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A B S T R A C T

Accurate crop mapping is of great significance for crop yield forecasting, agricultural productivity development
and agricultural management. Thanks to its all-time and all-weather capability, integrating multi-temporal
synthetic aperture radar (SAR) for crop mapping has become essential and challenging task in remote sensing.
In recent years, deep learning (DL) has demonstrated excellent crop mapping accuracy to interpret crop
dynamics. However, existing DL-based methods tend to be incapable of capturing spatial and temporal features
at different scales simultaneously, and this often leads to severe mis-classification due to the complex and
heterogeneous distribution of crops and diverse phenological patterns. In this paper, we propose a novel
spatio-temporal multi-level attention method, named as STMA, for crop mapping using time-series SAR
imagery in an end-to-end fashion to increase the capability of crop phenology retrieval. Specifically, the multi-
level attention mechanism is designed to aggregate multi-scale spatio-temporal representations on crops via
cascaded spatio-temporal self-attention (STSA) and multi-scale cross-attention (MCA) modalities. To ensure
a fine extraction of multi-granularity features, a learnable spatial attention position encoding is proposed to
adaptively generate the position priors to facilitate multi-level attention learning. Experimental results on
Brandenburg Sentinel-1 dataset, public PASTIS-R dataset and South Africa dataset demonstrated that STMA can
achieve state-of-the-art performance in crop mapping tasks, with the accuracy of 96.54% in the Brandenburg
Sentinel-1 dataset, 86.77% in the PASTIS-R dataset and 83.37% in the South Africa dataset, validating its
effectiveness and superiority. Further comparison of spatio-temporal generalization capability reflected its
excellent performance in spatio-temporal modeling on different crops and scenarios. This research provides
a viable and intelligent spatio-temporal framework for large-area crop mapping using time-series SAR imagery
in complex agricultural systems. The Brandenburg Sentinel-1 dataset and the STMA code will be publicly
available at https://github.com/hanzhu97702/ISPRS_STMA.
1. Introduction

With the global demand for food increasing constantly, crop yield
estimation serves a critical role in regulating the balance between
food supply and demand (Thenkabail et al., 2012; Alexandratos and
Bruinsma, 2012). At the same time, accurate and up-to-date crop
mapping is essential for understanding agricultural land use and moni-
toring crop growth, enabling decision-makers to develop effective crop
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management practices for maintaining food security (Bargiel, 2017; Cai
et al., 2018), such as water supply irrigation and targeted crop insur-
ance (Tilman et al., 2011; Karthikeyan et al., 2020). In recent decades,
satellite sensors have been used in both crop yield estimation and crop
mapping due to their synoptic view, regular revisit time frequency
and, in some cases, weather-independent acquisition capabilities. Based
on different imaging techniques, current multi-temporal crop mapping
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methods are developed, primarily, using optical and synthetic aperture
radar (SAR) data (Adrian et al., 2021). A large number of studies focus
on fine or medium spatial resolution optical images for crop mapping,
e.g., Sentinel-2a/b (Drusch et al., 2012), Landsat (Dong et al., 2016)
and MODIS (Wardlow and Egbert, 2008). However, optical remote
sensing (RS) images are limited by cloud (Julien and Sobrino, 2010;
Zhao et al., 2020), haze contamination (Peng et al., 2020) and other
spectral mixing perturbations (Han et al., 2020, 2022b) which can-
not guarantee the acquisition of clear multi-temporal images in real
applications. Synthetic aperture radar (SAR) has become a potential
data source for crop mapping with its all-time and all-weather imaging
capability (Amazirh et al., 2018; Zeng et al., 2021). By interacting
with the crop canopy and the underlying soil, the backscattering in-
formation derived from SAR data can stably reflect the morphological
structure and orientation distribution of crops at different phenological
stages (McNairn et al., 2009). Thus time-series SAR can be poten-
tially invaluable for dynamic crop mapping in complex agricultural
systems (Xu et al., 2018).

With the rapid development of artificial intelligence, deep learning
(DL) has been extensively explored in the field of crop mapping (Zhu
et al., 2017; Zeng et al., 2022). Unlike traditional machine learning
approaches, the DL-based methods can efficiently learn spatial and
temporal relationships of crops in the pixel or parcel level, with vast
potential for simulating complex crop phenology processes in practical
applications (Wang et al., 2021; Han et al., 2022a). To synergistically
utilize time-series SAR imagery for crop mapping, several recent studies
have tended to develop hybrid DL network architectures based on
convolution neural networks (CNNs), recurrent neural network (RNNs),
and self-attention networks, owing to their excellent spatio-temporal
modeling abilities (Rußwurm and Körner, 2020; Xu et al., 2021).
This end-to-end feature learning mechanism of DL reduces manual
intervention and further facilitates the development of high-precision
and automated crop mapping. Depending on the learning mechanism,
existing crop mapping approaches can be both unsupervised and su-
pervised. The unsupervised crop mapping methods mainly focus on
deep unsupervised representation and clustering strategies (Iounousse
et al., 2015; Franceschi et al., 2019; Kalinicheva et al., 2020; Guo et al.,
2022b) to match crop statistics with the help of clustering features and
similarity measures between temporal sequences, further mitigating the
lack of crop labels and human supervision when no ground data exists.
Considering domain shifts of crops in different regions, unsupervised
domain adaptation approaches are introduced to transfer prior knowl-
edge from the source domain to the target domain, and further enhance
the model generalization (Kwak and Park, 2022; Wang et al., 2023).
However, the unsupervised methods are often vulnerable to outliers
and high dimensionality, and difficult for distinguishing crops with
larger difference in real applications (Wang et al., 2019; Magistri et al.,
2023). The supervised crop mapping methods can effectively model or
simulate ideal crop phenologies to achieve promising performance in
crop mapping owing to given limited training samples (Karim et al.,
2019; Garnot and Landrieu, 2021a), thus they have been extensively
used to generate crop mapping relative to unsupervised approaches.

Although existing studies demonstrated the effectiveness of DL-
based approaches and replaced handcrafted feature engineering, there
are three problems that need to be solved in the current DL-based
crop mapping frameworks. (1) Limited spatio-temporal receptive field
by considering multi-scale information of crops in a single type of
the convolutional network. Due to the existence of spatial variability
affected by environmental conditions (e.g., climate and topography), as
well as complex phenological characteristics associated with increased
crop diversification and intensification (Van Bussel et al., 2011; Diao,
2019), existing approaches focus on extracting multi-scale features
with the short-range joint dependency by the CNN-based operation,
and lack of capturing more discriminative long-range temporal multi-
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scale information corresponding to crop phenological development.
The self-attention-based approaches also focus on the uniform informa-
tion granularity within the attention layer, and overlook the multi-scale
nature of crops. As a result, the extracted SAR spatio-temporal features
are easily misled by similar crop types or speckle noise, further pro-
ducing unreliable and incomprehensible mapping results. The effective
and multi-scale capture in both spatial and temporal dimension is vital
to the performance improvement of crop mapping. (2) Irregularity
temporal priors owing to acquisition obstructed by sensors. For bet-
ter modeling numerical time-series RS data, state-of-the-art DL-based
crop mapping methods (i.e., self-attention networks) need to input all
possible calendar time to provide temporal positions for DL model
training and identifying various crop types (Garnot et al., 2020; Garnot
and Landrieu, 2021a). However, it is difficult to obtain complete and
regular time-series data in practical applications, which affects model
generalization performance (Liu et al., 2020). Some cumbersome and
manual interpolation prepossessing tools are utilized to make up for
this defect (Inglada et al., 2015). Therefore, exploring learnable and
prior-avoiding position encoding techniques are essential for current
DL-based crop mapping methods. (3) Incomplete spatial and temporal
feature fusion strategies are employed for time-series SAR data. Existing
DL-based methods consider to extract spatio-temporal features through
the cascade form or element-wise sum weakens the contribution of
vegetation (Rußwurm and Körner, 2020; Yang et al., 2021), thereby
reducing spatio-temporal correlations between different polarization
modes. Exploring the efficient and adaptive fusion of both spatial and
temporal attention mechanism will be beneficial to suppress unimpor-
tant information and highlight the more informative spatio-temporal
features.

According to the above discussion, we propose a novel spatio-
temporal multi-level attention method, STMA, for crop mapping using
time-series SAR imagery. STMA is a encoder–decoder CNN-transformer-
based framework that efficiently leverages local feature representations
of CNNs and global long-distance relationships of transformers from
the multi-scale perspective. The encoder part of STMA aims at extract-
ing multi-scale and robust spatio-temporal features by the multi-level
attention mechanism, including spatio-temporal self-attention (STSA)
module and multi-scale cross-attention (MCA) module. The STSA mod-
ule builds a parallel structure to extract long-distance spatial and
temporal characteristics respectively, and designs an adaptive feature
fuse module with learnable network parameter to promote spatio-
temporal feature fusion and interoperability, while the MCA module
captures and aggregates long-distance correlations between multi-scale
spatio-temporal features to enhance the spatio-temporal receptive field.
To ensure the local information extracted by the CNN-based ResNet, a
learnable spatial attention position encoding is designed to adaptively
generate the position priors of time-series features, which further fa-
cilitates multi-level attention learning. Finally, a lightweight decoder
is employed to reconstruct the extracted multi-level spatio-temporal
features hierarchically to produce the final crop mapping result. The
major contributions of this research include:

(1) We present a multi-level attention crop mapping method to
efficiently aggregate multi-scale spatio-temporal representations
via cascaded self-attention and cross-attention modalities, which
achieves superior performance for crop mapping.

(2) The STSA module achieves multi-granularity spatio-temporal fea-
ture extraction, and the MCA module based on cosine similarity
fully integrates both spatial and temporal multi-scale information
in order to enlarge the spatio-temporal receptive field for long-
distance dynamics, which helps to capture complex phenological
characteristics of crops.

(3) We design a learnable spatial attention position encoding to en-
hance the multi-level attention mechanism, such that the spatial
structure extracted from the CNN-based ResNet encoder is well
preserved and it is applicable to different datasets and input

lengths.
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(4) We conduct a thorough evaluation to compare our proposed
STMA method with current state-of-the-art approaches on the
Brandenburg Sentinel-1 dataset, the public PASTIS-R dataset and
South Africa dataset. The experimental results shows that com-
bining multi-scale spatio-temporal information grants significant
improvement in terms of spatio-temporal generalization.

The remainder of the paper is organized as follows. Section 2
ntroduces the related work of traditional and DL-based crop mapping
pproaches. The proposed STMA method is described in Section 3. The
xperimental results and the discussion are presented in Sections 4 and
, respectively. The conclusion is drawn in Section 6 finally.

. Related work

.1. Traditional crop mapping using time-series SAR

Multiple traditional crop mapping approaches were developed us-
ng time-series SAR imagery to differentiate various crop types by
haracterizing the crop phenophase and distribution over the past few
ecades. These can be divided broadly into three categories: threshold-
ased, statistics-based and machine learning methods. Threshold-based
ethods consider primarily the optimal seasonal threshold (Satalino

t al., 2013; Oyoshi et al., 2016) or variation of radar vegetation
ndex (Trudel et al., 2012; Periasamy, 2018; Mandal et al., 2020) to
eparate different crop types, which can be effective for crops with
istinct temporal characteristics, such as rice and soybean (Veloso
t al., 2017). Statistics-based approaches focus on analyzing global
tatistics by building pre-defined mathematical functions or models
o describe phenological dynamics or time-varying characteristics for
mproved crop discrimination, such as Kalman filters (Vicente-Guijalba
t al., 2013), particle filters (De Bernardis et al., 2014), Hidden Markov
odels (Leite et al., 2011) or Conditional Random Fields (Kenduiy-
oa et al., 2015; Kenduiywo et al., 2017). Although the statistical
odeling of time-series SAR data can enhance mapping accuracy, the
tilization of phenological knowledge is challenging in practice due to
he uncertainty involved in the evolution of crop phenology caused by
limate variation (Gao et al., 2021). Machine learning approaches, such
s the support vector machine (SVM) (Sonobe et al., 2015), decision
ree (DT) (Waske and Braun, 2009), and random forest (RF) (Sonobe
t al., 2014), commonly stack time-series SAR imagery as multiple
eatures, and adopt data mining techniques to distinguish different
rop types at the pixel level. This type of method mainly relies on
andcrafted features subject to expert knowledge and consider limited
patio-temporal relationships of time-series SAR imagery. In addition to
he backscattering mechanism analysis, the polarization signatures has
een proven to maximize the difference between different crop types
n certain orientation angle and further provide discriminative features
or crop mapping (Tan et al., 2011; Zhang et al., 2014; Srikanth et al.,
016; Huang et al., 2017).

.2. DL-based approaches in crop mapping

In the field of crop mapping, the most popular DL-based models
re CNNs (Krizhevsky et al., 2012) and RNNs (Zaremba et al., 2014),
hich explore the spatial and temporal feature representations from
ulti-temporal satellite sensor imagery. Specifically, CNNs aim at ex-

racting spatial contextual representations via convolutional filters to
ealize end-to-end classification in large-area RS scenes (Gu et al.,
018), and some semantic segmentation models, such as U-network
UNet) (Ronneberger et al., 2015) and fully convolutional network
FCN) (Long et al., 2015), can perform pixel-based crop classification
sing a series of convolutional and pooling operations. To handle
ulti-temporal images, much effort has been made to achieve crop
apping based on the temporal domain of CNNs. For example, Zhong
295

t al. (2019) adopted a one-dimensional CNN (1D-CNN) architecture
to capture temporal variation in an Enhanced Vegetation Index (EVI)
time-series, which demonstrated the feasibility of CNN-based archi-
tectures for temporal analysis. Adrian et al. (2021) proposed a 3D
UNet crop mapping method to learn local spatial and temporal features
simultaneously by applying 3D convolution kernels throughout the
crop growing season, further increasing overall crop mapping accuracy
compared with 2D CNN models. Li et al. (2021) considered the object-
level scale sequence CNN framework to classify different crops based
on SAR imagery and further ensured more precise boundaries between
crop parcels. Guo et al. (2022a) designed a convolutional-autoencoder
neural network (C-AENN) to achieve efficient utilization of optimal
multi-temporal feature combination of time-series SAR imagery and
exploited the potential of the CNN-based hybrid architecture in the task
of crop mapping. As another set of DL models, RNNs are specialized in
sequential data analysis and have been used widely to process multi-
temporal RS data for crop mapping. Long short-term memory (LSTM)
and bidirectional LSTM (Bi-LSTM) were adopted to map rice crops
from time-series SAR and demonstrated their superiority in capturing
temporal correlation and extracting multi-temporal features compared
to traditional machine learning approaches (Crisóstomo de Castro Filho
et al., 2020). To further improve the temporal modeling ability, the
attention mechanism was introduced into LSTM to yield state-of-the-
art classification performance (Rußwurm and Körner, 2018; Xu et al.,
2020). Moreover, the hybrid architecture of CNN and RNN variants,
e.g. ConvGRU and ConvLSTM, enhanced the spatial generalization for
dynamic crop mapping and achieved increased accuracy (Shi et al.,
2015; Chang et al., 2022).

Recently, Transformers have been developed to capture long-range
dependencies and interactions with the support of self-attention mech-
anisms, and allow parallel computation to reduce local decreases in
accuracy due to long-term context dependencies (Vaswani et al., 2017;
Dosovitskiy et al., 2020). Following the adoption of the self-attention
mechanism in the Transformer, Rußwurm and Körner (2020) achieved
pixel-level crop recognition using optical time series, much improved
compared with both RNN-based and CNN-based models. Furthermore,
the combination of pixel-set encoder and lightweight temporal self-
attention (PSE+LTAE) can acquire rich spatial extent and temporal
patterns of crop parcels for classifying time-series optical imagery (Gar-
not et al., 2020; Garnot and Landrieu, 2020). Based on the celebrated
self-attention architecture, Weilandt et al. (2023) proposed a multi-
modal crop mapping framework by utilizing dense time series of optical
and radar data to achieve multi-source feature fusion and further
enhance crop mapping accuracy. In a similar vein, the U-TAE ar-
chitecture introduced the spatial UNet-based architecture into LTAE
to achieve pixel-level crop mapping from the semantic segmentation
perspective (Garnot and Landrieu, 2021a). To overcome the dilemma of
temporal shifts between different regions, thermal positional encoding
(TPE) was proposed to learn invariant temporal features and improve
the generalization of self-attention models (Nyborg et al., 2022). Nev-
ertheless, owing to the limited spatio-temporal receptive field and the
uniform information granularity within the attention layer, obtaining
satisfactory crop mapping results through these existing crop mapping
methods are difficult when facing large diversity of crops and complex
time-series SAR scenarios.

3. Methodology

The overall framework of the proposed STMA crop mapping scheme
is shown in Fig. 1. Given time-series SAR imagery, the encoder part
of STMA integrates local spatial features from the CNN-based ResNet
module and global spatio-temporal features from multi-level atten-
tion mechanism, including STSA and MCA module. To ensure multi-
granularity feature extraction, a learnable spatial attention position
encoding is introduced before STSA to adaptively provide the position
priors for multi-level attention learning, as illustrated in Fig. 2. After-

wards, the decoder reconstructs the extracted spatio-temporal features
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Fig. 1. The overall framework of the proposed STMA.
Fig. 2. The specific architecture of STSA in the proposed STMA.
hierarchically to obtain final crop mapping results with the help of
principle segmentation and auxiliary supervision. In the following sub-
section, we provide a detailed description of each component module
in the proposed STMA.

3.1. CNN-based ResNet module

Owing to strong feature extraction and noise adaptive abilities,
deep CNNs have been widely applied in crop mapping tasks. However,
traditional CNN-based approaches have a limited receptive field so
that they usually lose some information. To retrieve more local spatial
information, the Residual Network (ResNet) is often adopted as a
backbone network to effectively extract the input image features by
introducing the residual connection to propagate the local information
from the shallow layer to the deeper layers (He et al., 2016). There-
fore, in this paper, we choose the CNN-based ResNet architecture as
our front-end extractor to extract the changing features from dual-
polarization SAR time-series. As for the input time-series SAR imagery,
we organize it into a four-dimensional tensor of shape 𝑇 × 𝐶 ×𝐻 ×𝑊
containing both the spatial architecture and temporal sequence, where
𝑇 and 𝐶 represent the sequence length and the number of channel
corresponding to polarization modes, and 𝐻 ×𝑊 are the spatial image
size. The designed ResNet network architecture consists of a standard
7 × 7 convolution block, a max-pooling layer and four residual blocks,
where each residual block contains two 3 × 3 convolution operations,
batch normalization (BN), rectified linear unit (ReLU) and a shortcut
connection layer represented by a standard 1 × 1 convolution operation
and BN. After experiencing different convolution and pooling opera-
tions, the spatial size of the input patch cubes is reduced by 1

2 , 1
4 , and

1
8 , respectively, while the channel dimension increases gradually. The
adopted multi-scale features refer to the output features extracted from
296
the CNN-based ResNet module at multiple receptive fields, correspond-
ing to the shallow-level feature, middle-level feature and high-level
feature based on different spatial resolutions. Low-level and high-level
are discriminative and complementary to each other. In this process,
the CNN-based ResNet module successively extracts the local spatial
features for each time, and then the output features are concatenated
along the temporal dimension, so that the temporal dimension infor-
mation is preserved to promote the subsequent temporal self-attention
module to achieve the temporal feature extraction. The output feature
sequence for 𝑛th scale level is expressed as

𝐱𝑛 =
[

𝑛(𝑥𝑡)
]𝑇
𝑡=1 , 𝑛 ∈ [1, 3] (1)

where 𝐱𝑛 ∈ 𝐑𝑇×𝐶𝑛×𝐻𝑛×𝑊𝑛 represents the output feature sequence with
𝐻𝑛 = 𝐻∕2𝑛 and 𝑊𝑛 = 𝑊 ∕2𝑛.  denotes the CNN-based ResNet
extractor, and [.] is the concatenation operator along the temporal
dimension. The design of the ResNet architecture can accelerate the
entire training process and prevent network degradation owing to its
superior residual connection and small memory consumption.

3.2. Spatial attention position encoding

Position encoding is crucial to exploiting the order of input se-
quences and further helping the Transformer participate in the com-
putation of the self-attention mechanism. The original Transformer
work considers the absolute position embedding by a fixed sinusoidal
encoding based on a predefined wavelength to capture positional re-
lationships for input sequences (Vaswani et al., 2017). However, the
predefined position features lack flexibility and may fail to extract
important position information in a task-relevant manner, because
this predefined position encoding only considers the first few dimen-
sions of the whole embedding to store the information about the
position (Kazemnejad, 2019). In addition, existing methods usually
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combine the position embedding with the feature map via adding
operation, which is not effective to capture desired position similar-
ity and correctly represent more distant positions in the large-area
scenarios. To remedy this issue, we design a novel spatial attention
position embedding module to achieve position encoding in a more
flexible and data-driven way. The proposed spatial attention position
embedding aims at adopting an embedded learnable function to learn
complex position relationships from the feature cubes extracted by the
CNN-based ResNet module, which can be represented as

𝐱′𝑛 = 𝐱𝑛 × 𝜎(𝐷𝐶𝑜𝑛𝑣(𝐱𝑛)) (2)

where 𝐱𝑛 ∈ 𝐑𝐻𝑛×𝑊𝑛×𝑇𝐶𝑛 and 𝐱′𝑛 ∈ 𝐑𝐻𝑛×𝑊𝑛×𝑇𝐶𝑛 represent the input
feature cube extracted by the CNN-based ResNet module and the
output token embedding, respectively. 𝐷𝐶𝑜𝑛𝑣(.) denotes the depth-wise
convolution operation with 3 × 3 convolution kernel and padding 1,
in order to extract spatial weights from the input sequences. 𝜎(.) is
the sigmoid activation function to generate weight coefficients between
0 and 1. The depth-wise convolution applies the convolutional filter
for each input channel to gather the spatial information that is con-
ditioned on the local neighborhood of the input token and keep the
translation equivalence when maintaining small trainable parameters,
which provides a flexible and effective way to process input of arbitrary
size without fine-tune or interpolation. By assigning different weight
coefficients, each pixel in the extracted feature cube can obtain a
position embedding adaptively so that the spatial information can be
preserved into the output token embedding.

3.3. Spatio-temporal self-attention module

To capture the spatio-temporal relationship and phenological in-
formation of SAR time series, the STSA module is adopted to learn
long-term interactions from the spatial and temporal dimension with
the help of the self-attention mechanism. STSA consists of spatial self-
attention, temporal self-attention and feature fuse module, as shown
in Fig. 2. The spatial self-attention and temporal self-attention part
independently extract the spatial and temporal information according
to different flatten forms of the encoded feature cube. Then, the feature
fuse module containing convolution operation, LayerNorm (LN) and
multi-layer perceptron (MLP) layers, aims at integrating the concate-
nated features to acquire robust spatio-temporal features, avoiding
the influence of manual intervention on the concatenation order of
temporal and spatial features.

Firstly, the input token embedding 𝐱′𝑛 is flattened along the spatial
and temporal dimension into two embedded sequences 𝐳𝑆 ∈ 𝐑𝐻𝑛𝑊𝑛×𝑇𝐶𝑛

and 𝐳𝑇 ∈ 𝐑𝑇×𝐶𝑛𝐻𝑛𝑊𝑛 . Afterwards, the flattened embedded sequences are
fed to conduct the multi-head self-attention (MSA) operation along the
spatial and temporal axis, in order to capture the long-term spatial and
temporal information. Let 𝐳′𝑆 ∈ 𝐑𝐻𝑛𝑊𝑛×𝑇𝐶𝑛 and 𝐳′𝑇 ∈ 𝐑𝑇×𝐶𝑛𝐻𝑛𝑊𝑛 denote
the output spatial and temporal features of the spatial and temporal
self-attention, respectively. Formally,

𝐳′𝑆 = 𝑀𝑆𝐴(𝐿𝑁(𝐳𝑆 )) + 𝐳𝑆 (3)

𝐳′𝑇 = 𝑀𝑆𝐴(𝐿𝑁(𝐳𝑇 )) + 𝐳𝑇 (4)

𝑀𝑆𝐴(𝐳) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1,… , ℎ𝑒𝑎𝑑ℎ)𝐖𝑂 (5)

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐐𝑖,𝐊𝑖,𝐕𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝐐𝑖𝐊𝑇

𝑖
√

𝑑𝑘
)𝐕𝑖 (6)

where ℎ is the number of heads in MSA, and 𝐖𝑂 is linear transfor-
mation matrice used for feature space transformation. 𝐐𝑖 = 𝐳𝑖𝐖

𝑄
𝑖 ,

𝐊𝑖 = 𝐳𝑖𝐖𝐾
𝑖 , and 𝐕𝑖 = 𝐳𝑖𝐖𝑉

𝑖 represent the key, query and value for each
head, respectively.

{

𝐖𝑄
𝑖 ,𝐖

𝐾
𝑖 ,𝐖

𝑉
𝑖

}

are linear transformation matrices
whose parameters can be learned.

√

𝑑 represents a scaling factor.
297

𝑘

Fig. 3. The specific architecture of MCA in the proposed STMA.

The softmax activation function provides attention values from 0 to 1,
and the self-attention matrix for spatial and temporal dimensions are
independently acquired with size

[

𝐻𝑛𝑊𝑛,𝐻𝑛𝑊𝑛
]

and [𝑇 , 𝑇 ] to reflect
the weight distribution at different pixels and times.

To accomplish the aggregation of spatial and temporal features,
the feature fuse module is designed by concatenating these extracted
features to perform a feed-forward network similar to the original
Transformer. The output of STSA can be written as follows

𝐝 = 𝑀𝐿𝑃 (𝐿𝑁(𝐶𝑜𝑛𝑐𝑎𝑡(𝐳′𝑆 , 𝐳
′
𝑇 ))) + 𝐰�̂� (7)

where 𝐝 ∈ 𝐑𝐻𝑛𝑊𝑛×𝑇𝐶𝑛 is the output spatio-temporal feature. The MLP
layer is composed of two fully connection layers with a Gaussian error
linear unit (GELU) activation. 𝐰 ∈ 𝐑1×2 is the learnable network
parameter for adaptive fusion. �̂� = [𝐳′𝑆 , 𝐳

′
𝑇 ]

𝑇 ∈ 𝐑2×𝐻𝑛𝑊𝑛×𝑇𝐶𝑛 represents
the concatenation results of 𝐳′𝑆 and 𝐳′𝑇 in the third dimension, so
that the local structural information can be preserved from the con-
volution operation to avoid insufficient fusion. After STSA, the output
spatio-temporal feature 𝐝 is reshaped into 2D image space to generate
discriminative spatio-temporal feature 𝐳1 ∈ 𝐑𝐻1×𝑊1×𝑇𝐶1 . Similarly, as
for different multi-scale features obtained by the CNN-based ResNet
module, the middle-level feature 𝐳2 ∈ 𝐑𝐻2×𝑊2×𝑇𝐶2 and high-level
feature 𝐳3 ∈ 𝐑𝐻3×𝑊3×𝑇𝐶3 can also be obtained by the STSA module.

3.4. Multi-scale cross-attention module

To integrate the contributions from different scale levels, the MCA
module based on cosine similarity is designed to capture long-distance
correlations between multi-scale spatio-temporal features. Inspired by
the cosine normalization work in the neural networks (Luo et al., 2018),
we adopt cosine similarity to the cross-attention mechanism instead of
the scaled dot product to capture more differences between multi-scale
features and produce stable attention results. Given the multi-scale
spatio-temporal features 𝐳1, 𝐳2 and 𝐳3, the MCA mechanism based on
cosine similarity is expressed as

𝐳𝑚 = 𝑀𝐶𝐴(𝐐𝐶 ,𝐊𝐶 ,𝐕𝐶 ) + 𝐳3

= 𝑃𝑎𝑡𝑐ℎ𝐶𝑜𝑠𝑖𝑛𝑒(𝐐𝐶 ,𝐊𝐶 ) ⋅ 𝐕𝐶 + 𝐳3 =
𝐐𝐶 ⋅𝐊𝑇

𝐶
𝐌𝑄 ⊗𝐌𝐾

⋅ 𝐕𝐶 + 𝐳3 (8)

where 𝐐𝐶 = 𝐳1𝐖
𝑄
𝐶 , 𝐊𝐶 = 𝐳2𝐖𝐾

𝐶 , and 𝐕𝐶 = 𝐳2𝐖𝐕
𝐂 represent the query,

key and value for the MCA mechanism, respectively. ⊗ denotes the
outer product operation. 𝐌𝑄 and 𝐌𝐾 are the magnitude value of 𝐐𝐶
and 𝐊𝐶 . To unify the size of different multi-scale features, we adopt
the 1 × 1 convolution and average pooling operations to balance the
number of channels and the spatial size of 𝐳1 and 𝐳2 equal to high-
level feature 𝐳3. Finally, by adding valuable semantic information of
the high-level feature 𝐳3 to the generated feature, the final aggregated
spatio-temporal feature 𝐳𝑚 is obtained with rich multi-scale information
(see Fig. 3).
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3.5. Decoder

To keep the size of the extracted spatio-temporal feature map
consistent with the size of ground reference for crop mapping tasks,
a CNN-based decoder architecture is adopted by progressively recon-
structing the feature map to maintain semantic detailed information
with the help of deconvolution and standard convolution. For balancing
both computational efficiency and reconstruction accuracy, we adopt
one 3 × 3 deconvolution convolution block and one standard 3 × 3
onvolution block in the decoder part to effectively project the high
imensional feature map into a low dimension. The purpose of the de-
onvolution convolution is to upscale feature maps by inserting virtual
eros between the adjacent input pixels (Dumoulin and Visin, 2016).
ere, the encoded spatio-temporal feature map 𝐳𝑚 is integrated with

he value of previous ResNet flow by the skip connection to enlarge the
patial size of feature map and ease the training process. Finally, one
tandard 3 × 3 convolution block and one standard 1 × 1 convolution

layer are applied to post-process the newly upscaled feature and the
encoded spatio-temporal feature 𝐳𝑚, respectively, to produce the final
crop mapping result 𝐲 ∈ 𝐑𝐾×𝐻×𝑊 and the auxiliary map 𝐲𝑎𝑢𝑥 ∈
𝐑𝐾×𝐻×𝑊 with the number of category 𝐾.

3.6. Loss function

As stated before, the objective function of the proposed STMA is re-
alized by minimizing the principle cross-entropy (CE) loss function and
the auxiliary loss function. Specifically, the principle CE loss is adopted
to train the whole STMA network to learn the mapping from the input
time-series SAR to ground reference data, while the auxiliary loss is
used to supervise the optimization process of the multi-level attention
by preventing detailed information loss in intermediate network layers,
so that these encoder–decoder CNN-transformer-based architectures
can learn better multi-scale spatio-temporal feature representations,
thereby improving crop mapping performance in semantic view. The
overall loss of STMA can be formulated as

𝐿𝐴𝑙𝑙 = 𝛼𝐿𝐶𝐸 + (1 − 𝛼)𝐿𝐴𝑢𝑥 (9)

where 𝛼 is utilized to balance the trade-off between the principle CE
loss and the auxiliary loss. Note that, the auxiliary loss function is
calculated by minimizing the CE loss between the auxiliary map 𝐲𝑎𝑢𝑥
enerated by the CNN-based decoder and the ground reference map
̂ , and is only adopted in the training phase, not affecting the testing
hase. The principle CE loss function considers the reconstruction loss
etween the output crop mapping result 𝐲 and the ground reference
ata �̂�. To be specific, the multi-class CE loss for 𝐿𝐶𝐸 and 𝐿𝐴𝑢𝑥 is

calculated as follows

𝐿 = − 1
𝑁

𝑁
∑

𝑖=1
�̂�𝑖log(𝑦𝑖) (10)

where 𝑁 represents the number of pixels. �̂�𝑖 and 𝑦𝑖 denote the one-
hot encoding of the true label and the corresponding softmax output of
STMA at the 𝑖th image pixel.

4. Experiments and results

4.1. Experimental datasets

To evaluate the performance of our proposed crop mapping method,
e adopt three Sentinel-1 time-series SAR datasets in the experiment,

ncluding Brandenburg Sentinel-1 dataset, public PASTIS-R dataset and
outh Africa dataset. Different datasets are modeled separately for
raining, validation and testing.

The Brandenburg Sentinel-1 dataset covers two study areas, S1 and
2, in the northwest and southeast part of Brandenburg state, Ger-
any, latitude 51◦47′N∼52◦58′N, longitude 12◦3′E∼14◦42′E, as shown
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in Fig. 4(a). Compared to other German states, approximately 45% of
Brandenburg is dedicated to agricultural land use and a large amount of
regional food production needs to be supplied, due to its geographical
location close to the city of Berlin, the capital of Germany (Wolff
et al., 2020). Specifically, the adopted time-series SAR imagery has
3731 × 5095 pixels with 10 m spatial resolution and its corresponding
revisit time is stable at 12 days. Table 1 lists the specific acquisition
data description of the selected time-series Sentinel-1A SAR data within
two time phases: from 2017 to 2018 and from 2020 to 2021. In the two
study areas, S1 and S2, 15 categories were investigated to validate the
effectiveness of multi-class crop mapping, including some major crops
(e.g., maize, wheat and rapeseed), and other land use types (e.g., fallow
and residual), and Table 2 presents an overview of the ground reference
data. Other rare crop and land use types were aggregated as the ‘‘Other’’
category. The time-series curve of six main crops are displayed in Fig.
S1, which reflects a certain crop phenology difference.

The open-access PASTIS-R dataset is a benchmark dataset for panop-
tic and semantic segmentation of crop mapping from time-series
Sentinel-1 and Sentinel-2 observations, as illustrated in Fig. 4(b). It
contains 19 categories and 2433 patches within different regions of
the France metropolitan territory with semantic annotations for each
pixel. For each patch with size 128 × 128, there are 70 observations of
Sentinel-1 sensor acquired from ascending (S1A) and descending (S1D)
orbits without any speckle filtering and terrain correction processing.
PASTIS-R provides the time-sereies SAR of three different modalities,
including vertical polarization (VV), horizontal polarization (VH), and
the ratio of vertical over horizontal polarization (VV/VH). More details
about PASTIS-R dataset can refer to Garnot and Landrieu (2021b). We
adopted the official 5 fold split provided in the dataset’s metadata to
evaluate the performance of the proposed STMA.

The South Africa dataset is produced as part of the Radiant Earth
Spot the Crop Challenge. It collects the time-series data of Sentinel-
1 and Sentinel-2 satellite from 2017 to 2018 to classify crops in the
Western Cape of South Africa (Western Cape Department of Agricul-
ture, 2021), as illustrated in Fig. 4(c). The South Africa dataset consists
of small-holder farms and sparse ground truth label, and the growing
season in this study area is dominated by rain and cloud cover, leading
to low visibility in remote sensing imagery. In addition, the tropical
climate allows for the existence of double-season or multiple cropping
systems in South Africa (Waha et al., 2020), further increasing the
difficulty of crop identification and mapping. There are 2650 patches
for training and 1137 patches for testing with size 256 × 256, including
9 crop classes and 21 observations of VV and VH modalities in the
time-series SAR imagery.

These three time-series SAR datasets are collected by Sentinel-1 ob-
servations in different regions, and various crop types are considered to
achieve crop mapping. Existing crop mapping researches only focused
on limited crop categories, and some crops were included as ‘‘others’’ to
evaluate the performance of algorithm, especially for crops with similar
growth characteristics, which is not persuasive for model evaluation
and can also be interpreted as misclassification (Wang et al., 2023). The
adopted time-series SAR datasets in this paper have various difficulties
in terms of data complexity, especially for a variety of crop categories
and different cropping system, and are representative for evaluating
crop mapping approaches, which can validate the effectiveness of crop
mapping methods from different circumstances and perspectives.

4.2. Experimental design

In this section, three experiments were performed to validate the
proposed STMA in the crop mapping task, including comparative evalu-
ation, assessment of spatio-temporal generalization, and ablation study.
In addition, overall accuracy (OA), F1 score and intersection over union
(IoU) were selected as evaluation metrics to evaluate the accuracy of
different crop mapping approaches. The definitions of OA, precision,
recall, F1 score and IoU are

𝑂𝐴 = 𝑇𝑁 + 𝑇𝑃 (11)

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
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Fig. 4. Dataset introduction of Brandenburg Sentinel-1, PASTIS-R and South Africa.
Table 1
The acquisition data description of time-series Brandenburg Sentinel-1.

Description Acquisition date/Day of year (DOY)

Phase 1 from 2017 to 2018 2017–09–05 2017-09-17 ⋯ 2018–03–16 ⋯ 2018–12–17 2018–12–29
248 260 ⋯ 75 ⋯ 351 363

Phase 2 from 2020 to 2021 2020–09–01 2020-09-13 ⋯ 2021–03–12 ⋯ 2021–12–13 2021–12–25
245 257 ⋯ 71 ⋯ 347 359
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(12)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(13)

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(14)

𝐼𝑜𝑈 = 𝑇𝑃 (15)
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𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
where 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 and 𝐹𝑁 denote the number of true positive, true
negative, false positive and false negative samples, respectively.

For all experiments presented, we divided the Bradenburg Sentinel-
1 dataset into three parts based on the patch size of 128 × 128;
a training dataset, validation dataset and testing dataset in the ra-
tio of 5 to 1 to 4 by non-overlapping cropping, and the PASTIS-R
dataset partition adopted 5-fold cross-validation followed the original
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Table 2
Overview of ground reference data including 15 categories in S1 and S2 study area.

Numbers of parcels in S1 Area proportion in S1 Number of parcels in S2 Area proportion in S2

Maize 15,874 20.79% 21,397 25.67%
Wheat 19,072 24.98% 20,060 24.07%
Grassland 33,501 43.87% 34,008 40.81%
Peanut 1,922 2.52% 1,469 1.76%
Potato 573 0.75% 774 0.93%
Residue 832 1.09% 706 0.85%
Fallow 603 0.79% 492 0.59%
Rapeseed 2,319 3.04% 2,406 2.89%
Vegetable 352 0.46% 586 0.70%
Legume 948 1.24% 1,108 0.02%
Herb 34 0.04% 18 0.01%
Orchard 141 0.18% 92 0.11%
Flower 66 0.09% 16 0.02%
Sugar beet 52 0.07% 137 0.16%
Other 70 0.09% 71 0.09%

Total 76,359 100% 83,340 100%
research work1 for a fair comparison (Garnot et al., 2022). As for
the South Africa dataset, we adopted the fixed training and testing
partition sets in the official website.2 Note that, the partition sets of
raining, validation and test are completely independent on all adopted
atasets. Moreover, six classic and state-of-the-art crop mapping meth-
ds based on traditional machine learning and DL were selected for
omparison, namely RF (Sonobe et al., 2014), LSTM (Crisóstomo de
astro Filho et al., 2020), CNN-LSTM (ConvLSTM) (Shi et al., 2015),
D UNet (Adrian et al., 2021), U-TAE (Garnot and Landrieu, 2021a)
nd TPE-RNN (Nyborg et al., 2022). Among them, ConvLSTM, 3D UNet,
-TAE and TPE-RNN consider both spatial and temporal information in
ulti-temporal SAR processing, so they can provide reasonable bench-
arks to compare the spatio-temporal performance of the proposed

TMA. Note that, the parameter settings of six comparison approaches
efer to the original literature in our experiments and are listed as
ollows. The number of decision tree in RF is 500 at a maximum depth
f 25 and the hidden dimensionalities of LSTM are set to {32, 64, 128}
ith a dropout rate of 0.1. ConvLSTM has three layers with 256, 128,
4 hidden states respectively and 5 × 5 kernel size. 3D UNet consists
f three encoder layers with 3 × 3 × 3 convolution and three decoder
ayers with 2 × 2 × 2 deconvolution. U-TAE has three spatial encoding
ayers with 4 × 4 convolution and one LTAE temporal encoding layer
ith 16 heads to extract the spatio-temporal features, and then three

patial decoding layers aim at upsampling the previous feature map
ith the help of 4 × 4 transposed convolution. TPE-RNN considers one
RU position encoding layer and the PSE+LTAE architecture with 16
eads to capture the spatio-temporal characteristics.

For a fair comparison, all experiments were executed using a com-
uter with an Intel Core i7 and an NVIDIA GTX 1080Ti 11-GB GPU.
he DL-based methods were implemented on the Pytorch framework,
nd the Adam optimizer with the learning rate of 1𝑒 − 3 was adopted
o update the network parameters during the training process. The
inibatch size was set to 32, and the maximum number of epoch was

et to 500. The number of heads ℎ and the trade-off loss parameter 𝛼
n the STMA were empirically set to 4 and 0.5.

.3. Comparative evaluation

Table 3 shows a quantitative comparison of results for different
rop mapping approaches on Brandenburg Sentinel-1 dataset, PASTIS-
dataset and South Africa dataset. It can be obviously seen that the

roposed STMA can obtain the highest OA, mF1 and mIoU among
ll DL and non-DL comparison methods. Besides, the STMA method

1 https://zenodo.org/record/5735646
2 https://doi.org/10.34911/rdnt.j0co8q
300
takes less training time than other methods, such as 3D UNet and TPE-
RNN, further illustrating its relatively lightweight model complexity.
For crop types with a large proportion in the experimental scene, such
as maize, wheat, grassland, rapeseed and grapevine, the STMA method
can achieve more than 88% of the F1-score on Brandenburg Sentinel-1
dataset, more than 80% of the F1-score on PASTIS-R dataset, and more
than 70% of the F1-score on South Africa dataset as shown in Table 4,
Tables 5 and 6. The crop mapping performance of 3D UNet (94.82%
and 95.98%) is superior to the other DL models (LSTM: 88.99% and
89.26%, ConvLSTM: 92.06% and 93.67%, U-TAE: 92.76% and 93.82%,
and TPE-RNN: 93.51% and 94.31%) on Brandenburg Sentinel-1 dataset,
since it considers the spatial and temporal information simultaneously
owing to the designed 3D convolution kernel architecture. Neverthe-
less, the performance of 3D UNet (81.99% and 82.68%) is inferior
to that of U-TAE (83.14% and 83.63%) and TPE-RNN (85.81% and
86.25%) on PASTIS-R dataset, because this local convolution model is
easily disturbed by speckle noise and it is not as robust as the self-
attention-based model considering the global structure of time-series
SAR imagery. In addition, RF can only distinguish the main crop types,
and fails to identify the crop types that account for a small proportion
in the scene. The main reason is that the RF method is prone to overfit
the training data when the decision tree grows too large for multi-
class crop types (Jin et al., 2018), so that it cannot provide better
crop mapping accuracy. Figs. 5, 6 and 7 display the corresponding
crop mapping results of different comparison methods, including three
regions zoomed for more detailed observation. The visualization results
from Figs. 5, 6 and 7 illustrate that the proposed STMA can extract
more accurate crop information in the large-area scenario, especially
for crop categories with a small proportions, such as peanut and sugar
beet on Brandenburg Sentinel-1 dataset, mixed cereal and sorghum on
PASTIS-R dataset and weed and rooibos on South Africa dataset.

To demonstrate the effectiveness of combining spatio-temporal fea-
tures for different crop mapping methods, feature separation compari-
son was undertaken by using 𝑡-distributed stochastic neighbor embed-
ding (𝑡-SNE) (Van der Maaten and Hinton, 2008) to project the ex-
tracted feature representations into a two-dimensional space, as shown
in Fig. 8. Note that, the adopted features are output by the last network
layer, which represents the learned spatio-temporal features in different
crop mapping approaches. It can be seen from Fig. 8 that the degree
of feature separation for different crop types is greatly different in the
two-dimensional feature space. Compared to other state-of-the-art ap-
proaches, different crop features extracted by STMA are better grouped
than the raw input representations, because STMA considers multi-scale
spatial and temporal information from global and local perspectives
with the help of the multi-level attention mechanism. However, other
comparison methods are deficient in multi-category feature extraction
for time-series SAR. For example, a small number of crop feature points

are still mixed, such as legume and sugar beet.

https://zenodo.org/record/5735646
https://doi.org/10.34911/rdnt.j0co8q
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Table 3
Quantitative comparison of results for different crop mapping approaches on Brandenburg Sentinel-1 dataset, PASTIS-R dataset and South Africa dataset, where OA, mean F1
(mF1), mean IoU (mIoU), and training time are reported. The best performance of each indicator is shown in bold.

Method Brandenburg S1 Brandenburg S2 PASTIS-R S1A PASTIS-R S1D South Africa Time (h)

OA mF1 mIoU OA mF1 mIoU OA mF1 mIoU OA mF1 mIoU OA mF1 mIoU

RF 82.65% 23.05% 18.47% 87.81% 25.65% 19.18% 59.64% 17.45% 12.04% 58.01% 16.46% 11.01% 66.53% 11.61% 8.47% 3.16
LSTM 88.99% 50.78% 36.79% 89.26% 53.12% 40.42% 76.20% 47.46% 35.21% 78.70% 49.84% 36.86% 72.33% 41.56% 28.10% 2.84
ConvLSTM 92.06% 51.05% 38.64% 93.67% 56.14% 45.33% 77.74% 51.53% 38.65% 80.31% 53.64% 40.31% 73.92% 46.28% 32.12% 3.09
3D UNet 94.82% 69.43% 55.54% 95.98% 72.48% 59.32% 81.99% 54.24% 41.63% 82.68% 55.01% 43.72% 78.63% 47.37% 34.93% 5.33
U-TAE 92.76% 53.39% 40.84% 93.82% 58.51% 47.54% 83.14% 59.76% 45.71% 83.63% 60.79% 46.73% 79.88% 50.22% 36.97% 3.65
TPE-RNN 93.51% 56.44% 46.23% 94.31% 65.58% 54.27% 85.81% 61.19% 47.97% 86.25% 62.35% 48.89% 80.24% 50.83% 37.51% 4.04
STMA 96.54% 74.69% 63.81% 97.59% 81.30% 70.87% 86.77% 64.97% 51.59% 87.32% 65.74% 52.62% 83.37% 57.81% 43.31% 3.81
Table 4
F1-score comparison per class for different crop mapping approaches on Brandenburg Sentinel-1 dataset. The best performance of indicator is shown in bold.

Crop type RF LSTM ConvLSTM 3D UNet U-TAE TPE-RNN STMA

Maize 20.69% 66.14% 70.72% 80.16% 70.86% 71.03% 88.63%
Wheat 78.06% 80.50% 87.58% 91.96% 87.57% 87.55% 95.37%
Grassland 74.00% 81.06% 87.70% 91.59% 85.65% 83.69% 92.62%
Peanut 0 55.71% 57.83% 72.75% 41.16% 67.33% 81.82%
Potato 66.70% 69.59% 69.93% 83.37% 76.82% 80.90% 91.56%
Residue 0 53.19% 56.34% 72.23% 48.91% 59.01% 74.30%
Fallow 0 33.04% 30.24% 63.02% 24.05% 51.30% 64.37%
Rapeseed 91.82% 78.70% 87.01% 92.99% 92.89% 93.65% 94.99%
Vegetable 0 30.62% 25.43% 50.96% 34.25% 22.25% 49.55%
Legume 14.47% 57.98% 61.84% 75.02% 58.99% 51.10% 87.22%
Herb 0 36.72% 34.85% 61.48% 37.85% 58.31% 67.09%
Orchard 0 11.70% 0.64% 43.95% 28.32% 19.32% 44.57%
Flower 0 29.35% 19.65% 52.85% 39.17% 13.21% 62.81%
Sugar beet 0 27.26% 23.75% 46.39% 22.73% 28.53% 41.25%
Other 0 50.13% 52.22% 62.69% 51.61% 59.35% 84.23%
Table 5
F1-score comparison per class for different crop mapping approaches on PASTIS-R dataset. The best performance of indicator is shown in bold.

Crop type RF LSTM ConvLSTM 3D UNet U-TAE TPE-RNN STMA

Meadow 60.21% 70.02% 72.37% 77.79% 77.96% 79.50% 81.52%
Soft winter wheat 69.90% 80.38% 81.59% 81.31% 82.43% 82.21% 84.21%
Corn 47.65% 79.07% 80.69% 80.22% 81.90% 82.62% 83.10%
Winter barley 37.02% 64.02% 71.84% 73.9% 74.79% 77.26% 78.61%
Winter rapeseed 60.10% 82.29% 80.95% 83.23% 85.23% 85.23% 86.80%
Spring barley 0.05% 22.25% 37.11% 50.01% 59.75% 60.77% 60.51%
Sunflower 0.05% 45.97% 54.37% 51.94% 71.96% 71.77% 64.37%
Grapevine 0 56.14% 60.27% 59.07% 68.58% 73.20% 80.46%
Beet 45.11% 72.5% 76.49% 74.26% 80.04% 76.53% 81.71%
Winter triticale 0 25.21% 29.88% 45.33% 44.96% 42.51% 49.91%
Winter durum wheat 5.25% 50.41% 57.97% 57.41% 63.98% 60.31% 60.62%
Fruits 3.09% 47.57% 48.48% 49.38% 64.26% 60.67% 65.56%
Potatoes 0.01% 19.44% 28.89% 34.51% 26.92% 47.16% 52.43%
Leguminous fodder 0 20.41% 16.06% 23.60% 32.1% 31.89% 38.45%
Soybeans 0.34% 67.23% 69.57% 63.50% 74.55% 74.37% 77.10%
Orchard 0 22.29% 26.04% 30.69% 41.18% 46.70% 59.75%
Mixed cereal 0 12.54% 20.31% 27.20% 29.31% 26.04% 38.54%
Sorghum 0 25.14% 28.23% 27.37% 35.12% 38.28% 40.81%
Void label 4.81% 38.86% 37.96% 39.92% 40.36% 45.60% 50.08%
Table 6
F1-score comparison per class for different crop mapping approaches on South Africa dataset. The best performance of indicator is shown in bold.

Crop type RF LSTM ConvLSTM 3D UNet U-TAE TPE-RNN STMA

Lucerne 10.48% 42.62% 49.04% 52.38% 46.36% 47.44% 56.98%
Planted pasture 0 28.73% 27.76% 21.14% 32.02% 36.43% 45.26%
Fallow 0.12% 35.31% 42.18% 53.88% 57.47% 41.53% 55.03%
Wine grape 0 64.01% 71.41% 76.89% 67.42% 69.80% 79.96%
Weed 0 18.72% 20.65% 17.31% 38.66% 43.51% 46.34%
Maize 2.83% 30.49% 36.40% 34.32% 28.52% 34.65% 42.19%
Wheat 55.95% 73.01% 77.85% 77.16% 79.39% 76.34% 83.74%
Rapeseed 35.09% 52.04% 53.98% 49.70% 55.98% 57.97% 59.62%
Rooibos 0 29.10% 37.28% 43.59% 46.13% 49.77% 51.21%
4.4. Assessment of spatio-temporal generalization

Based on the proposed method, the spatio-temporal generalization
analysis was analyzed using the Brandenburg Sentinel-1 dataset from
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2020 to 2021 in the S2 study area, to evaluate different crop map-
ping approaches as shown in Table 7. The adopted training data for
generalization assessment was the S1 study area from 2017 to 2018,
and we only considered six main crops to assess the spatio-temporal
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Fig. 5. Crop mapping results of different non-DL and DL methods on Brandenburg Sentinel-1 dataset, including three regions in the study area.
generalization due to imbalance crop distribution, including maize,
wheat, grassland, potato, rapeseed and legume. Taking the rapeseed
as example in Fig. 9, the temporal signatures of the backscattering
coefficient at VH and VV are relatively similar between different areas
and years, but there are still some phenology shifts. The main reason
may be that the annual crop planting time in the Brandenburg study
area is not exactly the same and may be affected by natural disasters to
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reflect the time-varying differences of the backscattering coefficients. In
addition, the long-span time-series SAR data is considered as the input
to train the crop mapping model, e.g., from Sep. 2017 to Dec. 2018, so
that the proportion of important crop phenology changes is relatively
small and increases the difficulty of spatio-temporal generalization
on the Brandenburg Sentinel-1 dataset. To validate the effectiveness
of cross-region generalization performance, two transferable DL-based
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Fig. 6. Crop mapping results of different non-DL and DL methods on PASTIS-R dataset, including three regions in the study area.
crop mapping approaches were added for comparison in this section,
namely transferable UNet (TUNet) (Ge et al., 2021) and phenology
alignment network (PAN) (Wang et al., 2022). On the whole, it can
be seen that STMA obtained the highest mF1 score of 49.83% and
produced better spatio-temporal generalization performance, thanks to
the capture of additional spatial and temporal information through
the multi-level attention mechanism. Compared with 3D UNet and
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U-TAE, TPE-RNN and PAN achieved the second and third highest
F1-score for a different year and place, indicating the generalization
advantages of the self-attention-based models in extracting spatial and
temporal information based on time-series SAR imagery. Although
the time window used by TUNet maintains a certain distribution of
target data, it only considers the local phenology of crops, and the
complexity of SAR scattering characteristics of different crops is not
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Fig. 7. Crop mapping results of different non-DL and DL methods on South Africa dataset, including three regions in the study area.
suitable for this local time window method. CNN-based and RNN-
based crop mapping approaches, such as LSTM and ConvLSTM, are
difficult to handle the subtle variability of time-series SAR imagery in
different spatio-temporal scenarios, because they cannot capture the
universal spatio-temporal characteristics of different crops based on
limited receptive field of the network. Moreover, the spatio-temporal
generalization performance of our STMA model with the varying num-
ber of available training samples is reported in Fig. 10. It can be
seen that the mean F1 value gradually improves with the increase in
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the percentage of available samples, and it is tending toward stability
when more training samples (e.g., up to 80%) are involved, showing
the spatio-temporal generalization stability of the proposed STMA to a
great extent.

4.5. Ablation study

To validate the effectiveness of the proposed STSA module, the
MCA module, spatial attention position embedding module and the



ISPRS Journal of Photogrammetry and Remote Sensing 206 (2023) 293–310Z. Han et al.
Fig. 8. Feature separation comparison of different crop mapping methods based on the t-SNE distribution.
Table 7
F1-score comparison of six main crops for spatio-temporal generalization analysis. The best performance of indicator is shown in bold.

Method Maize Wheat Grassland Potato Rapeseed Legume mF1

RF 13.66% 17.74% 20.63% 16.77% 46.58% 6.21% 20.26%
LSTM 42.51% 35.24% 38.10% 21.42% 28.24% 10.72% 29.37%
ConvLSTM 47.65% 41.34% 48.23% 20.35% 32.65% 20.01% 35.04%
3D UNet 50.63% 42.26% 51.11% 34.39% 46.81% 31.79% 42.83%
U-TAE 49.68% 48.72% 54.79% 36.30% 49.57% 28.65% 44.62%
TPE-RNN 51.96% 47.52% 56.92% 37.91% 52.16% 30.16% 46.10%
TUNet 48.32% 43.17% 46.59% 27.21% 42.92% 24.64% 38.81%
PAN 49.12% 49.86% 55.61% 34.87% 50.99% 29.85% 45.05%
STMA 52.55% 53.18% 61.15% 43.04% 55.27% 33.79% 49.83%
Fig. 9. Time-series curves of backscattering coefficients at VH and VV of rapeseed for different areas and years. The shaded areas refer to the standard deviation calculated from
1000 sample points.
combined loss function, we conduct the ablation experiment for STMA
as shown in Table 8. Specifically, different spatio-temporal interaction,
multi-scale feature integration, position embedding and loss function
strategies are adopted to compare the crop mapping performance un-
der different ablation experimental settings, including the combina-
tion extraction of spatio-temporal interactions, the scaled dot product
attention and the cosine similarity attention, the absolute position
embedding by sine function in the original Transformer model and
the proposed spatial attention position embedding, as well as whether
adopting auxiliary loss 𝐿 . Overall, as illustrated in Table 8, we find
305

𝐴𝑢𝑥
that the combination of spatial and temporal self-attention, namely
STSA, is the best design choice in our proposed STMA framework.
Moreover, considering cosine similarity instead of the scaled dot prod-
uct in the MCA module can increase crop mapping performance by 2%
to 74.69% mF1, further illustrating the robust improvement and supe-
riority of the proposed cosine similarity attention in the MCA module
to integrate multi-scale spatio-temporal representations compared to
the baseline scaled dot product attention. From Table 8, it can be seen
that removing position embedding from STMA leads to a clear drop in
accuracy. This is mainly because the extracted convolutional features
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Fig. 10. Spatio-temporal generalization results (mF1) obtained by our proposed STMA
with the varying number of available training samples.

Table 8
Ablation analysis of the proposed STMA with a combination of different spatio-temporal
interaction, multi-scale feature integration, position embedding and loss function. The
best performance of each indicator is shown in bold.

Model OA mF1 mIoU

PESA + STSA + MCA(cosine) + LCE + LAux (ours) 96.54% 74.69% 63.81%
– STSA + spatial self-attention 94.24% 66.68% 52.98%
– STSA + temporal self-attention 95.06% 71.73% 58.22%
– MCA(cosine) + MCA(dot product) 95.13% 72.31% 59.97%
– PESA 93.14% 64.68% 49.98%
– PESA + PEAbs 94.57% 68.29% 54.31%
– LAux 95.48% 71.03% 58.68%

are flatten and then sent directly to the STSA module without marking
the spatial position, further resulting in a certain spatial information
loss. The introduction of absolute position embedding and spatial atten-
tion position embedding can solve this dilemma by an approximately
4% and 10% increment in mF1. In addition, the auxiliary semantic
loss function is capable of capturing the multi-class crop features and
boosts the crop mapping performance by approximately 3.6% in mF1.
As a whole, the combination of STSA, MCA based on cosine similarity,
spatial attention position embedding and auxiliary loss function can
yield the highest precision, further demonstrating the effectiveness of
STMA in handling different types of crops in large-area scenes.

5. Discussion

Accurate crop mapping is essential for decision-makers to assess
crop yields and maintain food security. Time-series SAR imagery pro-
vides repeated and stable observation of large-area crops over space
and time, and yet it is challenging to capture subtle crop phenology
information effectively from time-series SAR data, even with state-of-
the-art DL-based methods. Previous research has tended to be incapable
of capturing spatial and temporal features at different scales simulta-
neously. In this way, some crops in the continuous time-period of the
growing season can be differentiated easily, whereas complex pheno-
logical characteristics of other crops are hard to capture and distinguish
well. In this research, we propose a STMA method to consider multi-
scale spatial and temporal relationships within time-series SAR data
comprehensively to learn the phenology changes of crops from local to
global perspectives. The STMA is fundamentally different from current
DL-based crop mapping methods in two aspects, including: (1) the
realization of a spatio-temporal network architecture by the multi-level
attention to represent hierarchical spatial and temporal relationships of
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crops, achieving accurate multi-class crop mapping in the large-area
landscapes; (2) better spatio-temporal generalization of STMA when
applied over different years and spatial regions.

5.1. The performance of STMA for crop mapping

STMA emphasizes its feature learning advantages in both spatial
and temporal dimensions to achieve multi-class crop mapping from
the multi-scale perspectives, where the precise phenological charac-
teristics of crops can be extracted and represented holistically. Tradi-
tional CNN, RNN and self-attention approaches use a limited receptive
field in the single scale to extract features from raw time-series SAR
data and ignore multi-dimensional spatio-temporal contextual informa-
tion, since their feature representation relies on the limited perceptual
space of convolutional kernels and the order of time-series at tem-
poral scale (Canizo et al., 2019; Crisóstomo de Castro Filho et al.,
2020; Lin et al., 2022). The proposed STMA addresses this critical
issue by extracting joint multi-scale information from the complete
time-series SAR data using the multi-level attention architecture via
cascaded self-attention and cross-attention modalities, which can ef-
fectively capture precise long-range dependency coupling and remain
high-level spatio-temporal information as shown in Fig. 8. The heatmap
comparisons of the encoded spatio-temporal feature extracted from
TPE-RNN and the proposed STMA in Fig. 11 illustrate superior long-
range spatio-temporal feature extraction ability of STMA, which is
beneficial for multi-category crop mapping and mixed cropping sys-
tems. This new method provides a novel perspective for separating
phenological characteristics and distinguishing crop categories in the
field of crop mapping. In addition, the introduction of STSA further
provides reliable and robust spatial and temporal texture support for
the subsequent MCA and avoids information loss during model training.

Compared with state-of-the-art crop mapping approaches, Figs. 5,
6 and 7 and Table 3 demonstrate the superiority and effectiveness
of STMA in extracting short-term and long-term spatio-temporal char-
acteristics in relation to crop growth and phenological status. The
experimental results suggest that the information in the input time-
series SAR has been fully utilized for STMA to handle spatial and
temporal relationships. Unlike the pre-defined function to reflect phe-
nological characteristics, the STMA characterizes multi-view pattern
features automatically to improve the crop phenology retrieval for
time-series processing. Specifically, the STMA consists of three views
to establish robust spatio-temporal representations for different crops:
(1) spatial–temporal view to model long-term spatial and temporal cor-
relations by the CNN-based ResNet module, spatial attention position
embedding and STSA; (2) multi-scale integration view to aggregate the
contributions from different scale levels via MCA to generate feature
representations with rich multi-scale information; (3) semantic view to
guarantee the context and detailed information to the largest extent
by learning image and feature dimensions jointly. This multi-view
mechanism in STMA can realize the automatic extraction of reliable
spatio-temporal features and reduce manual intervention on the basis of
ensuring accurate crop extraction. Overall, the proposed STMA method
can achieve better perception to phenological characteristics of crops
in time-series SAR and is a feasible solution for practical applications
in crop mapping.

5.2. Spatio-temporal generalization analysis

To investigate the spatio-temporal generalization performance of
the proposed STMA, we assess the prediction crop mapping accuracy of
the model trained from the S1 study area in the S2 study area as shown
in Table 7. The self-attention-based approaches can guarantee more
spatio-temporal characteristics of different crops owing to their long-
distance information capabilities. Other than U-TAE and TPE-RNN,
with the help of spatial attention position encoding, the introduction
of the multi-level attention mechanism helps STMA to enhance the
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Fig. 11. Heatmap comparisons of the encoded spatio-temporal features extracted from TPE-RNN and the proposed STMA. From top to bottom, each row represents the SAR image,
ground reference, TPE-RNN and STMA.
generalization ability on various years and spatial regions by con-
sidering different receptive fields to extract spatio-temporal features
from the spatial and temporal dimension. Specifically, the depth-wise
convolution operation in the proposed positional encoding can gather
the spatial information about local neighborhood of the input token
and makes the generated token embedding permutation-variant but
translation-invariant, which helps the entire crop mapping network eas-
ily generalize to learn complex position relationships. Furthermore, the
spatial self-attention module is adopted to extract the two-dimensional
spatial correlation information crops and improve the ability to ex-
press the spatial characteristics of crops at different scales. Meanwhile,
the temporal self-attention module aims at acquiring the temporal
characteristics of crops at different times and capturing the dynamic
changes of crop phenology. The effective integration of these two
modules helps the spatio-temporal variability of crops be captured by
the proposed STMA and achieve better crop mapping performance. This
observation is in accordance with (Hao et al., 2019), who found that
the positional encoding and self-attention techniques in the original
Transformer can jointly encoder the order information to keep the
sequential characteristics intact for learning. Furthermore, the multi-
scale feature learning of the DL model can facilitate the generalization
performance improvements (Olimov et al., 2023). In some cases, tradi-
tional machine learning approaches are limited by their auto-regressive
nature during model training, such that they focus only on remember-
ing past observations rather than generalizing training samples to new
data (Katharopoulos et al., 2020). On the contrary, the combination
of the proposed STSA and MCA module in the STMA forces the entire
model to learn universal spatio-temporal features with rich multi-scale
information that are conducive to the final crop mapping, so that
the generalization performance of STMA has significant advantages in
comparison with state-of-the-art benchmarks.
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5.3. Future research

The proposed STMA method provides a robust and accurate strategy
to achieve crop mapping using time-series SAR imagery. Although we
tested a few spatio-temporal extensions on the Brandenburg Sentinel-
1 dataset, the PASTIS-R dataset and the South Africa dataset, the
STMA still needs to be tested on data scarce areas or more large-scale
scenarios, such as the global South. Limited by cumbersome category
labeling for multiple crop categories in different regions, it is difficult to
implement at present. Due to the unique imaging principle of SAR, the
scattering characteristics of crops in time-series SAR data could be af-
fected by observation condition, crop irrigation and crop planting time,
which also leads to poor temporal consistency and brings challenges to
the application of spatio-temporal generalization. Therefore, a range of
transfer learning or cross-scene techniques will be adopted in the future
to integrate useful information from data-rich regions and enhance the
spatio-temporal generalization performance over different scenarios, to
enhance crop mapping prediction under the condition of limited RS
data resources. In addition, existing crop mapping approaches simply
focus on fine-grained crop identification, without considering actual
application demand, such as land use and land management. Future
research will construct reliable spatio-temporal relationships in dif-
ferent application scenarios, so that subtle and useful information in
the spatial and temporal domains can be captured to enhance feature
extraction capability.

6. Conclusion

This paper proposes a novel spatio-temporal multi-level attention
method, named as STMA, to achieve crop mapping using time-series
SAR imagery. Unlike traditional DL-based crop mapping approaches
that only consider limited spatio-temporal receptive field, STMA can
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aggregate comprehensive and multi-scale spatio-temporal features for
time-series SAR data with the support of the multi-level attention
mechanism. Furthermore, we develop a learnable spatial attention
position encoding to adaptively generate the position priors to facilitate
the extraction of multi-granularity features. The experimental results
show that the crop mapping produced by STMA achieved the highest
accuracy on Brandenburg Sentinel-1 dataset, public PASTIS-R dataset
and South Africa dataset, much higher than the other benchmark
crop mapping approaches. Meanwhile, the STMA method exhibits an
excellent generalization ability on different spatio-temporal scenarios,
and provides vast potential for cross-scene application.
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