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Mapping the ratio of agricultural inputs to yields reveals areas with 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Balancing benefits against harm from 
agrochemicals will aid sustainable 
farming. 

• We propose the Input:Yield Ratio IYR to 
assess this balance for multiple inputs. 

• We use novel data to map IYR values for 
different inputs across England. 

• We find hotspots where the IYR is high 
for all input types. 

• The IYR could be used broadly to high-
light where farming may be less 
sustainable.  
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A B S T R A C T   

Fertilisers and pesticides are major sources of the environmental harm that results from farming, yet it remains 
difficult to target reductions in their impacts without compromising food production. We suggest that calculating 
the ratio of agrochemical inputs to yield can provide an indication of the potential sustainability of farmland, 
with those areas that have high input relative to yield being considered as less sustainable. Here we design an 
approach to characterise such Input to Yield Ratios (IYR) for four inputs that can be plausibly linked to envi-
ronmental impacts: the cumulative risk resulting from pesticide exposure for honeybees and for earthworms, and 
the amount of nitrogen or phosphorus fertiliser applied per unit area. We capitalise on novel national-scale data 
to assess IYR for wheat farming across all of England. High-resolution spatial patterns of IYR differed among the 
four inputs, but hotspots, where all four IYRs were high, were in key agricultural regions not usually charac-
terised as having low suitability for cropping. By scaling the magnitude of each input against crop yield, the IYR 
does not penalise areas of high yield with higher inputs (important for food production), or areas with low yields 
but which are achieved with low inputs (important as low impact areas). Instead, the IYR provides a globally 
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applicable framework for evaluating the broad patterns of trade-offs between production and environmental risk, 
as an indicator of the potential for harm, over large scales. Its use can thus inform targeting to improve agri-
cultural sustainability, or where one might switch to other land uses such as ecosystem restoration.   

1. Introduction 

Intensive agriculture continues to be a major cause of environmental 
harm. Farming is an essential activity, but it has multiple negative im-
pacts including conversion and degradation of ecosystems, net green-
house gas emissions, and the application of agrochemicals (Foley et al., 
2005; Ramankutty et al., 2018). Agrochemicals applied to managed 
crops include a range of pesticides (i.e., chemicals that target any plant, 
animal, fungal or microbial pest), which can be toxic not just to their 
intended target species but also to a range of related or unrelated non- 
target species (Tang et al., 2021; Tudi et al., 2021; Woodcock et al., 
2017). Fertiliser addition to farmland also causes environmental prob-
lems, such as the widespread eutrophication of water ecosystems (Car-
penter, 2008; Sebilo et al., 2013). These forms of agrochemical pollution 
contribute to making intensive agriculture one of the major global 
drivers of biodiversity loss, and declines in many ecosystem services 
(IPBES, 2019; Isbell et al., 2022). 

Solving the problems from agricultural impacts is not straightfor-
ward, due to the need to provide people globally with plentiful and 
nutritious food. Approaches to reducing and reversing harm from 
intensive farming range from targeted amelioration of its more 
damaging aspects, such as by using precision agriculture (Finger et al., 
2019), through a more complete overhaul of the farming system such as 
by implementing organic or regenerative agriculture (Schulte et al., 
2022), to taking land out of farming altogether such as by ecosystem 
restoration or rewilding (Newton et al., 2021). The problem is that many 
of these activities impact negatively on the yield or total production of 
foodstuffs, with the more radical alternatives having greater impacts, for 
example by taking land out of production (Eva-Marie Meemken and 
Matin Qaim, 2018). Indeed, better understanding the trade-offs between 
food production and environmental protection is one of the major 
research issues of our time (Balmford et al., 2018; Foley et al., 2011). 

Any plan to manage trade-offs between agricultural yield and envi-
ronmental harm needs to consider where best to target activities 
spatially, to provide the greatest environmental benefits while mini-
mising impacts on yields (Folberth et al., 2020). Current spatial target-
ing approaches focus on finding locations most suitable for conservation 
activities (e.g. planting trees) (Bastin et al., 2019), where it least suitable 
to do agriculture (e.g. because yields are relatively low) (Naidoo and 
Iwamura, 2007), or areas where there is synergy between these two 
options (Redhead et al., 2022). An alternative approach, which allows 
more nuance in ameliorative actions, is to consider how agrochemical 
inputs and agricultural production vary in relation to each other, with 
the idea of balancing the environmental risk of agrochemicals (and their 
links to environmental harm) against the benefits of enhancing agri-
cultural yield. Here we explore this idea by analysing the spatial vari-
ation in the use of agrochemicals in relation to the amount of 
agricultural production. 

One plausible way to assess variation in potential agrochemical harm 
could be simply to determine where the highest amounts of agrochem-
icals are used. However, yield and inputs are not necessarily tightly 
linked; for example, harvested food contains only a small proportion of 
the nitrogen applied in fertilisers (Chatzimpiros and Harchaoui, 2023). 
As a result, the yield per unit of any specific agrochemical input often 
varies spatially (Godwin et al., 2003). Indeed, it is well known that both 
the yield of any particular crop and the application of agrochemical 
inputs, i.e. fertilisers and pesticides, to that crop vary strongly over 
landscapes and regions, and that this variation is related to environ-
mental drivers including climate, soil characteristics, and pest identity 
and load (Malaj et al., 2020; Redhead et al., 2020; Swaney et al., 2018). 

Furthermore, as well as environmental drivers, agrochemical use is also 
related to social factors including farming culture, agronomic advice and 
the attitude and knowledge of individual farmers (Pedersen et al., 2019; 
Sharma et al., 2011). As a result, focussing only on inputs would not take 
account of the fact that some areas with high inputs may be high 
yielding, so any focus on changing management in these areas may have 
a large impact on food production. Conversely, targeting low yielding 
areas may be less impactful for reducing harm if these also have low 
inputs. We therefore suggest that one might ideally target areas that 
have high input:yield ratios, i.e. where high amounts of inputs are used 
in relation to each unit of crop yield, if seeking to reduce the broad-scale 
impacts of farming on ecosystems. 

This Input:Yield Ratio, IYR, has connotations of metrics describing 
agricultural use/input intensity (Temme and Verburg, 2011), but these 
tend to consider inputs per unit area rather than per unit yield. When 
applied to fertilisers, the IYR is a reformulation of equations used to 
describe Nitrogen N or Phosphorus P ‘Use Efficiency’ (NUE, PUE), which 
have different definitions, but can be calculated as the crop yield divided 
by the amount of fertiliser used (Lassaletta et al., 2014). As such, the 
inverse of the IYR is the UE ratio for fertilisers, although there is no 
analogous metric for pesticide use. Use Efficiency is often regarded as an 
approach for predicting the yield increase of a crop for a certain increase 
in fertiliser within a given context (Zhang et al., 2015). However, these 
metrics can also be used to indicate the environmental sustainability of a 
cropping system (Lassaletta et al., 2014), as is our aim here. Indeed, we 
argue that strong spatial variation in IYR would suggest that inputs do 
not precisely predict yield in general, especially as inputs may not be 
finely tuned to local biophysical conditions, but subject to a range of 
socio-ecological factors (Nkurunziza et al., 2020). For this reason, the 
IYR in our formulation represents potential harm in terms of the amount 
of agrochemical input in relation to the yield (i.e. Input/Yield rather 
than vice versa). 

The IYR concept as outlined requires nuance. First, the amounts of 
the individual agrochemical inputs (different types of pesticide or fer-
tiliser components) will not vary spatially in the same way, as the 
pressures they are intended to address (i.e., populations of different 
pests, and availability of different soil nutrients) are not necessarily 
related. Second, the potential for risk, as an indicator of the potential to 
cause harm, due to agrochemical input is not a simple product of the 
amount applied. Fertilisers supply several nutrients, in particular ni-
trogen and phosphorus compounds, which have different impacts on the 
wider environment and so different input:impact ratios (Guignard et al., 
2017). Pesticides are even more complex, with individual crops 
receiving a mixture of chemicals through the season to combat a wide 
range of pest types. Each pesticide type affects different species to 
different extents in a manner related to each species' vulnerability to 
each active ingredient (Mancini et al., 2020; Spurgeon et al., 2020). 

Spatio-temporal patterns in NUE and PUE have been studied previ-
ously (Heuer et al., 2017; Lassaletta et al., 2014), although not generally 
with the aim of highlighting areas with less sustainable cropping. Con-
cerning pesticides, the IYR or related concepts have not yet been pur-
sued probably due largely to lack of information on large (e.g., national) 
scale patterns in agrochemical use and crop yield (Mancini et al., 2020). 
In this paper we make use of detailed spatial data on yield and agro-
chemical use to undertake the first evaluation of the balance between 
yield and agrochemical inputs for a major arable crop at national scale. 
We focus on wheat because it is by far the dominant crop by land area in 
England, as it is in many countries around the world. For example, ca 
1.65 Mha were grown in England in 2022, out of 3.74 Mha of all arable 
crops (Defra, 2022). In all areas where wheat is grown, we assess 
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inorganic fertiliser inputs in terms of N and P, which are major sources of 
agricultural damage to the environment globally (Guignard et al., 2017), 
and also the scaled cumulative input:sensitivity ratio for two non-target 
species, honeybees and earthworms, for all applied pesticide active in-
gredients. We combined this information with available yield data to 
derive maps of IYR for N, P, and honeybee and earthworm risk, to 
provide a framework for identifying those locations where wheat 
farming may be least sustainable and, thus, where one might consider 
targeting ameliorative actions that also take account of impacts on crop 
production. 

2. Methods 

We assessed spatial variation in winter wheat yields and the agro-
chemicals applied to this crop across England, using spatially-explicit, 
national-extent estimates of variables, which we combined to calculate 
IYR values. All datasets (Table 1) were drawn from the period 
2010–2017, although the different periodicity of agricultural surveys for 
yield, fertiliser and pesticide data, and the availability of Sentinel data 
for crop mapping, means that the datasets cover slightly different ranges 
within this period. To address this issue we calculated averages across 
the available years for each dataset. 

All maps (individual variables and IYR values) were produced at 1 
km resolution using interpolation approaches which are detailed in the 
following sections. We chose a resolution of 1 km to reflect spatial 
patterns across England and because this is intermediate between the 
scale of the typical English field and farm: that is, we avoid attempting to 
model per field estimates, which have a high level of uncertainty, while 
capturing the behaviour of a typical farm system in a given area. Due to 
the interpolation procedures used, the maps should be seen as describing 
regional patterns rather than identifying specific localities with high or 
low IYR. Nor should they be seen as representing the actual yields or 
agrochemical regimes of individual farms within each 1 km cell. 

2.1. Yield mapping 

Wheat yield data (t/ha) are collected as part of the annual June 
Survey of Agricultural and Horticultural activity undertaken by the UK 
Department for Environment, Food & Rural Affairs (Defra) (Defra, 
2018). Data are collected annually through a randomly sampled survey 
of farm holdings, stratified by their theoretical labour requirement - a 
proxy of holding size. We used winter wheat yield data for the 
2010–2016 harvests, amounting to 15,490 distinct data points. We 
removed yield values of 0 t/ha (likely resulting from individual crop 
failures, and not usefully indicative of spatial patterns in yield) and 
crops used for silage (as a different part of the wheat plant is harvested, 
yields cannot be meaningfully compared with grain crops). 

We created annual wheat yield maps by interpolating the individual 
yield data points to a 1 km grid using the gstat R package (Gräler et al., 
2016) and calculating single values for each grid cell. To do this we 
implemented an inverse distance weighted (IDW) decay model which 
provided smoothed estimates across space and ensured the prediction 

was not influenced solely by neighbours but considered the wider 
landscape. The locations of all data were used to construct the IDW 
surface (i.e., all data points influence the calculated value at any given 
location) with the power parameter determining distance decay set to 2. 
Cell values were then averaged across years to provide a 1 km average 
yield map for 2010–2016 (Fig. A.1). We identified and excluded grid 
cells in which winter wheat is not grown using the UKCEH Land Cover 
plus: Crop map 2017 (UKCEH, 2017) and applied this as a mask to our 
average yield map. 

2.2. Fertiliser mapping 

Application rates (kg/ha) of nitrogen (N), and phosphorus (P) to 
winter wheat are collected during the annual British Survey of Fertiliser 
Practice (DEFRA, 2022). A different sample of farms is selected for the 
survey each year, spanning the range of farm sizes and holding types. 
This random sample of holdings is bolstered by an additional core group 
of respondents which comprise <20 % of the overall sample size. We 
used data relating to fertiliser applications to winter wheat crops for 
2010–2015, giving us an average of 3618 records per year. Following 
similar methodology to that used for the Land Cover plus Fertilisers 
(Osório et al., 2019) product, application rates for N and P were inter-
polated for each year, again using IDW across a 1 km grid. We averaged 
annual interpolations across years and masked as previously described 
to exclude grid cells which did not grow winter wheat (Figs. A.2, A.3). 

2.3. Pesticide mapping 

We produced maps of the application rates of 121 pesticide active 
ingredients on winter wheat crop areas at 1 km resolution, following the 
methodology used to create CEH Land Cover® Plus: Pesticides (Jarvis 
et al., 2020). The Pesticide Usage Survey (FERA, 2022) (PUS) provides 
data on annual total applications of each active ingredient (in kg) per 
crop, as well as the area of each crop, at the level of the 48 English 
counties. We calculated county-level active ingredient application rates 
(kg/ha/yr) for winter wheat, averaged over the years 2012–2016. We 
spatially smoothed estimates using a kriging approach applied in INLA- 
SPDE using the R-INLA package. We did this to avoid hard boundaries 
between counties and to smooth over counties which had no records in a 
certain year due to the design of the PUS. As above, we excluded areas 
which had not grown any winter wheat. Kriging was considered a more 
appropriate method for interpolating pesticide applications due to the 
smaller size and coarser resolution of the input data. 

The risk resulting from the use of a pesticide active ingredient is a 
product of the nature of the environment the chemical enters, which can 
affect fate and exposure, and the inherent sensitivity and ecology of the 
considered species. The capacity to fully predict species-specific risk 
remains the subject of considerable uncertainty. This includes in un-
derstanding how different soil types and climate conditions act to affect 
exposure and also the sensitivities of the vast majority of potentially 
exposed species, which remain untested. Given this uncertainty, to 
assess potential pesticide effects within the IYR framework, a pragmatic 
approach that makes use of the data that is available was needed. The 
approach taken to assess and ultimately map pesticide risk potential 
recognises that different active ingredients will have different input: 
sensitivty ratios for different species (Spurgeon et al., 2020). As a result, 
simply summing the weights of all active ingredients applied within a 
km2 would be uninformative. Instead, we scaled pesticide inputs by their 
quantified toxicity for two different receptor species. The two species 
selected were the honeybee Apis mellifera and earthworm Eisenia fetida. 
Previous meta-analyses and comparative studies have highlighted that 
toxicity measured for A. mellifera and E. fetida may not be representative 
for other bee and earthworm species (Pelosi et al., 2013; Robinson et al., 
2021; Tosi et al., 2022). Further, the ecology of these species means that 
they may not always be exposed or, in the case of E. fetida, even present 
within, UK cereal cropping systems. However, their selection reflects the 

Table 1 
The datasets used to calculate the Input:Yield Ratio, IYR over England.  

Variable Resolution Time 
period 

Source 

Wheat yield (t/ 
ha) 

Individual 
holdings, 
annual 

2010–2016 June Survey of Agricultural 
and Horticultural activity ( 
Defra, 2018) 

Fertiliser 
applications 
(kg/ha) 

Individual 
holdings, 
annual 

2010–2015 British Survey of Fertiliser 
Practice (Defra, 2022) 

Pesticide 
applications 
(kg/ha) 

County, 
biennial 

2012–2016 Pesticide Usage Survey ( 
Fera, 2022)  
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fact that these two species are among those most commonly assessed 
during regulatory pesticide testing. Hence, their use provides a far 
greater range of information on sensitivity for many different active 
ingredients (Yatoo et al., 2022). Using this data we are, therefore, able to 
provide a more complete assessment of the cumulative potential risk of 
the range of different applied pesticide for A. mellifera and E. fetida than 
would be possible for almost any other species, although of course the 
results apply only to these species. For the wider development of the 
IYR, the use of these two species for cumulative risk calculation is not 
prescriptive. If suitable toxicity information can be generated for alter-
native taxa or species, then it would be possible to conduct a similar 
analysis for those species using the same overall framework. 

For each active ingredient identified from the PUS winter wheat 
data, we calculated the indicative potential risk to honeybees and to 
earthworms for each 1 km in which wheat was grown. Firstly, to assess 
species sensitivity, we identified a representative hazard value; the 
‘Predicted No Effect Concentration’ (PNEC). To calculate the PNEC, we 
obtained the lowest 96 h lethal concentration for 50 % of individuals 
(LC50) values for bees (μg/bee) from oral or contact exposure and the 
chronic 28 day No Observed Effect Concentration (NOEC) values (mg/ 
kg soil) for earthworms from toxicity tests. The data for these endpoints 
were obtained mainly from the Pesticide Properties Database (Lewis 
et al., 2016), which includes all data reported in the regulatory dossier 
for each active ingredient. In cases with a missing or “unbounded” (i.e., 
the toxicity value was only stated as > or < a specific value) value, we 
searched the published literature for definitive values, which we fav-
oured. If no alternative was available, we used the unbounded value. To 
derive the PNEC for effects from these toxicity metrics, we divided the 
bee 96 h LC50 by two factors both of 10, one accounting for the con-
version of effects on mortality to effects on sub-lethal traits and the 
second to account for the difference in effect severity between short (96 
h) and long-term (life-time) exposure (Hesketh et al., 2016). For the 
earthworm PNEC calculation, we divided the reproduction NOEC value 
by a factor of 10 to account for the difference between short-term lab-
oratory exposure and long-term field effects. The PNEC values used are 
listed in Table A.1. 

We converted pesticide usage amount (application rates) to esti-
mated exposure of earthworms and honeybees in the same units for 
which the toxicity data were available, considering both the species and 
the exposure route (spray, seed treatments or soil application). For 
earthworms, exposures for all active ingredients were calculated in 
terms of unit area and the pesticide was assumed to be evenly distributed 
through the top 5 cm of the soil with a bulk density of 1.5 g/cm3. For 
honeybees, oral exposure via spray treatment was calculated using the 
US-EPA Tier 1 exposure estimation tool Bee-Rex v1.0 (US-EPA, 2014), 
which provides separate exposure estimations per bee, based on the 
pesticide application route, in μg/bee/day. Foliar spray concentration in 
nectar and pollen is calculated from the application rate (in kg/ha)*98 
and individual exposure per day in μg/bee/day is calculated from 
assumed daily nectar (292 mg/day) and pollen (0.041 mg/day) intake. 
Seed treatments have a constant oral exposure of 0.292 μg/bee/day and 
soil applications were assumed to have zero oral exposure. Contact 
exposure for bees was assumed to be constant across application routes 
with a multiplier of 2.4 times application rate. 

Finally, we calculated hazard quotients for the individual active in-
gredients as total exposure divided by toxicity (PNEC) value for that 
species for each active ingredient. Hazard quotients were then summed 
across all actives to give the mixture risk. These mixture hazard quotient 
values were used as the metric of potential risk to honeybees and to 
earthworms (Figs. A.4, A.5) (NB, the mixture risk quotient units are not 
comparable between endpoints and should be considered on a relative 
scale only, therefore, all maps presented are shown scaled by the 
maximum value as required by the IYR calculation). 

2.4. Input:Yield Ratio (IYR) calculations 

We conceptualise the IYR as a continuous, relative measure of the 
balance of agrochemical inputs (i.e., amount of each fertiliser compo-
nent, and potential risk from the combined applied pesticides to 
particular species groups) to the yield obtained. The IYR is calculated 
using scaled rather than absolute values, with the maximum value in 
each yield and input dataset set as 1, so that input and yields are 
expressed proportionally to each other. Eq. (1) shows the IYR for a grid 
cell i and input type j calculated as the ratio of proportional input to 
proportional yield. Subscript max is the maximum value across all 
spatial 1 km grid cells. 

IYRij =

Inputij
/

Inputmax,j

Yieldi/Yieldmax

(1) 

We calculated four IYR values for each grid cell using the four scaled 
agrochemical input datasets: N and P fertiliser, and honeybee and 
earthworm pesticide risk. The IYR can take any positive value, and areas 
with relatively high input but relatively low yields will have the highest 
IYR values. Because the IYR is calculated relative to the maximum of 
each input variable its value will be sensitive to high outliers in either 
input or yield measures. We assessed the ranges of the five variables and 
found all to be within reasonable limits with no obvious outliers 
(Figs. A.1-A.5). But a IYR ≈ 1 should not be seen as a perfect balance of 
yield to inputs, as the IYR values are relative, not absolute. 

Because the four agrochemical inputs considered are not directly 
comparable it is not appropriate to calculate an overall input metric. 
Instead, we identified areas with consistently high IYR across the 
different types of input by intersecting the four IYR maps and extracting 
cells in which every individual IYR map had a score in the upper 25th 
percentile. As the selected percentile is arbitrary, we repeated this 
procedure using the upper 50th percentiles. 

Finally, we asked whether the IYR values simply reflect the quality of 
the land for agriculture. We examined this through the widely-used 
Agricultural Land Classification (ALC) system for England (MAFF, 
1988). ALC uses climate, soil and topographic characteristics to grade 
land into five classes of quality for agriculture, as well non-agricultural 
and urban (MAFF, 1988). The combinations of these characteristics are 
considered to affect the range of crops that can be grown, the yield of 
crops, the consistency of yield, and the cost of producing the crop. The 
highest graded land (ALC 1) is considered the most productive for wide 
range of agricultural and horticultural crops and efficient in response to 
inputs. Grades 1 and 2 form about 21 % of farmland in England. With the 
logic that poorer land requires more agricultural inputs, we hypoth-
esised that high IYR cells would be in poorer quality ALC classes, while 
low IYR cells would have high ALC grades. Using ALC at 1 km resolution, 
we determined how ALC grades mapped onto the cells which were in the 
highest 25th percentiles of all for IYR types (‘high IYR’). We repeated 
this for the cells which were in the lowest 25th percentiles of all for IYR 
types (‘low IYR’). 

3. Results 

3.1. Areas of highest IYR vary among different input types 

The four IYR types show different frequency distributions and spatial 
patterns across England (Fig. 1). All show strong variation, with the 
higher IYR values being more than double (potential hazard to earth-
worms) to >100-times (phosphorus) the lower values. IYRs for fertiliser 
inputs have broadly normal frequency distributions, although with long 
tails. These tails show potential areas of high mismatch between yields 
and inputs, where yields are either much higher (very low IYR) or much 
lower (very high IYR) than average for a given level of fertiliser appli-
cation. We repeat that because the exact IYR value is determined by the 
ranges of values for both yield and the input, IYR = 1 has no particular 
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meaning. One should focus rather on any IYR value relative to the dis-
tribution of IYR values. Mapping these fertiliser IYRs shows high sub- 
regional variation rather than broad-scale national patterns. For 
wheat, N is typically applied separately to P, and this is reflected in the 
fact that their IYR maps differ and the values per cell are only moder-
ately correlated (Pearson correlation = 0.3). 

Distributions of values for pesticide IYRs show bi- or tri-modal dis-
tributions, potentially driven by different active ingredients contrib-
uting to the overall pesticide risk. Interestingly, the spatial distributions 
for the two pesticide IYRs are largely contrasting. The earthworm map 
indicates highest IYR values (i.e., greater potential risk from pesticide 
inputs for the wheat yield obtained) in the east of England whereas for 
honeybees the highest IYR values are in the west. Closer inspection 
shows that potential risk values for worms and honeybees are driven by 
different sets of active ingredients (Fig. 2), with associated differences in 

spatial distributions (Figs. A.6, A.7). For both, a single active ingredient 
dominates although several active ingredients make significant contri-
butions. For earthworms, the dominant chemical is epoxiconazole, a 
broad-spectrum fungicide. For honeybees, the most important chemical 
is clothianidin, a neonicotinoid insecticide. 

3.2. Contributions of variations in yield and input values to the IYR 

Visualising the contributions of yield and inputs to variation in the 
IYR shows that yields are less variable than the input values, with the 
conclusion that the majority of variation in IYR is driven by variation in 
inputs and their associated risks (Fig. 3). These plots also suggest that 
generally IYRs are higher for pesticide (Fig. 3a-b) than for fertiliser in-
puts (Fig. 3c-d). This finding reflects the fact that almost all locations 
have pesticide input values which are at least half of the maximum 

Fig. 1. Frequency distributions and maps, at 1 km resolution, of the Input:Yield Ratios over England for two fertiliser-related and two pesticide-related input types in 
relation to winter wheat yield. Fertiliser values are based simply on the amount used, while pesticide values are scaled by the toxicity of the set of active ingredients 
to the specific receptor group. A higher value indicates greater relative inputs for the wheat yield obtained. Colours in the maps match those in the histograms. No 
wheat was grown in the white areas. 
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whereas there is much greater variation in fertiliser inputs. 

3.3. Areas of overlapping high IYR values do not map well onto low 
quality agricultural land 

We mapped the grid cells which were in the top 25th or 50th per-
centiles for all four IYR types together, to indicate regions where all 
agrochemical inputs are high relative to the yields obtained (Fig. 4). 
These high IYR cells show some geographic patterning, being located 
mostly in central and south-eastern England. 

We also determined whether these areas of multiple high IYR reflect 
standard classifications of low-quality agricultural land, using the 
Agricultural Land Classification (ALC). The distribution of ALC grades 
between the ‘high IYR’ and ‘low IYR’ cells is generally very similar, 
meaning one could not reliably predict high or low combined IYR from 
ALC or vice versa (Fig. 5). The IYR for pesticide input risks to bees shows 
some indication that lower IYR cells are more likely to have higher ALC 

grades, while the lower N and P input IYR cells fall in a slightly higher 
proportion of best quality Grade 1 land. But there is no clear prepon-
derance of high IYR cells being in poor ALC classes. 

4. Discussion 

The Input Yield Ratio provides a framework to consider where wheat 
farming may be less sustainable by expressing the relative balance of 
inputs of agrochemicals against the crop yield obtained. The IYR pat-
terns are not linked to a standard classification of the quality of land for 
farming (the ALC), suggesting it reflects other biophysical and social 
drivers of both yield and use of agrochemicals. The IYR is not a metric 
for predicting yield from inputs, but rather shows how the balance of 
inputs to yield varies due, as we discuss below, to a range of drivers. 

Wheat is the staple food of temperate regions, so targeting this for 
our IYR calculations may seem contentious. However, it has been esti-
mated that in the UK and the European Union around 60 % (68.7Mha) of 
cropland is used to produce food for livestock, and this share of cropland 
feeding livestock is larger than the global average (~40 %) (Sun et al., 
2022). Consequently, transforming agriculture needs to include chang-
ing the farming of wheat both to be more sustainable and to assess where 
might be given up for restoration or rewilding. 

4.1. Implications of spatial variation in IYR 

The IYR is calculated at the 1 km grid cell resolution but, because the 
area of wheat grown varies from cell-to-cell, the IYR is best considered as 
the estimated inputs relative to yield of a field of wheat grown in that 
cell. As such, the IYR relates to farm-level decisions. When compared to 
all wheat growing areas, wheat fields in cells with a low IYR value either 
have relatively lower demand for agrochemical inputs or greater effi-
ciency of use. A high value of IYR indicates where the agrochemical 
inputs are high in relation to the yield compared with all other wheat 
growing areas. This high ratio might be because the use of a pesticide is 
not warranted by the pest pressure (or has low effectiveness because of 
pesticide resistance) or that supra-optimal rates of fertiliser are applied; 
with both issues being commonly reported (Ahmed et al., 2017; Ghimire 
and Woodward, 2013; Lechenet et al., 2017). A high IYR may also arise 
if yields are constrained by other factors not considered here, such as 
limitations in the supply of other macro- and micro-nutrients, or water 
availability. 

We found that the spatial patterns of the four different IYR types 
vary, and this is driven primarily by differences in the patterns of 
different agrochemical use across England, rather than variations in 
yields. This might reflect that agrochemical inputs are likely to be 

Fig. 2. The pesticide active ingredients contributing the most to potential risk to earthworms and honeybees across English winter wheat crops, calculated as the 
proportion of potential harm (mixture risk quotient) contributed by each active ingredient (ai). 

Fig. 3. The patterns of relationships between each of the four agrochemical 
input types and winter wheat yield. Points are individual 1 km grid cells, and 
the 1-to-1 line is to aid interpretation. All values are scaled by dividing by the 
maximum value. 
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modified by the farmer precisely to optimise yield (Cook and Bramley, 
2000), so yield is relatively less variable spatially compared to that of 
the agrochemicals used. We also show that clusters of cells where IYR is 
high for all inputs are not those classified as having low agricultural 
quality by a traditional metric, the Agricultural Land Classification. 
Therefore, the IYR is identifying patterns in the relative benefits and 
risks of agriculture which are largely independent of existing classifi-
cations. This suggests that farmers in marginal areas are not generally 
chasing unobtainable yields by applying excess agrochemical inputs. 
One might expect that where inputs, and thus economic costs, are high, 
yet yield, and thus economic returns, are relatively low this would make 
it less attractive for the farmer to maintain these practices. A frequent 
complaint is that unsustainable farming practices are supported by 
agricultural subsidies (Scown et al., 2020). Our finding that areas of high 
IYR across all input types are largely different to low quality farmland as 
identified by the ALC might suggest that high IYR is not driven by such 
subsidies and systems that ‘prop up’ high input farming on low-grade 
land. That is, if the ‘propping up’ argument was true in general we 
would see that pixels with poor ALC grades have a high IYR because 
farmers are subsidised to put agrochemicals on farmland that does not 
benefit from these inputs. Rather IYR is likely more strongly driven by 

variability in the yield that farmers get for their inputs within inter-
mediate grade land. Of course, from a farmer's point of view, it is pre-
sumably worth the relatively high levels of input per unit yield as long as 
the outcome is financially viable. It is only once we translate these ac-
tions into wider environmental risk, and the harm that may result (i.e., 
externalities), that the trade-off becomes apparent. 

Variation in agrochemical inputs likely, in part, reflects variation in 
biophysical constraints on crop production, such as soil fertility and 
other aspects of soil health, or the types and numbers of pests attacking 
the crops. The contrasting large-scale spatial patterns of the honeybee 
IYR (driven mostly by insecticides) and that for earthworms (driven 
mostly by fungicides) likely reflects spatial variation in important wheat 
pest groups in England. However, different wheat pests have complex 
distributions in England (Hardwick et al., 2001) and exhibit spatial 
variation in their susceptibility to particular pesticides (Comont et al., 
2019), which make it difficult to disentangle the exact drivers of these 
patterns down to the level of the specific drivers of active ingredient use. 
The two fertiliser agrochemicals, N and P, would not be expected to 
show similar patterns, as they are typically applied as separate formu-
lations to wheat. Moreover, a straightforward biophysical explanation 
for the fertiliser IYR patterns is undermined by the poor linkage to ALC 

Fig. 4. A map of England showing the 1 km grid cells (enlarged for display, with larger and/or more intensely coloured spots indicating multiple overlapping cells) in 
the top 25th or 50th percentiles for all four IYR types, showing the locations of highest combined agrochemical inputs compared to the winter wheat yield obtained. 
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patterns. Spatial variation in IYRs might therefore also reflect a wide 
range of socio-economic factors, including farm income, farm tenure (e. 
g., contract farmed or owned), farmer attitude and knowledge and 
agronomic advice, that are reported to affect patterns of agrochemical 
use (Bakker et al., 2021; Pedersen et al., 2019; Sharma et al., 2011). 
Indeed, there is a need for more transdisciplinary research on the 
combined roles of socio-economic and bio-physical factors in deter-
mining agrochemical inputs and impacts (Nkurunziza et al., 2020). 

Other causes of variation in IYR might relate to nuances not captured 
in the data available at the quality and resolution needed for this study. 
Desired crop quality might be a factor. The highest quality (‘Group 1’) 
wheats may receive higher fertiliser inputs to achieve the premium for 
protein content, and farmers may be willing to spend more on pesticides 
to protect them. Secondly, in regions with more mixed farming it is 
likely that the inorganic fertiliser quantified by our data is replaced to an 
extent by organic manures (Smith and Williams, 2016), so N and P input 
estimates for these regions could be an underestimate. Indeed, N and P 
from manures can be a major source of environmental pollution (Smith 
et al., 2007). However, the N and P application patterns (Figs. A.1, A.2) 
do not match the large-scale east to west transition to more mixed 
farming in England (Goodwin et al., 2022). This pattern suggests that 
the balance of organic to inorganic fertilisers varies mostly at the scale of 
the individual farm, driven by the quantity, availability and quality of 
organic manures. 

The considerations above in combination suggest that high IYR 
might be reduced, while still growing wheat, by two complementary 

approaches that reduce inputs by: i) combatting excess application of 
agrochemicals through improved information or precision farming 
techniques (Finger et al., 2019); or ii) reducing the need for inputs by 
implementing agro-ecological approaches to improve soil health or 
natural pest control (Wezel et al., 2014). More radical possibilities are to 
change the crops farmed, to switch to a different farming system such as 
agro-forestry, or to take the land out of farming completely. Calculating 
IYR at this time simply provides a framework to understand where the 
agricultural system appears to have low input for the yield obtained. 
Understanding the specific causes of these problems and developing 
workable solutions requires more research. But taking land out of pro-
duction is certainly possible if our food systems are over-hauled to in-
crease efficiency and sustainability (Dimbleby, 2021). 

4.2. Extending the IYR approach 

The IYR approach makes an implicit assumption that more agro-
chemical input results in more potential environmental risk. The realised 
harm linked to this risk will be influenced by processes such as agro-
chemical residence times on the crop and in the soil, uptake of fertilisers 
by the crop, amount transported in runoff, and rate of pesticide break-
down. These processes will in turn be affected by variables including 
climate, topography and soil type and condition, as well as when and 
how agrochemicals are applied, and in what formulations (Farha et al., 
2016; Kleinman et al., 2011). Furthermore, the ultimate environmental 
impact of a particular input of fertiliser or pesticide active ingredient in a 

Fig. 5. The proportion of 1 km grid cells in each Agricultural Land Class (ALC) for the grid cells that were in the lowest or the highest 25th percentile for all four 
agrochemical input types. We used the area of each ALC grade in a 1 km grid cell to determine the dominant ALC grade for that cell. The ALC grades reflect the 
assessed quality of the land for agriculture: 1 = ‘excellent’; 2 = ‘very good’; 3 = ‘good to moderate’; 4 = ‘poor’; and 5 = ‘very poor’. 
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location will depend on the species and ecosystems at that location. It 
might be possible to translate potential risk into realised harm, as 
knowledge increases on the precise impacts of such variables and pro-
cesses in such a way as to be accounted for over large areas such as 
England, rather than at field level. This might allow more direct calcu-
lation of a cost:benefit ratio equivalent, if inputs can be robustly trans-
lated into environmental costs as a direct result of harm. It is worth re- 
iterating here that farmers do not seem on the whole to be fine-tuning 
agrochemical inputs in relation to the crop needs, but there is a large 
degree of variation that might be ascribed to cultural, social, and eco-
nomic drivers (Nkurunziza et al., 2020; Zhang et al., 2015). 

The exact nature of pesticide risk is driven to a large extent by the 
driving data from hazard assessments. In many cases the available data 
on pesticide hazards to taxa are limited, but understanding of pesticide 
impacts on key taxa is improving all the time (e.g. (Bart et al., 2019)). 
This better knowledge can be used to refine hazard estimates, and any 
new data from regulatory or research studies that becomes available 
might change the assessment. Partly for this reason and in line with 
considering these risk as ‘potential’, we have simply treated them as 
having a linear dose response rather than showing non-linear relation-
ships. But, as knowledge increases, especially of accelerating increases 
in impacts at higher doses, non-linearities could be included. 

An important element missing from the current IYR maps is an 
assessment of uncertainty around IYR values. Calculating an uncertainty 
that correctly propagates uncertainty from the multiple input layers is 
challenging but should be a priority for future work. 

The IYR framework could be applied across multiple other poten-
tially harmful activities or benefits other than yield, as well as diverse 
metrics. For example, pesticide impacts could be extended to other in-
dicator taxa, such as freshwater biota (Rumschlag et al., 2020). This 
would help address a drawback with our study that we focussed on two 
very well studied species, but which are better adapted to intensively 
used landscapes than most wild species. Furthermore, one could extend 
the approach to other crops or even other forms of farming, especially if 
the multiple types of environmental harm caused by farming are 
considered; for example, soil erosion, flood exacerbation, or greenhouse 
gas emissions (Bullock et al., 2021). As we have shown, IYR patterns and 
values are strongly dependent on the type of input or activity consid-
ered, and it is important to consider this variation among types. How-
ever, our method of selecting cells where IYR values for all inputs/ 
activities are in the top 25th percentile allows for a simple integrated 
assessment of areas where agricultural systems are least sustainable. The 
set of cells will change if more inputs/activities are added, but only 
insofar as the new set will be a subset of the original set, which allows for 
consistency as the approach is extended. 

We have highlighted the quality of the English data, which allowed 
us to calculate the IYR for multiple inputs at fine resolution. But similar 
data do exist for other locations and could provide a basis for IYR cal-
culations beyond England. For example, Denmark and California have 
databases on pesticide usage (Mancini et al., 2020), a global map of 
pesticide pollution at ca. 10 km resolution is available (Tang et al., 
2021), fertiliser inputs of N and P have been modelled at 30 m resolution 
across the US Great Lakes (Hamlin et al., 2020), and a global wheat yield 
dataset at 4 km resolution has recently been published (Luo et al., 2022). 

4.3. Conclusions 

Transforming the food system towards sustainability ultimately re-
quires a great reduction in the environmental damage caused by 
intensive farming while producing sufficient high-quality food for peo-
ple. Managing the tension between reducing harm while producing 
enough food requires spatial targeting of actions that takes a holistic 
account of the multiple forms of harm caused by agriculture. By showing 
large variation in wheat yields and the agrochemical inputs used to 
achieve these yields, our study presents a supplementary approach to 
targeting farmland areas where agriculture is more damaging to the 

environment. To decrease the potential harm from the high inputs 
relative to yield in these areas, alternative farming approaches or land 
uses could be explored. 

CRediT authorship contribution statement 

JMB conceived of the study, led on the research, and wrote the paper. 
SGJ and WNWF carried out data analysis, made the figures and 
contributed to writing and editing. HR, CS and DJS also carried out data 
analysis and contributed to writing and editing. JWR, JS and RFP 
contributed to development of the study and to writing and editing. All 
authors contributed to the final manuscript. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

The IYR data for each 1 km grid cell are deposited in the UK Envi-
ronmental Informatics Data Centre at https://catalogue.ceh.ac. 
uk/documents/dfe2a4a5-2b3a-4731-ba7f-aea7e926f1dd. 

Acknowledgements 

The research was funded under research programme NE/N018125/1 
ASSIST and NE/W005050/1 AgZero+. ASSIST and AgZero+ are jointly 
supported by NERC and BBSRC. We thank Ian Knapper (Defra) for ar-
ranging access to the yield data, and Bryn Bircher (UK Health & Safety 
Executive) and Fera for providing access to the Pesticide Usage Survey 
data. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.scitotenv.2023.168491. 

References 

Ahmed, M., Rauf, M., Mukhtar, Z., Saeed, N.A., 2017. Excessive use of nitrogenous 
fertilizers: an unawareness causing serious threats to environment and human 
health. Environ. Sci. Pollut. Res. 24, 26983–26987. https://doi.org/10.1007/ 
s11356-017-0589-7. 

Bakker, L., Sok, J., van der Werf, W., Bianchi, F.J.J.A., 2021. Kicking the habit: what 
makes and breaks farmers’ intentions to reduce pesticide use? Ecol. Econ. 180, 
106868 https://doi.org/10.1016/j.ecolecon.2020.106868. 

Balmford, A., Amano, T., Bartlett, H., Chadwick, D., Collins, A., Edwards, D., Field, R., 
Garnsworthy, P., Green, R., Smith, P., Waters, H., Whitmore, A., Broom, D.M., 
Chara, J., Finch, T., Garnett, E., Gathorne-Hardy, A., Hernandez-Medrano, J., 
Herrero, M., Hua, F., Latawiec, A., Misselbrook, T., Phalan, B., Simmons, B.I., 
Takahashi, T., Vause, J., zu Ermgassen, E., Eisner, R., 2018. The environmental costs 
and benefits of high-yield farming. Nat. Sustain. 1, 477–485. https://doi.org/ 
10.1038/s41893-018-0138-5. 
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