trends in spatial 
Jaccard dissimilarity by region. (b-d) Changes in spatial community composition over the study period are visualized using non-metric multidimensional 
scaling (NMDS) for example regions that experienced differentiation (b; West Coast South Island, New Zealand; first = 79 tow locations, last = 65 tow 
locations), homogenization (c; Southeast United States; first = 77 tow locations, last = 87 tow locations), and no significant trend (d; Iceland; first = 528 tow 
locations, last = 529 tow locations). Example regions are labeled in (a). Each point in subfigures (b), (c), and (d) represents the species composition of an 
individual sampling event, with points outlined in white for the first survey year and in black for the last survey year. The NMDS ordination arranges sam-
pling events based on their species composition and Jaccard dissimilarity, such that points closer together represent more similar communities. To aid 
visualization of community shifts, ellipses enclose 95% of a multivariate t-distribution fitted to the first-year (dotted line) and last-year (solid line) samples. 
A contraction of the ellipse suggests homogenization, while an expansion suggests differentiation. Basemap from Natural Earth [71], and map rendered 
using the sf and ggplot2 packages in R [72–74].

https://doi.org/10.1371/journal.pclm.0000659.g001

https://doi.org/10.1371/journal.pclm.0000659.g001
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for patterns of co-occurrence across more than two sites [88]. Additionally, this approach does not consider how commu-
nity composition varies with the geographic distance between sites [89].

To also consider species dominance, we repeated analyses using abundance-based Jaccard dissimilarity based on 
species abundances for the 24 of 34 surveys with species count data available [90]. We also tested using relative species 
abundances to remove the influence of differences in total abundance across space. Jaccard dissimilarity is highly influ-
enced by the degree to which species are shared across sites, and therefore to differences in both richness and species 
turnover [91]. Jaccard has been widely used to measure community dissimilarity in community ecology, and is robust to 
geographic and taxonomic undersampling [92,93]. We measured dissimilarity using the `vegdist` function from the vegan 
package in R [75].

Testing for directional temporal trends in beta diversity

To test for an average trend in dissimilarity over time across all surveys (Hypothesis #1), we fit a linear mixed effect 
model using the lme4 package in R with a random slope and intercept for each survey to help account for differ-
ences in methodology across regions and repeated observations from each survey [94]. We also fit a linear model 
with a fixed effect interaction between survey and year to examine trends in dissimilarity for each individual survey 
(Hypothesis #1). Because surveys involved repeated sampling of regions through time, we compared a linear  
model with and without a temporal autocorrelation term for year (by survey), implemented using the nlme package 
in R [95].

We classified surveys with a significant negative coefficient (p < 0.05) for year as homogenizing (primary Hypoth-
esis #1) and surveys with a significant positive coefficient as differentiating (alternative Hypothesis #1); surveys for 
which the coefficient + /- standard error crossed zero were classified as having no significant trend over time (null 
Hypothesis #1). To illustrate communities of bottom fish that underwent homogenization, differentiation, and no trend 
in dissimilarity, we constructed non-metric multidimensional scaling (NMDS) plots using the vegan package in R 
(Oksanen et al. 2022).

To assess the potential for detecting significant trends even if none existed, we compared results to a null model in 
which we reshuffled average annual dissimilarity values across years within surveys. This approach decoupled year 
from dissimilarity value and maintained correlations in abundance among species, but did not maintain temporal auto-
correlations within species. We repeated this procedure 1000 times and, each time, classified surveys as homogeniz-
ing, differentiating, or not based on the same linear model approach used for the observed data. We tallied the number 
of homogenizing or differentiating surveys from each of the 1000 reshuffled datasets and calculated the 95th percen-
tiles. Additionally, we compared the distribution of beta diversity trends from observed data versus the distribution from 
reshuffled values.

Testing for non-linear patterns in beta diversity

To illustrate non-monotonic fluctuations in dissimilarity through time in each region, we fit a generalized additive model 
(GAM) using the mgcv package in R with a smoother per survey [96]. We then tested for non-linear (non-monotonic) 
fluctuations in dissimilarity through time (Hypothesis #2) by comparing linear models with GAMs for each individual survey 
using Akaike Information Criteria (AIC

C
; [97,98]) (Fig A in S1 File). We classified as non-linear those regions for which dis-

similarity over the study period was better described by a GAM than by a linear model in support of primary Hypothesis #2 
(∆AIC

C 
> 2). For those better described by a linear model (∆AIC

C 
> 2), we classified them as having linear trends (primary 

Hypothesis #2). Regions for which GAM and linear model approaches performed similarly (|∆AIC
C
|
 
< 2) were not classified 

as either (null Hypothesis #2).
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Testing temperature and fishing as predictors of beta diversity

To test among potential drivers of annual dissimilarity, we built and compared a set of linear models including tempera-
ture (Hypothesis #3) and fishing (Hypothesis #4) (Fig A in S1 File). The global model included temperature, fishing, and 
additional variables related to potential sources of heterogeneity among surveys that were not the main focus of this study. 
The additional variables included survey identity, primary season of sampling (adjusted for hemisphere), average latitude 
of the survey, the latitudinal range of the survey, the number of species sampled, the area surveyed, the average tow 
depth of a survey, the range of tow depths of a survey, and the average number of tows per year within a survey (Table S4 
in S1 File). We also included interactions between temperature or fishing and survey so that the relationships could differ 
by survey (alternative Hypothesis #3, primary Hypothesis #4). Because of repeated sampling through time, we evaluated 
whether including a temporal autocorrelation term for year, implemented using the nlme package [95], was favored by 
AIC

C
.

All covariates were calculated as annual values per survey, and we excluded years and surveys missing any covariates 
(we excluded the Southern Gulf of St. Lawrence and the Rockall Plateau surveys because they were missing depth and 
fishing data, respectively). In total, we fit these models to 32 surveys from 1982-2019,resulting in a sample size of 628 
unique year and survey combinations. We calculated the annual survey area as a concave hull surrounding all tow loca-
tions using the concaveman package in R with a concavity of 1 and length threshold of 2 [99]. Covariates were calculated 
for the specified year of survey sampling, except for temperature (calculated for the 12 months prior to the first obser-
vation of a survey-year) and fisheries catch (calculated for the calendar year preceding each survey-year). All numeric 
covariates were scaled and centered across surveys to improve model convergence, except for fisheries catch, which was 
scaled within a survey and was therefore representative of relative catch within a region.

Our primary temperature Hypothesis (#3, Fig A in S1 File) focused on the spatial heterogeneity of temperature [28]. 
However, alternative hypothesis #3 tested whether average, extreme, or the seasonal range of temperatures was a more 
effective predictor, since these metrics are closely linked to the species range shifts hypothesized to contribute to marine 
homogenization [28]. Demersal fishes respond to both extreme and average bottom temperature conditions, the range of 
temperatures experienced in a year, and the heterogeneity of temperature across space [100–103]. We used daily sea 
bottom temperature from the SODA 3.3.2 data product [104], which is a global historical reconstruction of sea temperature 
at multiple depths from 1980 to January of 2019 at a 1/4° resolution. As a metric of spatial heterogeneity in temperature 
within each survey and year (related to our primary Hypothesis #3, Fig A in S1 File), we calculated the annual mean bot-
tom temperature for each sample location and then calculated the standard deviation across sample locations within each 
survey and year. For the alternative temperature hypotheses, we calculated the mean, minimum, maximum, and season-
ality (maximum - minimum) for each sample location for each year. Next, we took the average of these summary statistics 
for each survey and year. We restricted analyses to annual regional dissimilarities between 1982 (no usable tows in 1981) 
and 2019 because of the availability of high resolution temperature data.

We expected bottom fish to respond most directly to bottom temperature values, but we calculated the same metrics 
and repeated the same analyses using the NOAA 1/4° Daily Optimum Interpolation Sea Surface Temperature (OISST) 
[105]. The SODA and OISST temperature products effectively capture inter-annual and decadal climate regimes (Ren et 
al. 2023, Mauro Vargas-Hernandez et al. 2014, Giese and Ray 2011, Huang et al. 2016) that commonly impact regional 
fish population dynamics [106,107].

To explore the impact of resource extraction on mean annual dissimilarity (Hypothesis #4, Fig A in S1 File), we used 
fisheries catch data as a proxy for fishing pressure. We extracted reconstructed annual fisheries catch in metric tons from 
Sea Around Us using the Large Marine Ecosystem, Exclusive Economic Zone, or Marine Ecoregion that best overlapped 
with a survey’s spatial extent [108] (Table S5 in S1 File). Catch values in Sea Around Us had been reconstructed using 
reported catch (primarily from the Food and Agriculture Organization of the United Nations) and estimates of unreported 
catch [108]. We included estimated landings and discards of identified marine fish. We used the total reconstructed catch 
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(which included species that do not appear in the bottom trawl data sets) because fishing affects both target and non- 
target species through changes in biotic interactions and because our goal was to calculate a metric representative of 
relative annual fishing activity in a region [109,110].

We first compared a set of global models with AIC
C
 [97,98,111], each of which included one metric of annual tempera-

ture. From these, we selected a single temperature metric. We then used the dredge function in the MuMln package in R 
to compare with AIC

C
 all possible nested models constructed with the selected temperature metric [98,111]. We estimated 

average covariate coefficients by averaging continuous parameters included in all models with ∆AIC
C 
< 4.

Results

Prevalence of biotic homogenization and differentiation

Trends in spatial beta diversity differed substantially across 34 surveys of bottom fish in the coastal ocean (Fig 1a & C in 
S1 File). Overall,10 surveys (29%) recorded significant regional homogenization (Fig 1a,c), 11 surveys (32%) recorded 
significant differentiation (Fig 1a,b), and the other 13 surveys (38%) did not record significant trends in regional dissim-
ilarity (Fig 1a,d). We did not find evidence of strong temporal autocorrelation (∆ AIC

C
 = 615). The null model suggested 

Fig 2. Trends in spatial beta diversity over time. (a) Annual Jaccard dissimilarity for each region (colored points, n = 705) with generalized additive 
model (GAM) smoothers for each region (colored lines) and 95% confidence intervals (colored ribbons). A decrease in dissimilarity represents homoge-
nization (yellow); an increase represents differentiation (pink). A lack of significant trend is shown in blue. The average linear trend across surveys (black 
line with 95% confidence interval in gray) is also plotted from a linear mixed effect model with a random slope and intercept for survey. (b) Coefficients 
and associated standard error of dissimilarity versus time for each survey from a linear model (LM) with a fixed effect interaction between survey and 
time in ascending order by coefficient value. Point size represents the length of the survey period. Asterisks mark surveys for which dissimilarity through 
time was better described by a non-linear GAM than a LM.

https://doi.org/10.1371/journal.pclm.0000659.g002

https://doi.org/10.1371/journal.pclm.0000659.g002
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that two more regions were homogenizing than would otherwise be expected due to chance, and similarly, two more were 
differentiating than expected (Fig Da-b in S1 File). Therefore, we did not find evidence of Hypothesis #1, that homogeniza-
tion patterns would be pervasive.

Trends in beta diversity ranged from a 6% per decade loss of spatial dissimilarity (i.e., homogenization) in the Rockall Pla-
teau (Northeast Atlantic), to a 4% per decade gain (i.e., differentiation) in Greenland (Northwest Atlantic) (Fig 2b). The mag-
nitude of trends in dissimilarity observed were also higher than predicted at the 95% level by the null model (Fig Dc-d in S1 
File). Despite these large individual trends within surveys, we found no significant change in overall dissimilarity through time 
across all survey regions (slope = 0.008% + /- 0.03% SE per decade; p = 0.78; n = 705; linear mixed effects model; Fig 2a).

Fig 3. Average linear model coefficients predicting annual Jaccard dissimilarity for all regions (n  = 32 surveys). Coefficients were allowed to 
vary by region for temperature (a) and relative fishing catch (b), but not for other characteristics (c). All variables were centered and scaled across all 
observations except for fishing catch, which was centered and scaled within each region. Therefore, coefficients are in units of dissimilarity over units of 
standard deviation of the covariate. Coefficients for which the standard error did not cross zero are in black and others in gray. Season is not displayed 
as it was included in the model as a factor.

https://doi.org/10.1371/journal.pclm.0000659.g003

https://doi.org/10.1371/journal.pclm.0000659.g003
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Our finding that neither homogenization nor differentiation were widespread across regions was not sensitive to the 
metric of dissimilarity, although specific survey trends differed across metrics (Fig E in S1 File). For raw abundance-based 
Jaccard dissimilarity, 8 regions (33%) differentiated and 8 (33%) homogenized out of the 24 regions. Seven regions (29%) 
exhibited a different trend as compared to the occurrence-based results. In the case of relative abundance-based Jaccard 
dissimilarity, eight regions (33%) differentiated, seven (29%) homogenized, and nine (38%) regions exhibited a different 
trend as compared to the occurrence-based results.

Sensitivity tests removing rare or low abundance species further supported the finding that instances of homogeniza-
tion, differentiation, and a lack of a trend in dissimilarity were similarly common across bottom fish communities (Fig F 
in S1 File). When the least abundant 15% of species were removed from each survey, there were no changes in trends. 
However, when species present in fewer than two-thirds of years of a survey were removed, 19 regions (56%) exhibited a 
different dissimilarity trend as compared to the full dataset; most often a shift from either homogenization or differentiation 
to no trend.

We tested whether changes in gamma diversity explained the observed trends in beta diversity, because dissimilarity 
increased with the number of species in a region (Fig G in S1 File). However, we did not find evidence for such a relation-
ship when Rockall Plateau (highly negative trend) was removed (p = 0.26, linear model; Fig H in S1 File, R2 = 0.04). Sur-
veys differed in the first year (baseline) of sampling, the length of the survey period, the time of year of sampling, spatial 
extent, and sampling density (Table B in S1 File). However, we did not detect a relationship between the observed trend 
in beta diversity and the baseline year, the length of the survey period, the spatial extent, or sampling density (Fig I in S1 
File). Regions with surveys occurring in the later half of the year were more likely to exhibit homogenization, but there was 
no significant relationship between trend and season (Fig J in S1 File). Surveys varied in sample (tow) density, but, in all 
regions other than the Southeast US, exhibited consistent density through time and no relationship between density and 
spatial beta diversity in a given year (Fig K in S1 File).

Non-linearity in beta diversity through time

These long-term surveys revealed substantial multi-annual and decadal variability, such that they varied through time 
non-monotonically between more homogenized and more differentiated states (Fig 2a & C in S1 File, & Table F in S1 
File). For example, a decline in dissimilarity between the mid-1990s and mid-2000s off the coast of Namibia was followed 
by an increase continuing through the late 2010s. Additionally, the Eastern Bering Sea experienced increases in dissim-
ilarity in the late 1980s and 2000s, followed by declines in the early 1990s and 2010s (Fig 2a & C in S1 File). We found 
that non-linear GAMs performed better (∆AIC

C
 > 2) than linear models for 15 of 34 surveys (44%), partially supporting 

Hypothesis #2 that non-monotonic temporal dynamics would be common (Table F in S1 File, Fig C in S1 File). Linear 
models outperformed GAMs for seven surveys (21%), and models for the remaining twelve surveys (35%) performed 
similarly.

Temperature and fishing as predictors of beta diversity

We then examined the extent to which temperature and fishing explained variation in annual dissimilarity (Fig A in S1 File). 
Similar to dissimilarity, temporal trends in temperature and fishing differed across regions (Fig L-M in S1 File). The global 
model including minimum bottom temperature performed best (∆AIC

C 
= 4.8; n = 705; Table G in S1 File), rejecting our 

primary Hypothesis #3 that spatial temperature heterogeneity would be most important. We carried minimum temperature 
forward in subsequent model comparisons.

The set of most parsimonious global models (∆AIC
C 
< 2) included minimum temperature, fisheries catch, and survey 

characteristics (Table H in S1 File & Fig 3). All of the high-performing models included an interaction between survey and 
both fishing and temperature, suggesting that the response of dissimilarity to temperature and fishing differed by region, 
supporting alternative Hypothesis #3 and primary Hypothesis #4 (Table H in S1 File, Fig N-O in S1 File). The magnitude 
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and direction of the relationship between temperature and dissimilarity varied by region. The strongest relationship was 
detected in the Aleutian Islands, with a decrease of 2.3 units of dissimilarity per standard deviation increase in tempera-
ture (±1.3 SE). In total, ten regions showed significant negative trends, while five regions exhibited significant positive 
trends (Fig 3). Similarly, the relationship between relative fishing catch and dissimilarity varied across regions. However, 
the magnitudes were more similar across regions, ranging from -0.02 units of dissimilarity per standard deviation increase 
in fishing in South Georgia (±0.007 SE) to 0.02 in the Aleutian Islands (±0.01 SE). Nine regions exhibited significant neg-
ative trends, while six exhibited significant positive trends (Fig 3). The four best performing models explained 95% of the 
variance in annual spatial beta diversity (Table H in S1 File). Removing temperature and removing fishing catch covariates 
had little effect on the amount of variance explained (93% and 94%, respectively).

Models including surface instead of bottom temperature performed similarly and led to similar conclusions, although 
maximum temperature out-performed other temperature metrics (∆AIC

C 
= 3.4) and was therefore carried forward in sub-

sequent analyses (Table I-J in S1 File & Fig P in S1 File). For all temperature metrics, models without a temporal AR term 
performed better than those with this term (Table G & I in S1 File).

Discussion

While biotic homogenization is a common expectation and finding in terrestrial and freshwater ecosystems 
[11,16,112,113], we found that marine fish communities are not consistently homogenizing through time despite rapid and 
extensive species range shifts. Instead, we revealed complex multi-annual fluctuations in the heterogeneity of community 
composition through time. The high temporal resolution of scientific surveys on continental shelves around the world also 
allowed us to detect region-specific effects of both fishing and temperature on the biotic homogeneity on some, but not all 
demersal fish communities.

Prevalence and temporal dynamics of homogenization

Demersal fish communities were more likely to exhibit no trend in spatial beta diversity than either homogenization or 
differentiation, reflective of other recent synthesis work [114]. While some regions, such as the Southeast United States 
and the Barents Sea have homogenized in the past two to four decades, others, such as Greenland and the Scotian Shelf 
have differentiated. Homogenization and differentiation of individual regions has been previously described (Ellingsen et 
al. 2020, Siwertsson et al. 2024, Ellingsen et al. 2015), but the relative prevalence of these patterns across continents 
has not previously been apparent. Marked regional differences in trends of spatial beta diversity over time—ranging from 
sharp declines to rapid increases in heterogeneity—highlight the critical role of context during periods of rapid environ-
mental change [2,115,116]. The specific species composition, regional environmental conditions, and legacy of human 
impact shape both the types of disturbances a system encounters and how it responds. These findings illustrate the 
importance of comparing trends across diverse ecosystems to comprehensively assess global change, rather than focus-
ing solely on those demonstrating dramatic change in community structure.

Despite widespread expectations that communities are consistently homogenizing [11,16,112,113], we found that 
change within marine fish communities is a highly dynamic process, regularly fluctuating between periods of higher and 
lower dissimilarity. Some regions exhibited distinct periods of more homogenized and more differentiated community com-
position, a phenomenon also observed in communities of freshwater diatoms [117], and plants across biomes [118–121]. 
For example, the Eastern Bering Sea and Sub-Antarctic New Zealand did not experience significant directional change 
in beta diversity, and yet these regions experienced swings of 10–12% in dissimilarity within just a decade. This variation 
across years is dramatic compared to what is known from other ecosystems. For example, the variation we observed 
across decades was two to three times greater than the homogenization observed among plants (3%) and birds  
(4%) across the centuries since human settlement, though we caution that differences in sampling, scale, and metrics also 
affect these comparisons [122,123].



PLOS Climate | https://doi.org/10.1371/journal.pclm.0000659 July 9, 2025 12 / 21

The high temporal variability of spatial beta diversity also highlights the importance of the baseline effect in shap-
ing observed trends, wherein the first observation has a strong influence on observed patterns (Navarrete et al. 2010, 
Edwards et al. 2010, Werner et al. 2020). The baseline effect is particularly strong when only two time points are available 
for assessing trends, which is how most homogenization trends have been detected to date [124,125]. Two time points 
are also unable to detect more complex dynamics. The relatively long time series (>10 years) with high temporal resolu-
tion (sampling every one to three years) examined here helps to minimize the impact of the starting year (Navarrete et al. 
2010, Edwards et al. 2010). While we did not observe any obvious relationships between beta diversity trend and baseline 
year of sampling, the starting year may still have an impact on the trend we detect, especially in the case of shorter time 
series. For instance, the Aleutian Islands (North Pacific) exhibited no overall trend between 1983 and 2018. However, 
a time series beginning in 2000 would have suggested a strong pattern of homogenization supported by 19 years of 
observations. Understanding temporal variability of spatial beta diversity will be important for evaluating whether baseline 
effects may be biasing conclusions about homogenization trends in other ecosystems.

Predictors of spatial beta diversity

A large sample size and diverse regions allowed us to test mechanisms that may drive patterns of homogenization and 
differentiation [42]. Temperature and fishing are known to strongly influence marine species population dynamics, commu-
nity composition, and geographic distributions [42,51–54], and here, we found that these factors are strongly associated 
with the temporal dynamics of biotic homogenization and differentiation in a subset of regions.

After testing a range of temperature metrics, we found that minimum annual temperature rather than temperature 
heterogeneity was the best predictor of annual dissimilarity. This finding matches recent work demonstrating that climate 
extremes shape species distributions more than average conditions [126]. Minimum temperature in a year can directly 
(i.e., thermal tolerance; [127]) or indirectly (i.e., predation; [128]) impact species range shifts. In the ocean, cold tempera-
tures have long been known to act as a control on species distributions [129]. The lower bound of temperature extremes 
are currently increasing at a faster rate than the upper bounds [130], and we therefore anticipate a parallel change in the 
heterogeneity of bottom fish communities across space.

The influence of temperature on homogenization, however, was strongly context-dependent. For example, off of the 
west coast of the South Island of New Zealand, warmer years were more homogenized, while in South Georgia (South 
Atlantic), warmer years were more differentiated. One explanation may be that homogenization is more likely to occur 
at ecotones experiencing warming. Levels of homogenization are highest when species’ establishments are com-
mon, regardless of whether or not they are paired with local extirpations of endemic species [131]. The introduction of 
 warmer-water associated species with high dispersal capacity may initially lead to an increase of uniqueness across 
space as novel species accumulate poleward of the ecotone, then later drive a decline in uniqueness as those species 
spread more widely across the region. This ecotone-related phenomenon may explain homogenization in two northwest 
Atlantic regions–the Northeast and Southeast United States [132–134] These regions sit poleward of biogeographic 
breaks at Cape Hatteras and Cape Canaveral, respectively.

Similar to previous studies [135,136], we found that fishing also shaped fish community composition. As we hypothe-
sized, this relationship between dissimilarity and fishing varied across region. In the Southeast United States and New-
foundland (North Atlantic), highly fished years were followed by differentiation, while highly fished years in Greenland 
and the North Sea were instead followed by homogenization. This regional variation suggests that the effect of fishing 
is more highly context dependent than previously appreciated, and possibly shaped by the distribution of fishing across 
space, food web structure, and the trophic level of species targeted in the system [52,137,138]. When fishing primarily 
targets dominant widespread predators, an increase in harvesting is often matched with a decrease in the spatial similar-
ity of species compositions through time [26,27]. In previous studies, declining populations and shrinking ranges of top 
groundfish predators has led to differentiation through a release of mesopredators with more heterogeneous distributions 
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[27,68,139,140]; this process may also be at play in the demersal communities we studied. In contrast, homogenization 
may ensue if fishing in a region targets relatively rare species such as sharks and rays [141].

While long in the context of ecological research, the study periods included here only represent observations from 
the last ~60 years. Therefore, we could not detect if the current state of demersal fish communities are homogenized or 
differentiated in comparison to communities before the realized impacts of anthropogenic climate change and resource 
extraction in the ocean. Marine resource extraction in some of these regions has occurred for thousands of years  
[142–144], but technological advancements and a rise in global food demand contributed to a rapid industrialization of 
commercial fishing following World War II [145–147]. This period of overexploitation was followed by a decline in global 
catch of many high value demersal fish stocks beginning in the 1970s in some regions due to increased management 
intensity in an attempt to compensate for overfishing [148]. Although we used reconstructed catch as a proxy to rep-
resent trends in fishing over time, we encourage future researchers to adopt a species- or region-specific approach to 
capture the complex history of fishing more accurately. Finally, investigation into the mechanisms and pathways leading 
to changes in dissimilarity, including lagged and indirect responses to oceanographic conditions and resource extraction, 
would improve our understanding of how communities respond to multiple stressors [149].

The drivers of homogenization and differentiation in ecosystems across realms have often been expressed as direc-
tional [28,34,112], but our results emphasize that they need not be so [27,150]. Instead, the degree of homogeneity may 
more commonly fluctuate through time and be related to environmental conditions (e.g., climatic oscillations and change) 
and direct human impacts (e.g., fishing). The variability in marine fish community composition across years further high-
lights the importance of long term observations at high temporal resolution that allow us to disentangle cyclic variability 
from long term directional trends (Hughes et al. 2017).

Considerations of metric and scale

Our main finding that homogenization and differentiation are relatively uncommon was robust to beta diversity metric. 
However, both the way in which communities are defined (species presence/absence vs. raw abundance vs. relative 
abundance), and the metric used to calculate dissimilarity led to differences in how some regions were classified. Includ-
ing observations of species abundances in calculations can be more representative of the population dynamics under-
lying changes in community composition [131]. As one example, while occurrence observations led Northern Ireland to 
be classified as differentiating, abundance observations led the region to be classified as exhibiting no trend. This sug-
gests that changes in community composition are muted in this region when species are weighed by abundance, and 
therefore, changes are stemming from relatively rare species. As another example, in the Bay of Biscay (North Atlantic), 
 occurrence-based analyses classified the region as homogenizing, while abundance-based analyses classified the region 
as differentiating, suggesting that while changes in the distribution of uncommon species has led to homogenization 
across space, changes in the distribution of species making up a substantial portion of the overall community have led 
to differentiation. We also note that beta diversity trends are sensitive to spatial scale [131,151–153], and therefore our 
findings for regional communities may differ when assessed at a sub-regional or global scale. While we found that on 
average, community heterogeneity was higher for larger regions, we did not find a relationship between the size of a 
region and dissimilarity trend. We did not assess how distance-decay of community similarity varies across surveys, but 
acknowledge that this spatial pattern likely plays a role in homogenization dynamics and encourage future researchers to 
explore that intersection [89,154].

Trends in spatial beta diversity were also sensitive to survey-specific characteristics and sampling methodologies. 
While longer surveys are more likely to detect species gains and losses and therefore directional trends in dissimilar-
ity [131], we did not detect a relationship between sampling period and likelihood of homogenization or differentiation. 
Surveys vary in their ability to detect and identify uncommon species. While removing species of low abundance did not 
change our results, removing species that were caught infrequently through time led many regions to exhibit no trend in 
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dissimilarity and a few regions to exhibit trends different than those exhibited using the full dataset. As one example, while 
Chile exhibited no trend in dissimilarity using the full dataset, the region homogenized when infrequently caught species 
were removed from the analyses. Future work could explore the role of detectability and uncommon species in homogeni-
zation dynamics.

Additionally, we found that higher differentiation was paired with higher regional species richness, reflecting the widely 
recognized positive relationship between gamma and beta diversity [155]. Due to seasonal migrational patterns and 
variability in environmental conditions across the year, trends in beta diversity can vary depending on when communities 
are sampled [156]. We observed lower dissimilarity values and more regions homogenizing later in the year, although this 
likely reflects more surveys occurring later in the year because we found no significant differences in dissimilarity trends 
across season of sampling. While rare in ecological datasets, consistency in sampling methodology for long-time series is 
essential for detecting patterns through time and for performing time-series analysis [25,157,158]. We found no relation-
ship between sampling density and dissimilarity trend, and for all but one region, sampling density was consistent through 
time. In the Southeast United States survey, an increase in sampling density over time coincided with a decrease in beta 
diversity. However, this interaction runs contrary to common assumptions that higher sampling density would lead to differ-
entiation as more unique niches are represented.

Conclusion

Our findings demonstrate that, despite significant human impacts on the oceans, most demersal marine fish communi-
ties do not conform to the widespread homogenization trend observed in other ecosystems. The observed heterogeneity 
in marine ecosystems indicates that effective conservation planning should be tailored to regional trends and changes, 
rather than relying on global proxies [159]. Informing local strategies, in turn, relies on effective systems for monitoring 
these changes, which can include not only bottom trawl surveys, but also eDNA, sonar, and other technologies.

We found that multi-annual swings between more homogenous and more differentiated community composition have 
been common and that both temperature and fishing have been key drivers of these changes. Examining temporal 
dynamics in other marine ecosystems and in terrestrial and freshwater ecosystems will be important for understanding 
whether large fluctuations are also common in these realms. Future studies exploring the dynamics of functional and phy-
logenetic dissimilarity across time and space—in all systems, not only marine—will further deepen our knowledge on how 
structuring factors, such as climate and direct human impacts induce changes in species assembly [160–163].
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