

Groundwater recharge in subhumid drylands under different agricultural systems

Daina Mudimbu¹ *, Kawawa Banda², Bentje Brauns³, Dan J. Lapworth⁴, Alan M. MacDonald⁵, Willy Namaona⁶, Richard Owen⁷, and Mabvuso Sinda⁸

¹Department of Chemistry and Earth Sciences, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe ² Department of Geology, School of Mines, University of Zambia, P.O. Box 32379, Lusaka, Zambia ³British Geological Survey, Keyworth, NG12 5GG, UK ⁴British Geological Survey, Wallingford, OX10 8BB, UK ⁵British Geological Survey, Edinburgh, EH14 4AP, UK ⁶Lilongwe University of Agriculture and Natural Resources, Malawi ⁷ Department of Civil Engineering, School of Engineering, University of Zimbabwe, Harare, Zimbabwe ⁸Department of Soil Science, School of Agricultural Sciences, University of Zambia, P.O. Box 32379, Lusaka, Zambia

Key Questions

How does CA influence groundwater (GW) recharge?

Possible effects on:

- timing
- amount
- pathways

Specific Objectives

- i) Use high-frequency rainfall and groundwater level observations from a network of sensors to assess groundwater recharge responses to rainfall over 3 consecutive recharge seasons
- ii) Compare recharge estimates using water table fluctuation and chloride mass balance methods
- iii) Employ a range of hydrochemical tracers (water isotopes and SF₆) to assess recharge sources and groundwater residence times.

Strengthening Capacity in Environmental Physics, Hydrogeology and Statistics for Conservation Agriculture Research

The CEPHaS project is a joint undertaking between colleagues in Zambia, Zimbabwe, Malawi and the UK to strengthen our shared capacity among **statisticians**, **soil scientists**, **geophysicists**, **hydrogeologist**, **agriculturalists** and **social scientists**.

A GCRF UKRI Collective Fund project

Study design: Set-up of monitoring boreholes

- Shallow boreholes finished 5 m below RWL
- Slightly deeper boreholes finished 10-15 m below RWL
- Deeper boreholes finished c.30 m below RWL
- All screens approximately 3-6 m at the bottom section

In addition: At least one of the deep borehole with longer screen for pumping tests

Geology and RWLs: mostly schist & granitic bedrock with RWLs c.7-11 m bgl, MW encountered a confining silcrete later at 1-2m bgl

Drilling activity in Zimbabwe; protecting the site against runoff & compaction

Example of BH set-up in Malawi

Drilling site in Zimbabwe

top: example of BH design

left & bottom: equipping BHs with pressure transducers (30-min resolution)

Study Design

Water level observations

Water sampling

Residence time tracers (water age)

Isotopic changes (d2H, d18O)

Changes in hydrochemistry

Comparison

of time series

Quantification of

recharge

MW, ZM ZM, ZW 2021 2019 2020 water level observations (30 minute interval) Water sampling: Water chemistry & stable isotopes (montly intervals)

Results: Rainfall & WTF

- Time of peak WLs
- MW: Jun/Jul yet others: Mar/Apr

Results: Stable isotope data

- No statistically significant differences between CA vs CT at Chitedze or Domboshawa.
- GW recharge dominated by isotopically depleted heavier water/rainfall events
- For Kabeleka (Figure 4c)
 - both cultivation techniques capture 'depleted' heavy rainfall events,
 - CA plots may also capture the more 'enriched' lighter rainfall.
 - CA samples show a greater scatter a broader range of rainfall events.
 - CA groundwater samples plot more closely to the LMWL
- CT samples plot further away from the LMWL with

CEPHaS Capacity for Conservation Agriculture Research

Results: GW residence time data

- Low modern fractions (MF) of recharge were found across all sites (typically <0.05, using SF₆ results)
- No significant difference in the MF between the field sites.
- Significantly lower CFC and SF₆ tracer concentrations and MFs were found in this study compared to results from pumped wells in published studies (pumping may enhance groundwater capture within those basement settings).

Groundwater Recharge Estimates

WTF method

	Recharge	mm/a	Recharge as % rainfall		
Site	Mean	SD	mean	SD	
MW Chitedze-CA	8	1.5	1	0.1	
MW Chitedze –CT	8	1.5	1	0.1	
ZM Kabeleka-CA	26	7.8	3	1.3	
ZM Kabeleka-CT	22	4.9	3	0.9	
ZM Liempe	15	6.2	2	0.7	
ZW Dom-CA	28	24.6	3	2.8	
ZW Dom-CT	28	24.3	3	2.7	

CMB method

		Rainfall Cl mg/l		Groundwater Cl mg/l			Recharge as % rainfall	
Site	Year	Weighted	Average	Median	P25	P75	Median	Range
MW Chitedze	19/20	0.13	0.24	0.26	0.18	0.67	94	36-134
ZW Dom	20/21	0.78	0.63	1.76	1.53	1.96	36	32-41
ZM Liempe	20/21	0.15	0.15	2.99	2.61	11.2	5	1-6
ZM Kabeleka	20/21		0.15	1.71	1.09	4.76	9	3-13

- WTF method: average recharge was found to be 2.9± 2.2% rainfall across all sites the
 - No statistically significant differences in recharge (expressed % rainfall) was found between the Zimbabwe and Zambian sites.
- Chitedze had significantly lower recharge $(0.9\pm 0.13\%$ rainfall) compared to the other three $(4.1\pm 1.8\%$ rainfall).
- In terms of absolute average recharge • values (mm/a) Domboshawa (48±10)>Kabeleka (21±4)>Liempe (15±4)>Chitedze (8±2).

Recharge estimates (as % rainfall) using CMB were considerably higher, and unrealistic, for all sites

exception of Liempe and Kabeleka

Summary on GW recharge findings

- Annual recharge totals **do not differ** significantly under CA vs CT .
- Changes in groundwater levels, and annual recharge, are controlled by :
 - I. rainfall totals,
 - II. the nature and timing of larger rainfall events,
 - III. the local **hydrogeological conditions** in the shallow subsurface and the presence of low permeability horizons.
- With CA farming groundwaters are recharged from a wider range of rainfall events and may have an **earlier recharge response** during the onset of the rainy season.
- There is a **limited impact of nature-based solutions** (NbS) such as mulching and zero tillage on annual recharge totals in humid dryland settings in the SADC region.

Acknowledgements

GCRF UKRI Collective Fund for funding this research

Coche Challenges Research Fund

CEPHaS colleagues and supporting staff and farmers The greater CEPHaS network with members from the following institutions

All of you for listening to this presentation

Contact us at cephas@bgs.ac.uk

More information & project briefs: @CEPHaS_Soil , https://www2.bgs.ac.uk/CEPHaS/index.html

