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Abstract A significant increase in the number of anthropogenic objects in Earth orbit has necessitated the
development of satellite conjunction assessment and collision avoidance capabilities for new spacecraft. Neutral
mass density variability in the thermosphere, driven by enhanced geomagnetic activity and solar EUV
absorption, is a major source of satellite propagation error. This work investigates the impacts of space weather
driver forecasting uncertainty on satellite drag and collision avoidance maneuver decision‐making. Since most
operational space weather driver forecasts do not offer an uncertainty assessment, the satellite operator
community is left to make dangerous assumptions about the trustworthiness of the forecast models they use to
perform satellite state propagation. Climatological persistence‐based forecast models are developed for F10.7
and Kp. These models accurately capture the heteroscedastic and, at times, highly non‐Gaussian uncertainty
distribution on forecasts of the drivers of interest. A set of realistic satellite conjunction scenarios is simulated to
demonstrate the contributions of space weather driver forecast uncertainty on the probability of collision and
maneuver decisions. Improved driver forecasts, especially forecasts of F10.7, are demonstrated to be very useful
for enabling durable maneuver decisions with additional lead time (up to 24 hr for the period examined), though
the improvement depends on the specific conjunction scenario of interest.

Plain Language Summary As low earth orbit has become crowded with new satellites and debris,
operators have been forced to maneuver satellites to avoid collisions on a regular basis. The drag force on a
satellite, which can significantly affect the orbital path, varies depending on solar and geomagnetic activity.
Unfortunately, solar activity and resulting impacts at Earth are difficult to predict even just a few days in
advance. This paper traces space weather forecasting ability directly to impacts on satellite maneuver decision‐
making and finds that forecast uncertainty plays a critical role in making durable maneuver decisions.

1. Introduction
Recent rapid growth in the population of active satellites and debris objects in low Earth orbit (LEO) has led to a
clear need for satellite conjunction assessment (CA), and collision avoidance (COLA) maneuvering capability.
Today, a space domain awareness ecosystem exists that allows satellite operators to track objects in orbit, predict
conjunctions in advance, and make decisions regarding satellite maneuvering to mitigate the risk of a collision.
Organizations like the US Space Force's eighteenth and nineteenth Space Defense Squadrons provide conjunction
data messages (CDMs) to operators responsible for performing the subsequent risk analysis and making COLA
decisions for their assets.

With the advent of proliferated LEO constellations in recent years, CA tasks are routinely becoming more
automated to reduce operator burden. Considering this growing automation of CA and COLA tasks, many op-
erators have developed internal protocols for determining whether a COLA maneuver is appropriate for a
conjunction scenario of interest. Most maneuver decisions consider the probability of collision (Pc), computed
based on imperfect knowledge of the scenario and a model for evolving the states of the objects of interest. While
the interpretation of potential conjunction events is probabilistic based on imperfect measurements and models,
the potential collision event itself is deterministic. Given perfect observations and a perfect process model, the
probability of collision at any time before the conjunction event should be either zero or one. However, uncer-
tainty in measurements and satellite propagation complicates the analysis. As the time until the conjunction event
wanes, better knowledge of the state of each object from new observations, along with a lower process model
error, results in a better understanding of the likely outcome.
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Most potential conjunction events are identified during screening about 7 days in advance of the time of closest
approach (TCA) (M. Hejduk & Pachura, 2017; George & Harvey, 2011). However, many operators choose to
wait until 12–24 hr or less before TCA to decide whether or not to maneuver (Krage, 2023; Moomey et al., 2023).
This waiting is necessary because there is often significant process error in the state propagation of the objects
involved in the conjunction. Updating the states of the objects with recent measurements constrains the growth of
this process error.

Operators choose to wait to make maneuver decisions because collision avoidance maneuvers are costly. While
the amount of propellant expended for collision avoidance maneuvers is typically small compared to the amount
used for station‐keeping, such maneuvers can routinely prevent a satellite from performing its desired task (Earth
observation, serving users, charging solar panels, communicating with ground stations, etc.) for hours on end.
However, many active satellites (especially small satellites) lack propulsion systems capable of performing last‐
minute COLAmaneuvers. Instead, these satellites may often use differential‐drag techniques, which can mitigate
risk but require several days' notice to be effective. Even for satellites with propulsion systems, it is often
inconvenient or impossible to maneuver at a moment's notice since this likely means missed passes of ground
targets or lost communications opportunities. For tracked, non‐maneuverable debris objects, laser‐nudging may
soon be an effective means of collision avoidance maneuvering (NASA, 2023), but even if this approach is
implemented, it would still require advance notice exceeding the current standard for operations.

A key challenge in space domain awareness focuses on improving covariance realism, or making sure that the
predicted uncertainty in satellite state aligns the measured errors. If satellite state propagation accuracy and
uncertainty are improved, good maneuver decisions could be made sooner with the same level of risk. The
following sections discuss limitations in our ability to predict satellite motion in LEO, how these limitations
impact the conjunction risk assessment process, and what steps can be taken to make durable collision avoidance
maneuver decisions sooner. After a discussion of the uncertainties involved in predicting satellite drag in Sec-
tion 2, capabilities and limitations in forecasting atmospheric neutral mass density are discussed in Section 3.
Then, the probability of collision metric is introduced and a dangerous scenario is highlighted using actual
historical CDM data in Section 4. Finally, a climatological persistence‐based heteroscedastic forecast model is
developed for F10.7 and Kp. Conjunction assessment scenarios for true collision events are simulated in Section 6.
Semi‐analytical and numerical methods for translating space weather driver uncertainty into satellite state un-
certainty are detailed in the Appendix A.

2. Satellite Drag
As the largest contributor to state propagation error in LEO, significant effort has been devoted to improving
satellite drag models in recent years. The acceleration due to atmospheric drag on a satellite is computed by

r̈D = −
1
2
CdA
m

ρv2relerel, (1)

where r is the satellite position vector in an Earth‐centered inertial frame, ρ is the atmospheric neutral mass
density, vrel is the magnitude of the velocity of the satellite relative to the motion of the atmosphere, Cd is the drag
coefficient, A is the frontal area of the satellite normal to the direction of motion relative to the atmosphere, m is
the mass of the satellite, and erel is the unit vector in the direction of satellite relative velocity. In practice, the
uncertain Cd, A, and m are often combined as

B =
CdA
m

, (2)

or, in some cases

B∗ =
CdAρ0
2m

, (3)

where ρ0 is the reference density of 0.15,696,615 kg/(m
2 ⋅ RE), and RE is the average Earth radius (Hoots, 1980). It

follows that
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r̈D = −
1
2
ρv2relBerel = −

ρ
ρ0
v2relB

∗erel. (4)

To accurately predict satellite drag acceleration r̈D(and evolve uncertainty in that prediction), it is prudent to
consider each term in Equation 1 as uncertain. vrel and erel are often well characterized during quiet periods
because the winds in the upper atmosphere are much smaller in magnitude than the spacecraft's velocity.
However, geomagnetic activity disturbances have been shown to produce enhanced neutral winds in the upper
atmosphere. The speed of the neutral winds can, at times, approach 1 km/s, which can cause rapid unpredictable
fluctuations in apparent velocity for a LEO satellite (Wang et al., 2008; Zhang & Shepherd, 2000). Mass m,
exposed frontal area A, and drag coefficient Cd are often very uncertain because these quantities require
knowledge of the properties of the object being tracked that cannot be readily estimated directly from remote
measurements. The rough size and mass of the object under study have been inferred from past orbital history
(Gondelach et al., 2017), measurements of radar cross section (Dickey & Culp, 1989) or visual magnitude
(Šilha, 2020). A and Cd are a function of satellite attitude, which is difficult to measure in real‐time. Still, light
curve measurements have been used to better characterize the attitude dynamics for tumbling objects of interest
(Linares et al., 2014; Schildknecht et al., 2017; Šilha et al., 2018). This knowledge of satellite attitude dynamics
can be helpful for understanding and predicting how Cd and A vary in time. However, most previous efforts at
improving drag models have focused on estimating the combined term B or B* instead of inferring each parameter
individually (Bowman, 2002; Gondelach et al., 2017; Saunders et al., 2012).

In an analysis of satellite drag forecasting error during 1 month of observations, M. D. Hejduk and Snow (2018)
found that uncertainty in atmospheric density outweighed uncertainty in B 92% of the time for the population of
satellites considered in their study. Variability in neutral mass density is common on both long and short time-
scales due to solar EUV radiation and Joule heating, respectively. Because satellite decay is so strongly influenced
by solar and geomagnetic activity, significant effort has been devoted to developing improved space weather
models and observation techniques to reduce the uncertainty that arises due to this extreme variability in neutral
mass density.

Error in density forecasts can be attributed to either error in the predicted space weather model inputs or error in
the models themselves. When focusing on errors in the space weather inputs, Bussy‐Virat et al. (2018) found that
accounting for uncertainties in projected F10.7 and Ap in the per‐object covariances at TCA can lead to signif-
icantly different estimates of Pc. When considering error in the neutral mass density models, Hejduk and Snow
(M. D. Hejduk & Snow, 2018) found that ignoring model uncertainty can cause dangerous conjunction events to
go unnoticed, since it makes operators overly confident in potentially poor satellite state propagations. Gondelach
et al. (2022) also quantified and propagated model uncertainty, but included a correlation factor between the
position uncertainties of the two objects involved in the conjunction. This correlation recognizes the idea that,
often, both objects involved in a conjunction will travel through similar perturbed regions of the atmosphere. In
general, the goal of all of this work in uncertainty quantification is to accurately represent the true uncertainty in
the predicted state of the objects being tracked based on the information available at the time of the estimate. This
covariance‐realism effort ensures that maneuver decisions are made based on accurate projected uncertainties,
and is of much interest to the space surveillance and tracking community (Aristoff et al., 2016).

One factor that makes covariance realism difficult in operations is a lack of transparency and accessibility from
both the atmospheric modeling and space weather forecasting fronts. The atmospheric model most commonly
used by the United States Space Force for propagating tracked objects and creating conjunction data messages is
HASDM (High‐Accuracy Satellite Drag Model) (Storz et al., 2005). HASDM has the benefit of being opera-
tionally calibrated using tracked reference objects and, as a result, provides very good estimates of mass density in
LEO. However, the density predictions from the model are not available to the vast majority of operators, which
leaves them to use other models (usually empirically derived) for their analysis on possible mitigation actions.
NRLMSISE‐00 (Picone et al., 2002), NRLMSISE‐2.0 (J. T. Emmert et al., 2021), DTM (Bruinsma, 2015), and
JB2008 (Bowman et al., 2008) are popular choices. Some of these models (including JB2008) use space weather
drivers with forecasts that are not freely available to the public. The disconnect between the operational model
used to create CDMs and the analysis models used to determine mitigation actions creates dangerous and
avoidable complexity in the collision avoidance decision‐making process.
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3. Forecasting Neutral Mass Density
Variability in neutral density within the thermosphere is driven largely by the absorption of solar radiation in the
XUV, EUV, and FUV ranges as well as Joule heating and particle precipitation during periods of enhanced
geomagnetic activity. Solar UV flux drives order‐of‐magnitude changes in mass density over a period of years
with variability in the solar cycle. Geomagnetic activity enhancements, however, can cause unpredictable changes
in mass density of similar scale on the order of hours. Many models of the upper atmosphere rely on space weather
indices and proxies, collectively referred to as space weather drivers as inputs to describe these dynamics. The
drivers help to simplify complex information about the solar or geospace environment into a set of scalar
variables.

One space weather driver of particular interest is F10.7, the daily solar radio flux at 10.7 cm, which is generally a
good proxy for solar EUV flux (Covington, 1948; Picone et al., 2002; Tapping, 2013). The 81‐day average of the
proxy, F10.7A, is also sometimes used as an input for models. A major geomagnetic index of interest is Kp, a 3‐hr
index which is computed by combining measurements of Earth's magnetic field from 13 specific observatories
around the world (Bartels, 1949). The 3‐hrKp index is often converted to a linear‐scaled alternative called ap. The
Ap index is the daily average value of ap. Each of these indices measures geomagnetic activity, but all three are
used regularly for various reasons. Another important geomagnetic index is Dst, the storm‐time disturbance
index, which measures ring current geomagnetic activity from observatories closer to the magnetic equator. It
offers 1‐minute temporal resolution, compared to three‐hours for Kp. These geomagnetic indices together help to
estimate the rapid enhancements in neutral density in the thermosphere associated with Joule heating and particle
precipitation that accompany geomagnetic activity enhancements.

Figure 1 shows the passive orbital decay of SATCAT 477, 540, and 4,006, three debris fragments from the Thor‐
Ablestar breakup event of 1,961. The background of the figure shows the historical globally averaged neutral

Figure 1. Passive altitude decay of SATCAT 477, 540, and 4,006 (Thor Ablestar Debris) through multiple solar cycles with
globally averaged neutral mass density shown in the background for reference. Altitudes are time‐averaged over one orbit.
Below, a history of F10.7 and Ap are correlated with the density trends observed over time.
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mass density derived from ground‐based radar tracking of objects (J. Emmert et al., 2021), resolved in time and
altitude. The history of satellite time‐averaged altitude was extracted from two‐line element (TLE) tracking data
for the objects of interest. The satellite paths clearly show higher rates of decay during solar maximum (high F10.7)
than during solar minimum (low F10.7). Small deviations in decay rate, mostly visible during solar maximum, are
from rapid density enhancements caused by increased geomagnetic activity. Even though SATCAT 540 starts at a
higher altitude than SATCAT 4006, it deorbits faster because it has a larger ballistic coefficient.

Several empirical and physics‐based models for the dynamics of the thermosphere‐ionosphere system have been
developed over the years. Recent in situ measurements of thermosphere mass density from satellite missions like
CHAMP (Reigber et al., 1999), GRACE (Davis et al., 2000), and Swarm (Doornbos et al., 2009) have provided
excellent, while sparse, observations useful for refining atmospheric models. While significant progress has been
made in modeling the response of the neutral thermosphere to enhanced geomagnetic activity, forecasts of the
space weather drivers that drive the models have not been comparably improved. These poor forecasts of the
space weather drivers can at times be the dominant source of uncertainty in predicting satellite drag.

Recent work in (Licata et al., 2020) benchmarked the performance of operational forecasting models for key
space weather drivers like F10.7 and Ap, among others. Such forecasts are typically driven by a combination of
historical trends in the driver under study and a set of current related observations at the forecast time. Recurrence
and persistence are two important principles for these forecasts. Recurrence considers previous observations at
interval solar rotations backward in time, while persistence uses the last known value as the best guess for future
values of the driver. F10.7 forecasts can be improved beyond the recurrence or persistence models by supple-
menting EUV radiation observations from the east limb of the sun or a modeled nowcast of the Sun's surface
magnetic field (Henney et al., 2012, 2015; Lean et al., 2009).

Forecasts of geomagnetic indices like Kp and its derived ap are typically driven by a combination of solar wind
measurements at the L1 Lagrange point and a history of measurements for the index. Since measurements of solar
wind at L1 provide very little advance notice of what is to arrive at Earth, forecasts of these indices typically have
a short useful horizon time. Shprits et al. (2019) found that forecasts for Kp are only reliably accurate for a time
horizon of 6–20 hr, depending on the solar cycle. Beyond 1–2 days out, forecasts based on recurrence or
persistence generally produce the best results (though performance is still quite poor). The skill of a forecast
model can be represented by

skill = 1 −
RMSE
σx

, (5)

where, considering N samples with true values x, estimated values x̂, and true mean μ,

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ΣN
i=1(xi − x̂i)2

N

√

(6)

and

σx =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ΣN
i=1(xi − μ)2

N

√

. (7)

A skill score of 1 corresponds to a perfect forecast and 0 corresponds to a forecast where the RMSE is equal to the
standard deviation of the observations. The skill can also be negative if the error in the forecast is larger than the
variability in the data it's trying to predict. A good forecast should have a skill score as high as possible.

Figure 2 shows the RMSE and skill of the NOAA Space Weather Prediction Center (SWPC) F10.7 and Ap
forecasts as a function of time (using a 5‐year rolling average to reduce noise and make general trends apparent).
These forecast models were developed in 2014 and then verified on historical data from 1986 to 2013) (NOAA
Space Weather Prediction Center, n.d.). Similar verification effort has been applied to forecast models for other
space weather agencies (Paouris et al., 2021). The forecasts are separated by their time horizon from 1 to 7 days,
and a plot of the monthly average sunspot number is overlaid on each. Starting with F10.7 forecasts in (a) and (b),
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there is a clear correlation between RMSE and the solar cycle. The lowest RMSE is achieved during solar
minimum. In all cases, RMSE is generally low when the forecast horizon is small, but then grows steadily with
forecast time. The skill of the F10.7 forecast appears relatively constant over time (for a forecast time horizon of
interest). This is because solar radio flux exhibits much more natural variability during solar maximum, so the
increased RMSE is counterbalanced by the increased variability in the true values being estimated.

The Ap forecasts (c) and (d) show similar correlation with the solar cycle. Increasing the forecast time horizon
does not seem to change the RMSE or skill considerably, though. On close inspection, it appears that the
maximum in forecast skill occurs during the declining phase of the previous solar maximum. This improvement in
geomagnetic index forecasting may be attributable to the elevated coherence in the interplanetary magnetic field
(IMF) that generally occurs during this decline in the solar cycle. It is unfortunate that both the F10.7 and Ap
forecasts struggle during solar maximum since that is the period when neutral mass density is large enough in the
most populated regions of LEO for geomagnetic or solar density enhancements to have a considerable impact on
satellite drag.

Figure 3 shows the deviations in ap and F10.7 from truth using a simple persistence‐based 1‐day forecast over all
recorded history for the drivers from 1957 to 2023 from the Hemholtz center at GFZ Potsdam. Figure 3a shows
that ap forecasts are very much heteroscedasticwith respect to the mean forecast. A heteroscedastic forecast has a
variance that is dependent on the start value, the time horizon, or both. Both the mean and the distribution of the
forecast variance are clearly a function of the expected value of ap, with very skewed distributions around low
forecasted values of ap. Figure 3b shows that the F10.7 forecast is also heteroscedastic (though less so than ap).

Figure 4 complicates this scenario further. It shows NRLMSISE‐00 modeled density as a function of the input
drivers, where we assume that uncertainty distributions on the drivers are Gaussian (even though Figure 3 shows
that this is often not a valid assumption). 4(a) shows densities computed with input F10.7 = 120, F10.7A = 120, and

Figure 2. Forecast quality varies with the solar cycle and the desired time horizon. (a) and (b) show the 5‐year rolling average
of RMSE and skill, respectively, for NOAA SWPC's forecasts of F10.7 (from 2014 model verification). (c) and (d) show a 5‐
year rolling average of RMSE and skill for Ap. Forecasts of F10.7 exhibit greater skill than those for Ap. The skill of the F10.7
forecast is relatively constant since the variability of the proxy is much larger during solar maximum than during solar
minimum.
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Figure 3. Deviation from 1‐day forecasted drivers based on a simple persistence model using the historical record. (a) Shows
the deviation in the three‐hour ap (which has gaps because discrete values of ap are mapped from Kp), and (b) shows the
deviation in the daily adjusted F10.7. Both are heteroscedastic.

Figure 4. NRLMSISE‐00 Densities as computed with Gaussian distributed input uncertainties of (a) σδap = 10,
(b) σδF10.7 = 10, and means as denoted on the x‐axis. 450 and 750 km altitudes are shown to demonstrate how
heteroscedasticity for density with respect to the drivers changes with altitude.
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ap =N (x,102) , while 4(b) shows densities from assuming F10.7 =N ( x,102) , F10.7A = x, and ap = 20. For each
case, the modeled density is shown for 450 and 750 km altitude. Figure 4a's 450 km case very clearly shows that
NRLMSISE‐00 modeled density is also heteroscedastic with respect to the mean of the input distribution on ap.
Above an input mean of 40, the uncertainty in the output appears relatively constant, but below 40, the distribution
in density has much greater spread and no longer appears symmetric (especially considering that input ap cannot
drop below zero, so each negative sampled point is assigned an ap of zero). At an altitude of 750 km, uncertainty
in ap appears much more consistent across input means. Figure 4b repeats the same analysis, but using an un-
certain F10.7. Interestingly, uncertainty in modeled density appears to be more heteroscedastic with respect to the
mean input F10.7 with increasing altitude, opposite fromwhat was observed for ap. Differences in uncertainty over
input mean F10.7 are much more apparent at 750 km than they are at 450 km. In Section 5, climatology is used to
create an empricical forecast model for the drivers that allows for heteroscedastic, non‐Gaussian forecasts.

4. Space Weather and Collision Probability
Over the years, several metrics have been proposed and used in an attempt to quantify the risk of a collision
between two resident space objects (RSOs). In the early days, a predicted offset distance was the only parameter
considered in the conjunction assessment process (Patera, 2001). But as probabilistic projections of satellite state
became available, using deterministic offset distances meant leaving probabilistic information on the table.
Today, most operators agree that tracking the probability of collision, computed by considering both the predicted
offset distance and the evolved state covariances for the objects of interest (as well as their presumed hard body
radii), is a prudent approach to conjunction risk assessment. A satellite operator will generally assign a probability
of collision maneuver threshold based on a balance of the risks of a collision and the costs of performing too many
maneuvers. NASA generally uses a Pc maneuver threshold of 10− 4 (i.e., a probability of 1

10,000), while SpaceX
generally uses a probability threshold of 10− 5 (or 1

100,000). NASA, however, tends to maneuver 24 hr prior to TCA
while SpaceX delays maneuvering until 12 hr or less before TCA, which significantly reduces the maneuver
burden (Moomey et al., 2023).

When conjunction relative velocities exceed 1 km/s, it becomes reasonable to assume that motion is rectilinear
and that the interaction between objects occurs on a plane in the encounter frame of the conjunction. The
probability of collision is then a function of the combined hard body radius of the two objects involved in the
conjunction, R, the position offset vector in the conjunction plane, rm (with major and minor axis components xm
and ym), and the 2‐dimensional state covariance in the encounter plane with standard deviation components σx and
σy. Pc is computed by

Pc (R, xm, ym, σx, σy) =
1

2πσxσy
∫

R

− R
∫

̅̅̅̅̅̅̅̅̅
R2 − x2

√

−
̅̅̅̅̅̅̅̅̅
R2 − x2

√ e
− 1

2[(
x− xm
σx )

2

+(y− ym
σy )

2

]
dy dx. (8)

Different implementations of solvers for the equation above have been developed over the years that have become
increasingly computationally efficient and robust, including (Alfano, 2005; Chan, 1997; Foster & Estes, 1992;
Patera, 2001). More information about computing a 2D probability of collision can be found in (Alfano, 2007).

Figure 5 shows that for a conjunction scenario of interest, there are two possible ways to achieve a low Pc. The
right side of the Pc maximum for each curve is called the dilution region. It is impossible to achieve a high
probability when position uncertainty at TCA is large. Reducing the covariance size (i.e., making better obser-
vations and having better predictions) in the diluted region leads to an increase in the Pc. To the left of each
maximum is what is referred to as the robust region. Pc is low here when the predicted offset distance is much
larger than the uncertainty in object positions. Decreasing covariance size in the robust region leads to a reduction
in Pc. The ratio of the offset distance to the covariance size is important in determining when the transition into the
robust region takes place. Conjunctions that end in a collision will rarely enter the robust region since, at least for
well‐tracked conjunctions, Pc approaches 1 as uncertainty in satellite position at TCA is reduced.

To better understand the impact that poor space weather forecast models can have on Pc, a history of real CDMs is
useful. In 2019, a set of partial CDMs was publicly released as part of an ESA conjunction assessment challenge
(Uriot et al., 2022). An example conjunction from this data set with some of its CDM parameters and relevant
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space weather drivers is shown in Figure 6. Unfortunately, the CDMs provided in the data set are anonymized, so
the date of this event is unknown. Figure 6a shows F10.7 as recorded during this period. These values of F10.7 are
quite low and relatively stable with no large enhancements or fluctuations. Figure 6b shows the ap index values
recorded during the conjunction assessment period. The enhancement in ap from TCA‐4d to TCA‐2d might be
expected to contribute to neutral density enhancements, which could in turn lead to increased drag on the
propagated objects. Figure 6c shows the predicted offset distance from each CDM. Prior to the period of enhanced
ap, the offset distance is predicted to be large. After seeing increased drag during the period of enhanced
geomagnetic activity, however, there is a large drop in the predicted offset distance—making a collision suddenly
appear much more likely. If the storm was predicted well, a sudden change in the predicted offset distance
wouldn't occur. Figure 6d shows the computed probability of collision for each CDM in the conjunction chain.
The Pc plot initially shows steady declines in Pc as covariance drops with more recent measurements, as ex-
pected. Then, when the predicted offset distance drops suddenly following the storm, it is accompanied by a
sudden increase in the predicted Pc. While Pc in this case is below the thresholds for maneuvering, major
fluctuations in the predicted Pcwhen close to TCA are problematic since they complicate the maneuver decision‐
making process. This conjunction series demonstrates the problems that arise when space weather forecasts are
not accurate or considered in the conjunction assessment process. Improving space weather forecasts and the way
that they are handled in CA is critical for protecting against events like this. Otherwise, the capabilities of the
entire CA pipeline will remain diminished during periods of geomagnetic storms and other intervals of enhanced
geomagnetic activity.

5. Constructing Empirical Space Weather Driver Forecasts
In order to simulate realistic variability in the drivers (and thus mass density, drag, and satellite state), it is
necessary to consider an uncertain forecast model for F10.7 and ap. In both cases, a procedure built on empirically
fitting a distribution to climatology is used. The basis for these forecasts is a persistence assumption. The his-
torical record of the drivers is used to track the distribution of deviations from the persistence forecast. The
nominal expected forecast is the expected value of the persistence forecast plus the expected value of the fitted
deviation distribution.

Figure 5. Probability of collision as a function of the position variance and predicted offset distance at TCA. Regions to the
right of maximum Pc are considered diluted, and maneuver decisions cannot be reliably made here. Increasing the offset
distance has the effect of reducing the maximum Pc and pushing this maximum further to the right.
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Operational forecasts of Kp and ap may be slightly better than this simple persistence model, but Figure 2 and
Shprits et al. (2019) together suggest that these more complex models will not perform substantially better.
Operational forecasts for F10.7, however, may be significantly improved by considering recurrence in addition to
persistence but a lack of historical forecast record makes it difficult to know what realistic model performance
looks like. Closed‐source operational forecast models without a published historical record make benchmarking
and analysis difficult. This work is left to assume the simple persistance model because of this lack of available
data on existing models.

The desired model should accept the current value of the driver of interest along with a desired forecast time
horizon. The output is a set of parameters for distribution fit to the observed deviations from the historical record.
A distribution of ap generally has large gaps (see Figure 3) since discrete values of Kp on a scale of 0–9 are
mapped to discrete values of ap. For this reason,Kpwas deemed to be better suited for model fitting. A scaled beta
distribution is used for Kp since it allows for the strict constraints on the upper and lower bound [0, 9], and can
incorporate bidirectional skewness when approaching each of those bounds. The location parameter (lowest
possible value) on deviation from Kp0 is − Kp0, and the scale parameter is always 9, since that is the span of Kp.
The shape parameters at and bt are fitted to the historical deviations at forecast horizon time t.

FKp (Kp0,t) = Kp0 + β(at,bt, − Kp0,9) (9)

It is straightforward to translate between Kp and ap as needed. Figure 7 shows a sample of the forecast distri-
butions produced when the initial Kp is 0, 1, 5, 8, or 9. These values were chosen to highlight the boundedness of
the scaled beta distribution within Kp's allowed range. (a) Shows the distributions when the forecast horizon is
3 hr, while (b) shows the distributions from the same initial conditions when the forecast horion is 24 hr. The
longer forecast horizon leads to uncertainty distributions with much more spread. These trends (both the skewness

Figure 6. Parameters of interest from a real set of CDMs belonging to a conjunction of interest. (a) Shows F10.7 at the time
each CDM was generated, (b) shows the three‐hour ap index, (c) shows the predicted offset distance from each CDM, and
(d) shows the resulting Pc over time. Large jumps in Pc can likely be attributed to poor forecasting of the geomagnetic
enhancement apparent in ap between TCA ‐ 5days and TCA‐2d.
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near the bounds and the spreading with increasing forecast time) are plainly apparent in Figures 3 and 2,
respectively. Eventually, with enough time horizon, the forecasts should all start to converge on the climatological
average distribution for Kp.

A similar process was carried out for modeling F10.7 (not shown in the figure), but a Gaussian distribution is used
instead of a scaled beta distribution. Since F10.7 is not discrete like Kp, a binning approach was required to
determine forecast uncertainty parameters from the climatology. A history of forecast errors was first computed
for each of 50 bins from 60 sfu to 450 sfu (each bin is approximately 8 sfu wide). The last known value of F10.7
determines the reference bin, while the lookahead window is considered when sampling the historical deviations
from the start values within the bin. Since F10.7 is only released once per day, only forecast periods in daily
increments are possible. Thus, given a start value and a desired lookahead time, the persistence forecast with
uncertainty bounds for F10.7 may be computed by

F(F10.7,t) = F10.70 +N (μt,σ2t ). (10)

Similarly to Kp, the F10.7 forecast uncertainty spreads with horizon time in general. These forecast models are
used to generate sampled driver forecasts within the prescribed uncertainty distributions in the simulation results
section below. For detailed analysis on how satellite state perturbations evolve from uncertain space weather
driver forecasts, see the Appendix A.

6. Simulation Results
The newly developed heteroscedastic driver forecast models will be applied to real historical driver data from the
seven‐day period from 27 October 2003 00 UTC to 3 November 2003 00z. This period was selected because it
includes the Halloween storm of 2003. Beginning with known start drivers, 7 days' worth of forecast distributions
were computed for F10.7 and Kp. Figures 8a and 8b show the true values for the drivers along with 100 potential

Figure 7. The parameters of a scaled beta distribution is fit to climatology for Kp. Provided the current value of Kp and the
desired forecast time, the simple persistance‐based forecast produces an uncertainty distribution. (a) Shows the distributions
with a forecast window of 3 hr, while (b) shows the distributions with greater spread after a 24‐hr forecast. Kp can easily be
transformed to ap and vice versa. A similar approach is used for modeling F10.7, but Gaussian distributions are used.
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driver trajectories sampled from the uncertainty distribution at each timestep. Each set of driver trajectories
corresponds to a different atmospheric profile for a satellite to be propagated through. Three example cases are
explored to trace the impact of uncertainty in each driver on satellite state and collision probability.

• Case (1) considers F10.7 known and Kp uncertain
• Case (2) considers F10.7 uncertain and Kp known
• Case (3) considers both F10.7 uncertain and Kp uncertain

If F10.7 orKp are presumed known, the true value over the time period of interest is used in propagation. Figure 8c,
d, and e show propagated position deviations in the radial, along‐track, and normal (RTN) component directions

Figure 8. 100 samples deviating from a reference truth state from October 27 to 3 November 2003 according to climatological driver uncertainty. (a) Shows sample
deviations in the F10.7 proxy, (b) shows sample deviations in Kp. After propagating a spacecraft through modeled density from these sampled drivers, (c) shows RTN
position errors considering only δKp, (d) shows RTN position errors considering only δF10.7 , and (e) shows RTN position errors showing the combined effect of both δF10.7
and δKp.
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for an object with B = 0.02 m2/kg, initial altitude of 550 km, eccentricity of zero, and inclination of 80°. The
evolved satellite positions were computed using a propagator that considered Keplerian dynamics with a corrector
term for Earth's J2 oblateness and a variable atmospheric density term for each timestep. The satellite was
propagated first assuming no drag to query rough orbital positions, then neutral mass density was computed at
each position using NRLMSISE‐00 for each timestep according to the sampled space weather driver forecast.

The first column, 8(c), shows the deviations in positions from a forecast where only Kp is uncertain. The
magnitude of the position deviation is much larger in the along‐track component than in the radial component,
which is also much larger than the deviation in the normal component. This agrees with intuition from Equa-
tions A4 and A5 in the Appendix A, which suggest that along‐track error should grow proportionally to the
integral of the normalized forecast density error and that the radial component would grow proportionally to the
double‐integral of the forecast density error. The normal component deviation is small because it is driven by a
slow plane‐change, and indeed it oscillates between bounds as was predicted in Equation A14. The mean position
error in the radial and along‐track directions diverges quickly from zero before the error growth rate is slowed
during the period of geomagnetic activity enhancement during the storm (between days 2–5 from forecast start).
In this case, the storm acted to balance an existing bias in the sample forecasts that existed prior to the storm.

Figure 8d shows the deviations along the orbital path when there is only uncertainty in the forecasted F10.7. While
the relative magnitudes of the deviations between the components remain similar to what was found in (c), the
actual magnitudes are much larger since thermospheric mass density is very sensitive to changes in EUV flux.
Figure 8e shows the combined effect of forecast uncertainty in both Kp and F10.7. Since the magnitude of de-
viations in the F10.7‐deviated case significantly outweigh those from the Kp‐deviated case, the distributions look
similar between (e) and (d). These propagations suggest that uncertainty in F10.7 plays a more significant role in
determining satellite position uncertainty than uncertainty in forecasted Kp. We would expect that variability in
Kp would have a large impact on satellite drag for this scenario in particular because it is highly inclined and
passes through the auroral regions, yet uncertainty in F10.7 still appears dominant.

Now, this propagation will be applied to an example conjunction scenario to investigate how space weather
forecasting uncertainty impacts Pc and maneuver decisions. To simulate an informative set of scenarios, a starting
satellite state is initialized for a circular orbit at 650 and 850 km initial altitude, each with an inclination of 80°.
The same time period of interest (27 October 2003 00 UTC to 3 November 2003 00z) is considered.

Starting at the initial time, 100 sample satellites with perfect initial state knowledge are propagated forward. The
atmospheric density profile that each object travels through is computed by sampling deviations on F10.7 and Kp
as shown in Figures 8a and 8b. A reference object is also propagated using the true space weather drivers during
this period. At 3‐hr intervals, a new set of propagated objects is initialized at the location of the reference point for
each step. This process simulates taking new measurements every 3 hours that constrain state uncertainty at that
time to zero. The expected state and covariance at TCA for each iteration will differ because the first iteration will
have been propagated for 7 days, the second for 6 days 21 hr, and so on. The probability of collision at TCA is
computed using Equation 8 based on these expected states and covariances, which allows us to compare the
computed probability of collision as a function of time until TCA under a variety of circumstances.

To emphasize a critical scenario, a true collision is simulated where the primary object (being tracked) and
secondary object have a true final centroid position offset, rm = [0.1, 0.1, 0.1] m and each object involved in the
conjunction has a hard body radius of 30 m. Such a small centroid offset for a combined hard body radius of 60 m
means that this collision will surely occur.

The velocity of the secondary object relative to the primary object can play an impactful role in the probability of
collision, so this scenario selects a random uniform sample of 1,000 relative velocity magnitudes on the interval
[5, 15] km/s. The relative velocity direction is computed by a uniform random sample of 1,000 unit vector di-
rections. This stochastic approach to modeling potential conjunction geometries is critical for getting a fuller
picture of potential maneuver decisions. To keep the example simple, the state covariance matrix for the sec-
ondary object at TCA in all cases is the same as the covariance of the primary, just oriented in the RTN frame with
respect to the secondary object rather than the primary. Still, the assumption that the covariances are not correlated
when computing the probability of collision is retained for a more realistic Pc evaluation.

Figure 9 shows the probability that the computed Pc exceeds a maneuver threshold of 1 × 10− 4 as a function of
time until TCA for each of the example cases. The period from − 7 to − 4 days from TCA is excluded from the
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plots because there was zero probability of detection during this period. Figure 9a shows maneuver decision
probabilities by case at an altitude of 650 km, while (b) shows 850 km. If a maneuver decision needed to be made
n days prior to TCA, the figure shows what decision might be made for each of the three cases at the two query
altitudes. The plot demonstrates that, considering climatological uncertainty in the driver forecasts, it is difficult
to make correct maneuver decisions early at 650 km under any circumstance during the study period. Case (3)
shows that a correct maneuver decision cannot be reliably made until only 3 hours prior to TCA. Even removing
uncertainty in F10.7 altogether in case (1) provides very little additional notice. Removing the uncertainty in Kp in
case (2) makes a similar impact on maneuver decision time at 650 km. In all cases, the uncertainty in the drivers
makes it very difficult for Pc to be large enough to justify a maneuver until just before TCA. It is important to
remember that measurement uncertainty is neglected for this scenario, so if both indices were certain an operator
would have perfect knowledge of the conjunction at all times and would know to maneuver as soon as the
conjunction was identified.

At 850 km altitude, there is a clearer difference between the cases since drag is not as impactful at this altitude in
perturbing the satellite state. Case (1) offers nearly 24 hr of additional maneuver notice over case (3). Case (2)
offers slight improvement over the baseline case (3). Even case (3) can make a good maneuver decision 12 hr
prior to TCA. Again, we see that there is potentially more value in reducing forecast uncertainty for F10.7 as
opposed to Kp, even though F10.7 is less susceptible to rapid and unpredictable enhancements. The sensitivity of
neutral density to variability in F10.7 should not be underestimated. At higher altitudes it takes a long time for
satellite position errors to accumulate from changes in density, so maneuver decisions earlier than the standard
12–24 hr may be generally feasible across a wide variety of environmental conditions. It stands to reason that at
even higher altitudes where the baseline density of the atmosphere is very low, space weather forecasts make little
difference in conjunction assessment since they would be well characterized from the very beginning.

Figure 9. Probability of maneuvering for a conjunction event that ends in a collision as a function of time from TCA.
Maneuver decisions are based on a Pc threshold of 10− 4 and each case is demonstrated at (a) 650 km, (b) 850 km to show
altitude dependence. This comparison is done is at solar maximum (TCA is 3 November 2003). Altitude dependence will
change according to the solar cycle.
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In general, the altitude region where space weather forecasts are useful for conjunction assessment will vary with
the solar cycle. This effort has shown that there is a region below which forecast uncertainty paralyzes decision‐
makers by diluting confidence in satellite state. This is clearly apparent at 650 km in Figure 9. It is also possible to
show that there is an upper bound in altitude where the baseline drag is so low that space weather forecasts do not
make an actionable difference. The useful region characterized by these upper and lower bounds will shift up-
wards during solar maximum and downward during solar minimum.

7. Conclusion
This work has highlighted some of the challenges in interpreting and using forecasts of the space weather drivers
for satellite conjunction assessment. First, it was shown that the popular deterministic driver forecast models
generally perform more poorly in and around solar maximum, just when neutral density is large enough in LEO
for drag uncertainty to become very important for satellite conjunction assessment. Then, historical error dis-
tributions on persistence models were used to show that forecasts of the drivers are heteroscedastic, where the
uncertainty in the predicted value for a driver depends on the start value and the time horizon of interest. The
geomagnetic index Kp (along with its derived ap and Ap) represents a unique challenge in that uncertainty
distributions for this index regularly exhibit significant skewness when approaching the bounds on possible
values. Even if driver uncertainty distributions were Gaussian, NRLMSISE‐00 and other atmospheric models
produce a nonlinear mapping from driver uncertainty to neutral density uncertainty which can further complicate
conjunction assessment.

An empirical heteroscedastic forecast model was developed for Kp and F10.7 which allowed us to simulate sat-
ellite motion with uncertain drag. It was found that, at least for the time period of the study, uncertainty in F10.7 is
the dominant contributor to satellite state uncertainty, even though forecasts of Kp were much poorer. Large
geomagnetic activity enhancements are rare, but can cause large increases in density on very short timescales.
Handling forecasts of Kp with skewed distributions allows us to appropriately consider the probability of these
rare events, though it might take several solar cycles for them to occur. A conjunction simulation showed that a
forecast model with known F10.7 had the potential to provide more than 24 hr' advance maneuver notice over the
models that used an uncertain F10.7, though the impact of driver uncertainty on satellite drag varies with altitude,
inclination, and the solar cycle. Future work will investigate the actual error performance of real forecasts
compared to the simple empirical and persistence‐based forecasts used in this work. The procedure used in this
effort may also be extended to investigate uncertainty in the forecasts for other drivers used in higher‐fidelity
atmospheric models.

It is difficult to investigate and understand the consequences of driver forecast uncertainty when space weather
agencies provide a deterministic expected forecast without uncertainty. The satellite operator community could
substantially benefit from being provided forecast uncertainties rooted in the physics behind the drivers. As it
stands today, operators are left to rely on their own empirical assessment of forecast error performance to estimate
uncertainty (as was done in this work). Some operators may even assume that the provided forecasts are perfect,
an assumption which leads to poor covariance realism, and potentially an unanticipated collision. Accurately
representing and communicating the uncertainty in the forecasted drivers can be complicated for non‐Gaussian,
heteroscedastic forecasts, but that uncertainty distribution information is critical for improving the satellite
conjunction assessment process and avoiding dangerous collisions in orbit.

Appendix A: Satellite State Perturbations in Dynamic Drag Environments
Various approaches have been implemented in practice to propagate spacecraft state uncertainty considering the
influences of space weather effects throughout the propagation. Most operational methods feed the forecasted
space weather drivers through an empirical model for neutral density. This nominal density profile is then used to
propagate the state of the spacecraft. Clearly, there is some uncertainty in the model and in the forecast that needs
to be accounted for in this propagation in order to accurately represent the satellite state covariance at the time of
closest approach. In practice, this uncertainty quantification is often performed by again employing an empirical
model that considers historical error in neutral mass density predictions as a function of the space weather
conditions (i.e., during quiet, moderate, or storm‐time environments). Uncertainty in the density is then captured
in the propagation by adding a “consider parameter,” a scaling factor that artificially inflates uncertainty in the B*
term (M. Hejduk, 2019; Poore et al., 2016; Barker et al., 2000). Assigning additional (typically Gaussian)
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uncertainty to B* conflates sources of error from ballistic coefficient terms (satellite attitude and mass) with
atmospheric density, which makes analysis of uncertainty contributions difficult. Ideally, uncertainty in atmo-
spheric density, and thus propagated satellite state, should be derived analytically from the root causes: uncer-
tainty in the forecasted space weather drivers and uncertainty in the atmospheric model.

Drag influences the mean motion of a satellite's orbit by

ṅ =
3
2
n1/3μ− 2/3ρBv3F (A1)

where n =
̅̅̅̅̅̅̅̅̅̅
μ/a3

√
is the mean motion, a is the semi‐major axis, μ is the gravitational parameter, ρ is the neutral

mass density, v is the orbital speed, and F is a factor based on the thermospheric winds:

F =
‖v − vA‖2

v2
ev ⋅ ev− vA (A2)

where v is satellite velocity, vA is the velocity of the atmosphere, and ev and ev− vA are unit vectors in the sub-
scripted vector directions. The mean anomaly may be computed from mean motion by

dM
dt
= n. (A3)

J. T. Emmert et al. (2017) derived the following analytical expressions for the deviation in the n and M as a
function of the relative neutral density error, ϵρ integrated along the orbital path:

δn(t)≈ δn0(1 +
1
3
Δn̂
Δn̂0

) +
Δn̂
Δt
∫

t

t0
ϵρ(t′) dt′ (A4)

δM(t)≈ δM0
+ δn0Δt(1 +

1
6
Δn̂
n̂0
) +

Δn̂
Δt
∫

t

t0
∫

t′

t0
ϵρ (t′′) dt′′dt′ (A5)

where δn0 and δM0
are the initial measurement errors for the mean motion and mean anomaly, respectively, and Δn̂

and n̂0 are the estimated change in mean motion and initial mean motion, respectively. The relative error is
defined as

ϵρ(t) =
ρ̂(t) − ρ(t)

ρ(t)
. (A6)

We define nref (t) and Mref (t) as the reference values in n and M using the true density. Thus ϵρ = 0 for the
reference case. nref (t) and Mref (t) may be computed by numerical propagation through the real atmospheric
density profile along the orbital path. When starting from perfectly known n and M, Equations A4 and A5 show
that error over time in n is proportional to the first integral of the normalized density error, while error in M is
proportional to the second integral of the normalized density error. For Pc computation, however, we are
interested in deviations in the spacecraft‐fixed frame defined by the radial, along‐track, and normal (RTN)
components (δr, δt, δn). The unit vectors for this coordinate frame may be computed from an Earth‐centered
inertial position r and velocity v where

er =
r
‖r‖

,en =
r × v
‖r × v‖

,et = en × er (A7)

An approximate conversion from δn and δM to δr and δt, respectively, is relatively straightforward from Keplerian
dynamics. For position errors that are small relative to the curvature of the orbit path, the radial component of the
deviation relates to a change in the semi‐major axis of the ellipse, the along‐track component relates to the de-
viation in true anomaly. The normal component relates to small plane changes that occur when the right ascension
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of the ascending node (RAAN, Ω) drifts at slightly different rates as the semi‐major axis changes throughout the
propagation. This nodal drift may be approximated using J2 perturbations.

Using Earth's gravitational parameter μ= 398,600 km3/s2, the semi‐major axis of the orbit may be computed from
n(t) = n0 + δn(t) directly

a(t) = (
μ

(n(t))2
)

1/3

. (A8)

The eccentric anomally can be solved for numerically from M(t) = M0 + δM(t) by the following relation:

M(t) = E(t) − e sin(E(t)) (A9)

where e is the eccentricity of the orbit. Once a(t) and E(t) are known, the radial distance along the deviated orbit
path is simply

r(t) = a(t)(1 − e cos(E(t))). (A10)

To determine the deviation in position along the radial component from the reference state, simply compute
δr= rdev(t) − rref (t), where rref is the radius computed using nref andMrefwith true atmospheric density, while rdev
is computed using the deviated density profile.

The along‐track satellite position offset, δt, is more simply related to the deviation in mean anomaly by

δt(t)≈ δM(t)
v̂(t)
n̂(t)

, (A11)

where v̂ and n̂ are the estimated velocity and mean motion. Now that the radial and along‐track components of the
deviation are known, the normal component may be approximated by considering the precession rate of the right
ascension of the ascending node, Ω̇, due to J2 perturbations

Ω̇ = −
3
2
J2(

RE

a(1 − e2)
)

2 ̅̅̅̅̅
μ
a3

√

cos i (A12)

where J2 is Earth's J2 parameter (1.0826 × 10− 3), RE is the average radius of the Earth (6,378.15 km), and i is the
inclination of the orbit (Vallado, 2001). The inclination is assumed constant. Since the forecasted satellite
propagations required for conjunction assessment typically have less than a 7‐day time horizon, it is reasonable to
approximate the eccentricity as constant as well. Now, a is the only time‐varying parameter thatΩ̇ depends on. As
small changes in a occur during the orbital propagation, differences in the nodal drift rate will accumulate to cause
minor shifts in the orbital plane. This out‐of‐plane perturbation leads to position deviation in the cross‐track
component, δn. δc may be approximated by first considering the angle δΩ between the orbit planes

δΩ(t) =∫
t

0
(Ω̇dev − Ω̇ref ) t′dt′. (A13)

Then, the position deviation in the cross‐track component is approximately bounded by

‖δn(t)‖< 2āref (1 + e)sin(δΩ(t)). (A14)

This is a bound because deviation along the normal component will oscillate as a function of time since the
deviated and reference orbital planes intersect to cause two crossings along the orbital path.
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Data Availability Statement
Historical TLEs for tracked objects are publicly available through space‐track.org. Partial historical CDMs were
accessed and are available from https://kelvins.esa.int/collision‐avoidance‐challenge/data/. A history of the
recorded space weather drivers is available at https://kp.gfz‐potsdam.de/en/data. NOAA's Space Weather Pre-
diction Center's forecast verification page is accessible at https://www.swpc.noaa.gov/content/forecast‐
verification.
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