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Early warning signals have limited
applicability to empirical lake data

Duncan A. O’Brien 1 , Smita Deb2, Gideon Gal 3, Stephen J. Thackeray 4,
Partha S. Dutta 2, Shin-ichiro S. Matsuzaki 5, Linda May 6 &
Christopher F. Clements 1

Research aimed at identifying indicators of persistent abrupt shifts in eco-
logical communities, a.k.a regime shifts, has led to the development of a
suite of early warning signals (EWSs). As these often perform inaccurately
when applied to real-world observational data, it remains unclear whether
critical transitions are the dominant mechanism of regime shifts and, if so,
which EWS methods can predict them. Here, using multi-trophic planktonic
data on multiple lakes from around the world, we classify both lake
dynamics and the reliability of classic and second generation EWSs methods
to predict whole-ecosystem change. We find few instances of critical tran-
sitions, with different trophic levels often expressing different forms of
abrupt change. The ability to predict this change is highly processing
dependant, with most indicators not performing better than chance, mul-
tivariate EWSs being weakly superior to univariate, and a recent machine
learning model performing poorly. Our results suggest that predictive
ecology should start to move away from the concept of critical transitions,
developing methods suitable for predicting resilience loss not limited to the
strict bounds of bifurcation theory.

Natural ecosystems can display abrupt and non-linear shifts in state
and function1,2 which impairs societal activities dependent upon them.
If these abrupt changes are sufficiently large to lead to persistent local
ecosystem degradation3 and negative socio-economic impact4, then
they are often classified as ‘regime shifts’5. Regime shifts themselves
are, however, but one observable system behaviour (Fig. 1) with vary-
ing mechanisms of change possible1,6,7, all impactful on ecosystem
functioning. The specific concern around regime shifts is their antici-
pated increase in global frequency in response to climatic changes8,
with the potential to cascade across systems9. Managing ecosystems
prone to these shifts is therefore vital, but doing so is challenging using
current analytical tools. Resultingly, effective detection tools for
characterising oncoming regime shifts are desirable, particularly cost-
effective approaches accessible to all economic statuses.

Critical transitions (a.k.a catastrophic transitions—Fig. 1A) are reg-
ularly suggested as the dominant process driving regime shifts via tip-
ping points and positive feedback loops10–12. From this understanding, a
toolbox of techniques have been developed aiming to characterise
oncoming transitions13. These so-called EarlyWarning Signals (EWSs) are
derived from bifurcation theory, which describes how a system can flip
between two or more stable states across a critical/tipping point. EWSs
attempt to detect this critical point by the phenomenon of Critical
Slowing Down (CSD) or the increasing return time to equilibrium fol-
lowing perturbations as a critical transition is approached10. CSD
increases as the system loses resilience and its stability weakens1.
Unfortunately, the success of EWSs has been mixed despite widespread
interest and research effort6. For example, EWSs are consistently suc-
cessful in simulated systems7,14, whereas limited examples exist in
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natural settings15–17. Indeed, EWS assessments across empirical time
series have been poor in their prediction of ‘change’18,19, leading to
doubts about the practical utility of EWSs for ecosystem managers.

Major concerns of EWSs include their focus on ‘transitioning’
systems20, data pre-processing14, and, in our opinion, the assumption
that critical transitions are common in natural systems21. Crucially,
there is a difference in definition between ‘regime shifts’ and ‘critical
transitions’ (Fig. 1, Table 1), but the two are often assumed the
same18,19,22. This synonymity leads to confusion regarding whether
most ecological regime shifts are critical transitions and, if not, are
EWSs appropriate for generic regime shift assessment. In its simplest
form, a regime shift is ‘the process whereby an ecosystem rapidly
changes from one fundamental state to another’1,23 whereas critical
transitions (Fig. 1A) are but one possible mechanism of regime shift
which can only be inferred (though not confirmed without experi-
mental or modelling approaches) from observational data if a number
of criteria are satisfied12,24–26. These criteria include: (1) an abrupt shift
in time series, (2) driven by positive feedback mechanisms, (3) in
response to an incremental increase in control parameter, which (4)
results in a multimodal distribution of state values (alternative stable
states), and (5) displays hysteresis that limits the reversion of the shift.
Alternative regime shift mechanisms are possible (Fig. 1B) and will
displaymultiple criteria required for identifying a critical transition but
will not include all of them. These mechanisms include stepwise
changes in state resulting from a stepwise change in the control
parameter (exhibits criteria 1 and 4), noise-induced transitions that
occur despite no changes in control parameter (exhibits criteria 1, 2,
and 4), or threshold-like transitions with sudden but continuous
changes in response to gradual control parameter change (exhibits
criteria 1, 2, 3, and 4)1.

There is the additional concern that alternative stable states, and
their tipping points of management interest, may be unsuitable con-
cepts for ecological systems due to the influence of multiple stressors
and system ‘inertia’ dampening/delaying regime shifts27,28. Neither lake
chlorophyll29 nor global metanalysis of stressor-system state
relationships28 suggest these systems consistently display multiple
equilibria (criteria 4 for a critical transition) or tipping points (criteria 1
and 2), despite the current paradigm that lakes can exist in multiple
stable states30,31. Many studies assessing EWS capability in empirical
data18,19 may, therefore, have been hindered as the indicators have
been developed to solely quantify system dynamics under certain
conditions. As such, more precise classifications of empirical
transitions24,25 are necessary to disentangle critical transitions from
these alternative regime shift mechanisms1 and allow robust assess-
ments of EWS ability in empirical data.

A further complication for EWS users is that, theoretically,
regime shifts do not occur uniformly across all taxa32. Most regime
shift or alternative stable state research focus on single repre-
sentative measures of the system such as total abundance29,33, total
cover34 or biomass13, when multiple measures are more insightful.
Recent theoretical work in multi-species systems indicate certain
life-history characteristics can result in taxa being more or less
illustrative of CSD32, while the interaction strength between taxa
can mask transitions35. Reliance on univariate time series can
therefore make it challenging to define an ecosystem’s dynamics
as stable or transitioning36, particularly as most previous work
neglects stationary time series20. Consequently, although the data
is available, explicit assessment of real-world critical transitions
across taxa, trophic levels and transition types independently is
ultimately lacking.

Fig. 1 | Classification tree relating the primary transition types and system
dynamics relevant to early warning signals (EWSs) and regime shift detection.
Terms are colour coded by their expectation to exhibit critical slowing down (the

phenomenon quantified by EWSs). Whether a classification is made using the time
series or the phase space (i.e. state against the control parameter/driver) is indicated.
Distinct classifications are labelled (A–E) for crossreferencing with the main text.

Article https://doi.org/10.1038/s41467-023-43744-8

Nature Communications |         (2023) 14:7942 2



Fortunately,major technical developments havebeenmade in the
field which aim to circumvent these limitations. These include new
computation techniques37, exploitation of information from multiple
time series38 and machine learning39,40. We, therefore, have access to
three forms of EWS: univariate, multivariate and machine learning
models. In brief, univariate EWSs assess population level transitions by
quantifying the presence of CSD13, multivariate EWSs pool information
from multiple time series to yield a community/system level assess-
ment of CSD38,41, whereasmachine learning exploits other unmeasured
but learnt characteristics of time series to report the probability of
transition39,40. Both univariate and multivariate machine learning
models are possible, but to date, only univariate forms have been
trained specifically for tipping point classification39,40,42. Multivariate
EWSs should logically improve the reliability of transition prediction as
the maximum information and data can be generically exploited with
little-to-no required knowledge of the system. However, as with clas-
sical EWSs, these developments have generally only received testing in
simulated systems38,43 supplemented with cherry-picked empirical
transition data39. There is, therefore, a knowledge gap on howmodern
techniques perform in data relevant tomanagers and against previous
methods.

In this work, we classify regime shifts, critical transitions, non-
critical transitions and stationary systems (Fig. 2) in nine long-term lake
monitoring datasets (Fig. 3 and Table 2). We focus upon freshwater
lakes as these systems are pivotal in the development of ecological
theory and regime shift research24,30 while also providing long term
and high resolution data sufficient to disambiguate trophic levels and
display regime shifts. From these lake classifications,we aim to identify
the frequencyof critical transitions across lakes andplanktonic trophic
levels (Fig. 4A) and appraise the practicality of generic EWS usage in
both stationary and non-stationary time series. We also test EWS
techniques’ success rates (Fig. 4B, C) while optimising their potential
strength via data pre-processing. The explicit classification of lake fate
reveals that many accepted regime shifts are not critical transitions,
with different trophic levels responding uniquely to environmental
change. Most EWSs, therefore, perform poorly, although multivariate
indicators are weakly superior to univariate.

Results
Lake data
Nine publicly available and long term lake datasets were accessed—
Lake Kasumigaura44,45, Lake Kinneret46, Loch Leven47,48, Lower and
Upper Lake Zurich49, Lake Mendota50,51, Lake Monona50,51, Lake
Washington52, and Windermere53—spanning a range of longitudes and
environmental conditions (Fig. 3 and Table 2). Planktonic data and
environmental variables were extracted, standardised (see Materials
and Methods), and averaged to monthly and yearly resolutions before
being separated into phytoplankton and zooplankton trophic levels.
Following standardisation, plankton genus richness ranged from 3–57
phytoplankton genera (median = 22) and 2–9 zooplankton genera
(median = 4) in each lake.

Quantifying lake dynamics
Using threshold generalised additive models (TGAMs), we identified
optimal break points in each lake’s total phytoplankton and total
zooplankton density through both time and the environmental ‘state-
space’, and quantified bimodality in extension of the approaches of
Scheffer and Carpenter24, Andersen et al. 54, and Bestelemeyer et al. 25.
(see Materials and Methods). The state-space was represented by the
first principal component of a principal component analysis of water
surface temperature, nitrate concentration and total phosphorous
concentration. When comparing estimated break points between the
time series and environmental models with state bimodality, we
identified coherence in Lake Kasumigaura’s zooplankton, Lake Kin-
neret’s phytoplankton, Lake Monona’s zooplankton, and Lake
Washington’s phytoplankton (Table S1). As these matched our hypo-
thesised behaviour in Fig. 2, we consequently classified these regime
shifts as critical transitions (Fig. 4A). Many of the other lakes displayed
breakpoints in their time series (e.g., LakeMendota’s zooplankton) but
these were not matched in the environmental state space nor fulfilled
the other requirements (e.g., no overlap of clusters to indicate hys-
teresis, Figs. 2, 4A and Supplementary Fig. S1) and were therefore
classified as abrupt non-bifurcations if they also displayed bimodality.
There are, therefore, two primary classifications relevant to regime
shift detecting EWSs—critical transitions and not critical transitions.

Table 1 | Glossary of terms

Term Definition Reference

Regime shift Sudden or abrupt shift in the state of the system resulting from the influence of an external control parameter/
driver or by the system’s internal dynamics, where core ecosystem functions, structures and processes are
fundamentally changed. A regime shift may be associated with bifurcations (after crossing control parameter
thresholds/tipping points), step changes in state (in response to step changes in control parameter), threshold-
like responses (sigmoidal response to control parameter), or limit cycles (cyclic changes due to the system’s
internal dynamics). These abrupt shifts may also occur across different trophic levels.

1,6,24,54

Bifurcation Gradual changes in a control parameter drive ‘qualitative’ change in the behaviour of an equilibrium point in a
dynamical system.

26,54

Tipping point A threshold value at which a dynamical system undergoes a sudden shift from one stable state to another
alternative stable state in response to small stochastic perturbations.

86

Bifurcation point A threshold value specifically associated with a bifurcation. 6,86

Critical transition/catastrophic
bifurcation

A sudden shift from one steady state of a dynamical system to an alternate state via a fold/saddle-node bifur-
cation (a first-order or discontinuous transition). A discontinuous response follows incremental change in the
control parameter crossing a critical value/bifurcation point. All critical transitions are regime shifts but the
reverse is not necessarily true.

6,7,86

Non-critical transition/bifurcation A non-catastrophic transition (a second-order or continuous transition) can occur via a transcritical, pitchfork or
Hopf bifurcations across (a) bifurcation point(s).

6,7

Smooth transition Continuous response to the control parameter in the absence of tipping points. 7

Critical slowing down The phenomenon whereby the real part of the dominant eigenvalue of the system approaches to zero in the
vicinity of a bifurcation point (and eventually goes to zero at the bifurcation point) while the return/recovery rate
to equilibrium upon perturbation becomes increasingly slow. At the tipping or bifurcation point there is no
chance of recovery.

10,26

Hysteresis A system property the system may follow different paths when increasing or reducing a perturbation. Conse-
quently, multiple stable states exist under the same control parameter value, and is more common in systems
with fold/saddle-node bifurcations.

54
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Classifications made by TGAMs were then used to ground truth
downstream EWS assessments and trim time series to pre-transition
data. The time series classifications performed by TGAMs represent
insights into the likely mechanism of change, covering a range of
regime shift relevant mechanisms. There are, however, certain
mechanisms that cannot be disambiguated without experimental or
simulated work due to their similar behaviour across time and state-

spaces. For example, threshold-like responses54 and cusp bifurcations7

will both display sigmoidal responses in both time and state-space
(Fig. 2 Abrupt non-bifurcation b - threshold-like) but only the cusp
bifurcation is anticipated to exhibit CSD. For this study, critical tran-
sitions are sufficiently different fromothermechanisms tobe classified
(assuming some relaxation of driver has occurred to evidence hys-
teresis) compared to non-bifurcation regime shifts, but we suggest

Fig. 2 | Hypothesised behaviour of possible system dynamics under three
complementary analyses used to classify the fate of a time series. These ana-
lyses fulfil the criteria of Scheffer and Carpenter24, Andersen et al. 54, and Bes-
telmeyer et al. 25. for identifying alternative stable states in empirical data through
(i) time series shifts, (ii) a hysteresis response to the control parameter and (iii)
multimodal distributions. We have assumed here that the control parameter/
environmental driver is increasing through time. Analyses (i) and (ii) are performed
using threshold generalised additive models (TGAMs) of plankton density against
time and environmental driver respectively. Thresholds/breakpoints are only per-
mitted to occur between adjacent time points. Analysis (iii) identifies unimodal vs
bimodal distributions of plankton density across the entire time series. We expand

these analyses over24,25,54 to identify other forms of transition and provide a quali-
tative description for each transitions expected behaviour in the three analyses. In
the first two columns, thick lines represent median TGAM fit with shaded regions
the confidence interval. Dotted lines are discontinuities between breakpoints. In
the third column, lines represent the density of observations. TGAMs are limitedby
classifying system dynamics solely upon observational data and, therefore will not
guarantee classification without knowledge of the underlying system equations.
Those equations can only be determined through experiments and differential
equation modelling24, but TGAMs provide a ‘best-guess’ using the limited data
typically available to system managers.
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that for qualitatively similar mechanisms, further evidence is neces-
sary. Experimental and modelling to identify plausible system equa-
tions is an appropriate avenue to supplement TGAM fits to
observational data only.

The final time series length for each lake consequently varied
between 9–30 years (median = 17) depending on the TGAM identified
transition year, grouped into 44 transitioning time series and 242 non-
transitioning time series.

Early warning signal pre-processing
Prior to EWS comparison, three detrending and deseasoning methods
were performed to identify the optimal combination of detrending
and deseasoning for each form of EWS. Specifically, wemaximised the
probability of correct prediction in the transitioning lakes, to represent
the ‘best case scenario’ for EWSs. The detrending methods used
included none, linear, LOESS (locally estimated scatterplot smoothing)
and gaussian kernel, while deseasoning methods included none,
average, time series decomposition and STL (seasonal trend estima-
tion using LOESS). Each technique is regularly used in EWS
assessments13,55 and were applied to the data factorially. See Materials
and Methods for more details.

We then used a Bayesianmixed effects binomial model to test the
influence of each pre-processing technique on EWS ability relative to
EWS assessments made upon the raw time series (i.e., none-none pre-
processing). Details of the model structure can be found in the Mate-
rials and Methods. Across the five forms of EWS tested (univariate
rolling window, univariate expanding window, multivariate rolling
window, multivariate expanding window, andmachine learning), each
displayed optimal performance under different pre-processing meth-
ods (Table 3 and Supplementary Tables S3–S7). In univariate EWSs,
rolling windows displayed the highest prediction probabilities under
linear detrending and STL deseasoning (0.08 median estimate
improvement over none-none detrending and deseasoning; Table S3)
whereas expanding windows performed best under linear detrending
and decomposition deseasoning (0.21; Table S4). Conversely, in mul-
tivariate rolling window EWSs, gaussian detrending and no deseason-
ing displayed the largest improvement over no pre-processing (0.21,
Table S5), and gaussian-average pre-processing was optimal for mul-
tivariate expanding windows (0.24, Table S6). Finally, for the machine
learning model, gaussian detrending and no deseasoning improved
the probability of correct classification most relative to the raw time
series (0.22; Table S7). Time series that underwent these pre-
processing methods were then taken forward into cross-method
comparisons (Supplementary Tables S8–S9), assuming the best-case
data scenario.

Early warning signal overall ability
Bayesian binomial models were then fitted to test the ability of each
EWS computation method and individual indicators to correctly pre-
dict the transition fate (critically transitioning versus not) of the lake
plankton time series. From this section onwards, binomial model
estimates have been inverse-logit transformed from log odds to
probabilities to improve interpretability. For raw model estimates,
please refer to Supplementary Tables S8–S13 and Figs. S2–S10 for
model diagnostics.

When assessments are pooled across indicators, lakes, trophic
levels, and resolutions, multivariate EWSs estimated using expanding
windows displayed the highest average probability of correct classifi-
cation (Fig. 5 and Supplementary Tables S8 and S9). This probability is
associated with these EWSs displaying the highest probabilities in
monthly data (median [95%credible interval] = 0.59 [0.38–0.77], Fig. 5)
and yearly data (0.71 [0.47–0.87], Fig. 5). Univariate EWSs estimated
using expanding windows displayed the second highest probability in
monthly data (0.57 [0.37–0.75]) and second highest in yearly data
(0.67 [0.45–0.84). The remainder of computation methods were not
strongly different from a 50% prediction probability although uni-
variate rolling window EWSs were worse than chance in yearly data
(0.29 [0.14–0.51]).

Prediction probabilities were more consistent across computa-
tion methods in monthly data than yearly, with a mean prediction
probability of0.51 ± 0.07 standarddeviations compared to0.49 ± 0.19.
Univariate andmultivariate rollingwindow EWSs especially declined in
robustness when applied to yearly data relative to monthly. The
machine learning model EWSNet was consistent across data resolu-
tions at ~41%.

Individual indicator ability
Splitting these computation method level trends into indicator trends
within critical transition and not critical transition time series sepa-
rately highlights how many of the above are driven by either strong
true positive or true negative ability (Fig. 6 and Supplementary
Tables S10–S13). For example, unscaled EWSNet displayed a 0.92 and
0.88 true positive probability in monthly and yearly data, respectively
(Fig. 6A), but a 0.2 and 0.06 true negative probability (Fig. 6B). Scaled
EWSNet displayed the inverse trend (true positive: monthly = 0.12,
yearly = 0.08; true negative: monthly = 0.77, yearly = 0.97).

To clarify, we are only focussing on the median estimates here
rather than the credible intervals due to the low replication of multi-
variate indicators. The model is weighted by the number of trials but
for multivariate EWSs, time series are concatenated to a single
assessment, inflating the uncertainty ofmultivariate indicators relative
to univariate.

There was no coherent relationship between the method of EWS
calculation (rolling versus expanding windows) across variates (uni-
variate versus multivariate). Multivariate rolling window displayed the
highest mean true positive probability when averaged across all indi-
cators in monthly time series (mean ± standard deviation: 0.53 ± 0.20)
and the highest probability in yearly time series (0.54 ±0.16). Con-
versely, univariate expanding window EWSs were superior in not cri-
tically transitioning monthly time series (0.58± 0.10) as were
multivariate expanding window EWSs in not critically transitioning
yearly time series (0.63 ±0.15).

This lack of coherence, therefore, suggests that individual indi-
cators are highly variable and so should be considered individually.
However, the dichotomy in prediction abilities observed for EWSNet
was maintained across indicators and computation techniques. Com-
posite univariate EWSs56 computed via expanding windows (e.g., ar1 +
SD, ar1 + SD + skew) were reliable across resolutions in not critically
transitioning time series but maintained ~0.5 ability in critically tran-
sitioning time series. Autocorrelation at lag-1 (ar1) was the most reli-
able rolling window univariate EWS for critical transitions

Fig. 3 | Geographical locations of lakes assessed in this study and an indication
of their size. Map coordinates are projected in WGS 84.
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(Supplementary Tables S10 and S11). Multivariate rolling window
indicators such as mean autocorrelation (meanAR), PCA variance
(pcaSD) and thedominant eigenvalueof themaximumautocorrelation
factor dimension reduction (eigenMAF) were particularly effective in
transitioning time series but weak in non-transitioning data (Supple-
mentary Tables S12 and S13). Overall, no indicator displayed reliability
across resolutions or true positive/true negative time series better the
0.5 probability; eigenMAF displayed the highest cross scenario ability
(monthly- true = 0.62; yearly-true = 0.70; monthly-false = 0.49; yearly-
false = 0.52).

Discussion
Motivated by debates surrounding multiple stable states in ecology
and the need for reliable and generic critical transition detection tools,
we assessed theprevalenceof critical transitions in a rangeof empirical
lake systems.We then compared the ability of current EWSmethods to
correctly predict ecosystem fate regardless of transition type or
trophic level. We found that multiple regime shifts were identifiable
across our lake network, but only a proportion of these were critical
transitions. Similarly, within a lake experiencing a regime shift, phy-
toplankton and zooplankton trophic levels could display different
regime shift mechanisms; one may critically transition whereas the
other experiences a step change. Together, these findings may have
hamperedprevious attempts to test EWSability. Each EWSmethodwas
strongly influenced by the data pre-processing performed with no
single indicator being reliable and no coherence across indicators.
That said, multivariate EWS methods weakly outperformed univariate
with the machine learning model EWSNet capable of extremely high
true positive rates (though extremely poor true negative rates).
Overall, computational and methodological advances are still not
sufficiently reliable for generic usage due to their high sensitivity to
data preprocessing and resolution, and conceptual concerns regard-
ing the ubiquity of appropriate systems.

Generic EWSpredictive ability is limited as it appears somesystem
specific knowledge is necessary. Namely, understanding the potential
for a critical transition/multiple stable states and identifying a
mechanistic driver of transition are particularly key. These are not new
arguments1,20 but are worth reiterating to avoid the conflation of cri-
tical transitions with any form of abrupt change/regime shift. The
TGAM approach used here, when combined with bimodality quantifi-
cation, identifies the same regime shifts as previous studies33,52,57,58 but
only someof thesewere classifiable as critical transitions.We suggest it
maybe prudent to consider that temporal dynamics of driver variables
(e.g., nutrient concentration) are themselves non-linear59 and display
pulse events60 which can influence the mechanisms of regime shifts.
For example, an anomalous year may push a system away from equi-
librium into a long transient, as potentially occurred during 1985 in
Windermere’s zooplankton (Fig. 4), or a step change in environmental
conditions can result in novel communities1,61. Consequently, critical
transitions can occur earlier, later, or not at all, even if a regime shift
occurs. This is compounded further as the disambiguation of critical
transitions from certain other regime shift mechanisms can be com-
plicated in empirical data24,25,54, and the classifications we have made
here are ultimately a ‘best guess’ given the data availability. For
example, critical transitions (Fig. 1A) and threshold-like responses54

(Fig. 1B) likely display identical time series, bimodality, and very similar
state-space behaviour. The primary difference between the two
mechanisms identifiable from empirical data is the presence of hys-
teresis which can only be observed if the system reverts entirely (i.e.,
regime shifts back to the original state) or partially (i.e., the driver
relaxes back into the bistable region but not sufficiently for the system
to shift back). As described in Fig. 2, hysteresis can be identified by an
overlap of TGAM smooths in the state-space, while a threshold-like
response has no overlap. All the lakes we classify as critical transitions
do display some degree of overlap/hysteresis (Supplementary Fig. S1),Ta
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Fig. 4 | Overviewof generalised additivemodel (GAM) and early warning signal
(EWS) techniques applied in this study, with selected examples from the lake
plankton dataset. A Application of the classification approaches introduced in
Fig. 2 in the yearly lake plankton data. Points represent the observed data, with
curved lines and shaded regions the GAM fits and 95% confidence intervals,
respectively. Asterisks in the kernel density plot indicate significant bimodality
coefficients, with dashed lines the estimated modalities. An example of an abrupt,
non-bifurcation shift (Lake Washington’s zooplankton), a critical transition (Lake
Kinneret’s phytoplankton) and a non-transition (Windermere’s phytoplankton) are
presented. Plankton densities have been scaled to mean zero and unit variance to
improve plotting clarity. B Two forms of EWS are then performed on the plankton
data: univariate EWSs, which consider one time series at a time, and multivariate,
which combine information from multiple sources. The former can only give a

representation of the community’s state as assessment occurs at the species level,
whereas the latter assesses at the community level. Here, yearly cyclopoid and
daphnid densities from Lake Kasumigaura are presented.C The three computation
techniques for calculating EWSs and ‘warnings’. Rolling windows are the classical
formof EWS and sequentially exploit a set proportion of the time series to calculate
trends in the EWS—a strong positive correlation with time indicates an oncoming
transition. Expanding windows incrementally introduce new data, with the rolling
average of the EWS only signalling a warning if a threshold is transgressed. And
machine learning models which predict the probability of a transition based upon
its knowledge of its training data. Themachine learningmodel used here (EWSNet)
is limited to univariate time series whereas the other computationmethods can be
applied to univariate or multivariate EWSs.
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but other lakes’ breakpoints may not have sufficiently reverted for
hysteresis to be identified. We therefore encourage empirical regime
shift and EWS researchers to consider the mechanisms driving
shifts1,24,25 to maximise their reliability and appropriateness, and to not
solely use EWSs as evidence of approaching tipping points.

These concerns are compounded by our finding that different
components of the system (trophic levels here) can display distinct
transition forms. Such incoherence is not unexpected, with certain
taxa being more informative than others32,35,62 but is rarely considered
practically. Monitoring one representative variable is, therefore, unli-
kely to be sufficient and many facets of the system should be tracked,
including plausible environmental drivers. In lake systems this is
established practice but is more difficult to apply to other ecological
biomes/scenarios. Drawing upon autonomous monitoring will con-
tribute to this gap63, but requires implementation.

Our EWS findings broadly agree with previous attempts to assess
EWSs in aquatic systems18,19 although those studies solely focus on
classic univariate rolling window indicators. Indeed, our more explicit
approach of disentangling critical transitions from regime shifts and
intentional inclusion of stationary systems strengthens conclusions
that classic EWSs struggle in empirical time series. We do, however,
show that these EWSs can correctly classify non-transitions, a point not
previously clarified due to an almost exclusive focus in transitioning
data20. There are, however, strong methodological influences upon
EWS ability, regardless of computation method, specifically through
the choice of time series pre-processing, resolution of time series, and
aggregation of time series to genus vs trophic level.

With real world time series, there is no ideal data for EWSs due to
their typically high variability and cyclical nature driving false positive
warnings6. Detrending and deseasoning are therefore necessary but
are no silver bullet for accurate EWS assessments. Deseasoning is
particularly complicated and capable of introducing spurious signals
when the time series’ value (i.e., plankton density/abundance here) are
persistently close to zero. The sensitivity of EWS ability to data pre-
processing reported here is therefore not unexpected55,64 and arguably
weakens EWS practicality. Choosing what ‘system’ EWSs are quantify-
ing is also a key determinant of EWS ability. Here, we focus on the
entire lake ecosystem rather than specific populations of interest (as
occurs during fisherymanagement22,65) but extrapolate that univariate
signals from individual plankton genera are representative of trophic/
lake level regime shifts. This is typical EWS usage18,22,35 although we
know different species/genera vary in their expression of critical
slowing down32,35. Such taxon specific EWS behaviour limits the rele-
vance of many genera in our lake dataset and influences our null
findings from naïvely performing EWS assessments when no infor-
mation is available to select specific taxa. Trophic and functional
groupings appear valid levels to classify regime shifts, but EWSs
require linear stability analysis (LSA) to identify representative taxa.

Unfortunately, many managers are unable to take this the approach
due to the lack of calibrated lake/ecosystem models appropriate for
LSA. We therefore urge caution when choosing where to apply EWSs.
Multivariate EWSs mitigate some of the requirement for LSA but were
not as successful as previously reported in simulated data38,41.

The machine learning model EWSNet also performs variably
depending on pre-processing—i.e., the scaling vs non-scaling of its
training data. EWSNet’s authors39 advocate the finetuning ofmachine
learning models with data of similar magnitude/dynamics as the
target system to mitigate these issues. Here, we applied EWSNet
generically without specific finetuning due to a desire to test its
generic ability, plus challenges in generating appropriate training
data for each lake system. This may explain the model’s low classi-
fication success. That being said, if failure to detect a critical transi-
tion is more harmful than presumptuously intervening, then EWSNet
in its generic form does have merit. We do overall, however, reaffirm
previous suggestions that machine learning requires tailoring to the
specific system of interest and is inappropriate for generic usage.
Expansion to models trained upon multivariate bifurcation data
may be an alternative solution. This begs the question how-
ever, whether if the system requires targeted modelling to finetune
these signals, whether EWSs or machine learning can provide greater
insight than such a model alone.

The combination of apparent EWS uncertainty and uncommon-
ness of critical transitions strengthens the opinion that resilience/sta-
bility measures are a superior generic tool than CSD based indicators.
While some of the measures tested here are considered stability indi-
cators (e.g., mutual information38), more complicated measures have
recently emerged independent from the assumption for local stability.
For example, Ushio et al.66 exploit empirical dynamic modelling to
estimate the Jacobianmatrixof amultivariate community and extract a
stability index which accurately diagnoses vulnerable periods in fish
communities. This has been developed further by Medeiros et al.62 to
identify key species for management based upon their contribution to
the system’s Jacobian and Grziwotz et al. for univariate time series67.
Similarly, Williamson and Lenton’s68 approach Jacobian estimation
using multivariate autoregressive models with equivalent success.
Resilience/stability indicators have the additional benefit of not
requiring post hoc detection of regime shifts nor critical transitions.
Thus, practical real-time monitoring is possible regardless of critical
transition risk as any unexpected loss of stability is a concern for
ecosystem managers. EWSs can provide some information on resi-
lience loss1,38 but are conceptually linked to the presence of CSD28.
Critical transitions should only conceptually occur when there are
more thanone state to transition across1,28, and so EWSs should only be
relevant in those circumstances. Stability indicators are ultimately
capable of quantifying system stability both in proximity to critical
transitions and in systemswhere transitions are not possible69, lending

Table 3 | Optimal detrending and deseasoning combinations for each early warning signal computation method across time
series resolutions

Data resolution Early warning signal computation method Optimal detrending method Optimal deseasoning method

Monthly univariate rolling window linear Seasonal and Trend decomposition using Loess (STL)

univariate expanding window linear decomposition

multivariate rolling window gaussian none

multivariate expanding window gaussian averaging

EWSNet (univariate machine learning model) gaussian none

Yearly univariate rolling window linear NA

univariate expanding window linear NA

multivariate rolling window gaussian NA

multivariate expanding window gaussian NA

EWSNet (univariate machine learning model) gaussian NA
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them greater generic power than EWSs. Our findings support the
conceptual use of these measures, due to the variation in EWS ability
and diversity of lake dynamics observed.

To conclude, successfully applying and interpreting EWSs in real
time is complicated and potentially unintuitive. Modern techniques
struggle to be consistent and generic in empirical systems due each
system’s unique dynamics and lack of techniques for identifying true
real-world critical transitions. Ecosystems can display regime shifts via
many forms1, many of which are theoretically not going to be detect-
able by EWSs. It therefore appears tailoring machine learning models
to one’s system of interest or focussing on resilience measures (which
quantify stability rather than transitions) will be more useful for eco-
system managers. In systems where critical transitions are possible,
combining information is critical to maximise EWS robustness but can
still fail. The interpretation of EWSs generically applied across systems,
therefore, requires caution.

Methods
Lake plankton data
Weekly/monthly plankton densities and abiotic variableswere sourced
from nine publicly available long-term monitoring datasets: Lake
Kasumigaura44,45, Lake Kinneret70, Loch Leven47,48, Lower and Upper
Lake Zurich49, Lake Mendota50,51, Lake Monona50,51, Lake Washington52,
and Windermere53. As these datasets encompassed a range of institu-
tions, we performed a standardisation procedure. Unidentified and/or
unnamed species were removed and if a species was not recorded on a
sampling date, that species’ density was assumed to be zero. This
assumption results from constant search effort being made on each
sampling date and unrecorded species being below detection thresh-
old on that specific date. The data was then averaged to mean density
per month and per year, allocated to trophic level (phytoplankton and
zooplankton) and merged with three plausible abiotic drivers—water
surface temperature (°C), nitrate concentration (μgL), and total
phosphorous concentration (μgL).

Critical transition pre-classification
For a sudden non-linear change in plankton density to be considered a
critical transition, the system must display a sudden change in state
following a small incremental change in the stressing variable medi-
ated by positive feedback loops10. This should then manifest as mul-
tiple stable states (Table 1 and Fig. 2). Consequently, to identify historic
critical transitions, assign system ‘fates’, and allow us to assess the
ability of each EWS to classify transitions, we fitted threshold gen-
eralised additive models (TGAMs) to raw, yearly total (summed)
plankton densities through both time and the environmental ‘state-
space’, and quantified system bimodality (Figs. 2 and 4A) following
Scheffer and Carpenter24 Andersen et al.54, and Bestelmeyer et al.25.
Together, these three analyses allow us to disentangle critical
transitions from other forms of non-bifurcation regime shifts such
as pulse events or step changes, while also identifying non-linear
but continuous transitions (i.e., non-critical transitions and
smooth transitions), not feasible without the use of GAMs. That
said, TGAMs are descriptive of observational data rather than
diagnostic, and true classification requires some understanding of
the governing system equations not achievable from observational
data alone.

TGAMs fitted between time and plankton densities reveal sudden
state changes (a.k.a. regime shifts), but the environmental model
attempts to represent the environmental conditions the system is
experiencing at each time point. Specifically, we represented these
environmental conditions as thefirst principal component of the lake’s
abiotic drivers. We then used these TGAMs as a double validation tool
where a breakpoint in the density time series indicates a non-linear
step change in the system, whereas a breakpoint in the environmental
state-space indicates a large change in response to a small change in
stressor (Fig. 2). If there is also an overlap in state space smooths, this
indicates hysteresis or a dual relationship is present for a single
stressor value24. Thiswas further verifiedusing kernel density plots and
bimodality coefficients71 where a coefficient larger than 0.5 indicates a
bimodal distribution. Therefore, we consider that a bimodal distribu-
tion and shared breakpoint between both the time series and state-
space GAM fits is required for a critical transition to be identified
(Fig. 224,25,54).

We also performed our classification procedure independently
across phytoplankton and zooplankton trophic levels as this dataset
gives us the opportunity to question whether critical transitions are
shared across both components of the system. For example, it is
plausible that a critical transition in one trophic level will not neces-
sarily be matched by a critical transition in the other if the former
trophic level is a driver of the second; a critical transition in one system
component drives a non-bifurcation regime shift in another. We did
not perform classification at lower taxonomic or functional levels as,
ultimately, we are interested in the prediction of regime shifts at the
system/community level. For ecosystem managers, it is changes in
functioning that is of concern21,22 and it is the aggregate effect of sys-
tem components that drives functioning72. Trophic levels represent
the simplest linkage between functional groups and is the typical
method of compartmentalising ecosystem models30,73. Classifying at
the trophic level, therefore, is consistentwithpreviouswork andbuilds
upon our general reconciliation of functioning with functional groups,
or in their simplest form, trophic levels.

Practically, we followed the TGAM fitting procedure of Ciannelli
et al.74, where a breakpoint can be introduced into a GAM smooth. The
optimal location of that break is identified by minimising the gen-
eralised cross-validation (GCV) score of the model (analogously to
Akaike’s information criterion), with the optimal choice between GAM
and TGAM also selected via minimising GCV. To minimise the like-
lihood of overfitting, the total number of knots for each thin-plate
spline smooth was restricted to a maximum of six, and, in
the threshold form of the model, both halves of the smooth were
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Fig. 5 | Prediction success of lake plankton fate according to early warning
signal computation method displayed as density plots of posterior distribu-
tions for time series level estimates of prediction ability grouped by compu-
tation method. Computation methods are ranked by their mean ability across
monthly and yearly data. The dashed vertical line shows the zero-slope—i.e., 50–50
chance of correct prediction—and each density plot represents 1000 samples from
the posterior distribution of the parameter estimates. The reported values are the
posterior density median values (circles), with 50% (thickest bars), 80% and 95%
(thinnest bars) credible intervals back transformed from log odds to probabilities.
Densities are therefore asymmetrical due to the sigmoidal relationship between log
odds and probability.
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restricted to three knots each. A threshold model was only fit if the
continuous GAM smooth displayed an effective degree of freedom >=
three. This represents an approximately cubic shape which plausibly
contains a step change (as required for a regime shift) and minimises
the likelihood of erroneously accepting TGAMs for approximately
linearmodels. The optimal number of knots was selected via restricted
maximum likelihood, and in both the time series and environmental
models, breaks were only permitted between adjacent time points. All
models were fitted through the package mgcv v1.8-4075 implemented
in R v4.2.176.

Time series pre-processing
Plankton species were then pooled to genus level to minimise the
likelihood of zero densities, with a genus further dropped if they dis-
appeared for a period longer than 12 months. This is necessary as
downstream deseasoning can spuriously introduce cycles of non-zero
densities into periods of zeroes. In addition, the strong phylogenetic
signal in vertebrate and plant abundance trends implies that aggre-
gating to genera level from species is unlikely to mask the strong CSD
in critically transitioning taxa. The two final datasets of monthly and
yearly temporal resolution for each lake consequently consisted of
genus level densities across the two plankton trophic levels.

Prior to early warning signal (EWS) assessment, each plankton
time series was pre-processed via detrending withmonthly time series

further deseasoned using a range of techniques. Detrending is con-
sidered important for improving the reliability of EWS assessments55,
so we applied three commonly used methods (linear detrending,
LOESS smoothing, and Gaussian smoothing) and compared assess-
ments made to those based upon the raw time series. Linear
detrending fits a linearmodel between time andplanktondensity, with
the residuals of this model representing the detrended time series64.
LOESS, or local polynomial regression smoothing, subtracts a smooth
curve fitted by local polynomial regression of span 0.5 from the raw
time series40, while gaussian kernel smoothing applies a linear filter, by
subtracting the weighted moving average from the raw time series72.
Additionally, monthly time series were deseasoned as monthly
plankton data is inherently seasonal77, and the repeated non-linear
cycles can hinder EWS capability78. We, therefore, applied three
deseasoning techniques (averaging, additive decomposition, and STL)
factorially with the detrending methods to identify the optimal com-
bination. Averaging simply subtracts the average value for a given
month from the current data point of that month79, additive decom-
position estimates the seasonal cycle from moving averages which is
then subtracted from the raw time series80, and STL (seasonal trend
estimation using loess), which also estimates the average seasonal
cycle but uses local polynomials rather than linear/moving averages81.
All data pre-processing was performed using the EWSmethods R
package v1.2.082.
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Early warning signal assessments
Each plankton time series was then subjected to EWS assessments
using each of the univariate, multivariate, and machine learning tech-
niques provided in the EWSmethods package82. Supplementary
Table S2 details the specifics of each indicator, but overall, univariate
EWSs accept individual time series and quantifying the degree of cri-
tical slowing down (CSD) for that one taxon.Multivariate EWSs expand
these assessments from single time series to multiple by either aver-
aging across univariate EWSs or by extracting CSD information from a
dimension reduction of the system (Fig. 4B). Here, we averaged per-
formed dimension reductions across all time series within a trophic
level to match the classifications made in the Critical transition pre-
classification section.

Finally, machine learning involves a convolutional neural network
being trained upon mathematical models that undergo critical and
non-critical transitions, to learn characteristics of a critical transition
and report the probability of transition.

Univariate and multivariate EWSs were also assessed using two
different computation approaches: rolling and expanding windows
(Fig. 4C). Rollingwindows portion the time series into a fixedwindow
length, which then ‘rolls’ along the time series, incrementally calcu-
lating the indicators of Supplementary Table S2. The Kendall tau
correlation of these indicators then represents the quantity of
interest, where a ‘strong’ correlation coefficient is indicative of an
oncoming transition. In this study, we maintained a rolling window
size of 50% the total length of the time series following Dakos et al.13.
The alternative expanding window computation incrementally
introduces new data after a set burn in period. Each indicator is
standardised by subtracting its running mean from its calculated
value at time t before division by its running standard deviation37

using the equation:

EWSt =
ewst � �EWS1:t
sdðEWS1:tÞ

ð1Þ

where t is the current time point, ews is the estimated early warning
signal indicator value across all data up to t, and EWS is the standar-
dised running EWS value of all previous time points. A composite
metric can then be constructed by summing all individual indicator
values calculated per t. An oncoming transition is identified when the
indicator/composite metric exceeded its expanding mean by a certain
threshold value. Here, we set that threshold at two standard deviations
due its favourable performance relative to alternative threshold
values65. We also imposed a burn in period 50% the total length of the
time series to mitigate spurious signals that occur at the beginning of
assessment resulting from few data points in the window.

We also included the univariate machine learning model
EWSNet39. EWSNet utilises the entirety of the pre-transition time series
to provide probabilities of the likelihood of (1) a critical transition, (2) a
smooth transition (please note this class in analogous to non-critical
transitions defined in Table 1 and Fig. 1), or (3) no transition. We used
the full ensemble of 25 models provided by EWSNet and averaged
across them to improve the robustness of probability estimates fol-
lowing the suggestions of O’Brien et al.82. We additionally tested the
effect of scaled versus unscaled data processing on the quality of
EWSNet predictions. The scaled model involves training on the same
data as the unscaled, but time series were normalised between within
the range [1–2] using the following equation:

s = 1 +
x � xmin

xmax � xmin
ð2Þ

where x is the training time series. This scaling, therefore, ensures all
dynamics are considered at the samemagnitude and aims tominimise
the impact of measurement scale on predictions. When testing using

the scaled form of EWSNet, the test time series must also be scaled for
appropriate predictions.

To enable comparability between transitioning and non-
transitioning taxa, lakes containing transitions were subset prior to
the year identifiedbyTGAMs.Resultantly, if only oneof a lake’s trophic
levels experiences a critical transition, then all time series are subset
prior to any regime shift. Thisminimises the likelihood of false positive
signals driven by the changes in variance experienced in non-
bifurcation regime shifts. Lakes with no regime shifts were subset to
85% of their total length. This ensures we can infer the near future of
the non-transitioning lake correctly.

Additionally, as the various EWS method classes all generate
different outputs, we converted these outputs into the binary
presence-absence of a ‘warning’ (Fig. 4C). For rolling window com-
putations, a warning was accepted if a positive Kendall tau correla-
tion was in the 95th quartile of Kendall tau correlations from a
dataset permuted from the original time series13, for expanding
windows when the two standard deviation threshold was exceeded
for two or more time points83, and for EWSNet, when the model
predicted a critical transition (i.e., the strongest probability)82. This
presence-absence of a warning was then compared to the ground-
truth labels identified by the TGAMs, resulting in a binomial dataset
of successes and failures. We only considered critical transitions here
as these represent the primary classification of concern, due to their
abrupt and hysteretic nature.

Early warning signal ability
To estimate the classification ability of each EWS method, we devel-
oped a series of Bayesian hierarchical models using success/failure as
response variable. Early warning signal method class and the specific
EWS indicator itself were explored as categorical fixed effects in
separate models: EWS method class (Supplementary Tables S8–S9)
and indicator (Supplementary Tables S10–S13) ability. Early warning
signal method class was treated as a factor with five levels: univariate
rolling, univariate expanding, univariate machine learning, multi-
variate rolling, and multivariate expanding. Indicator was also treated
as a factor with 21 levels for each indicator detailed in Supplementary
Table S2. To account for the non-independence of repeated mea-
surements for each lake and fate within each lake (transitioning versus
non-transitioning trophic levels), we included a nested random effect
of fate within lake identity. When testing the success of individual EWS
indicators, we modelled ability across critically transitioning and non-
critically transitioning time series separately to allow true positive and
true negative indicator estimates. We did this to interpret whether
overall EWS method class was influenced by good ability in transi-
tioning data andpoor in not transitioning, or vice versa, analogously to
receiver operator curves (ROC6,40).

We also testedwhich combination of detrending and deseasoning
methods maximised the probability of a correct prediction for each
indicator in the transitioning lakes (SupplementaryTables S3–S8). This
was represented as a factor with 16 levels for each pre-processing
combination. We then used this information to fit the above models
using time series which underwent the optimal combination.

The resulting general model structure was:

yijk ∼binomial number of trials,πijk

� �

logitðπijkÞ=βf actor +uj +uk +ujk + εijk
ujk ∼Normalðα,σjkÞ

ð3Þ

where yijk represents the log odds of correctly classifying a system’s
fate in the ith time series, in the jth lake with the known fate k. π
therefore represents the probability of the classification, β represents
slopes,μ the random intercepts, and ε the remaining error. Eachmodel
was fitted without a global intercept to allow us to interpret the
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absolute effect of each factor level on the probability of correctly
classifying a time series’ fate.

We set the weakly informative priors:

βf actor ∼Normal 0,1:2ð Þ
�5:5 < βf actor < 5:5

α∼Normal 0,1:2ð Þ
σjk ∼ exponential 1ð Þ

ð4Þ

where factor represents the varying factors tested and j and k are
lake identity and lake fate (the presence/absence of a critical
transition identified by TGAM analysis), respectively. βfactor is con-
strained between −5.5 and 5.5 as this represents a ~1% to ~99%
probability.

Models were written in the Stan language84 and implemented in
the brms v2.18.085 package, where they were run for 10,000 iterations
following a 2000 iteration warmup period. Convergence was assessed
via the identification of well mixed trace plots (Supplementary
Figs. S2–S7) and appropriate Rhat values (equal to 1, Supplementary
Tables S3–S13), with posterior predictive checks validating the final
model posterior shape relative to the observed data (Supplementary
Figs. S8–S10). During interpretation, we back-transformed the log
odds into probabilities of correct classification, and used the overlap
of the posterior distribution’s credible intervals against 50% to identify
EWS approaches that provide better estimates than chance. Modelling
the probability of correct classification in this way allows us to control
for confounding factors in the dataset, namely lake identity and the
varying number of trials (i.e., EWS assessments) between lakes and
EWS methods. This control is not possible using the F1-statistics and
ROC typically used for binary classification tasks39,40 which are limited
toweighting baseduponunequal sample sizes and cannot estimate co-
dependencies between the repeated measurements inherent to
ecological data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw plankton data used in this study are mostly available in the
NERC Environmental Information Data Centre database under the
identifier codes [https://doi.org/10.5285/de5ca6cc-02e9-42bc-a39e-80
ec8acbffba; https://doi.org/10.5285/014f1c48-0838-49ca-b059-f084b
13f4d5f; https://doi.org/10.5285/1de49dab-c36e-4700-8b15-93a639ae
4d55], the Environmental Data Initiative database under the identifier
codes [https://doi.org/10.6073/pasta/364622a6632f857289f9abc6a99
d3ae7; https://doi.org/10.6073/pasta/6fc6015c620056034512fde089
d50c27], and in the literature under the identifier codes [https://doi.
org/10.1371/journal.pone.0110363; https://doi.org/10.3389/fmicb.20
19.03155]. The raw plankton data for Lake Kinneret and Lake Kasumi-
gaura are available under restricted access due to data ownership,
access canbeobtainedbycontactingGGandS-iM.Theprocessedearly
warning signal data are available in the Zenodo repository [https://doi.
org/10.5281/zenodo.10062493].

Code availability
All code for analysis is available in the Zenodo record [https://doi.org/
10.5281/zenodo.10062493].
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