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A B S T R A C T   

Digital soil mapping techniques represent a cost-effective method for obtaining detailed information regarding 
the spatial distribution of chemical elements in soils. Machine learning (ML) algorithms using random forest (RF) 
models have been developed for classification, pattern recognition and regression tasks, they are capable of 
modelling non-linear relationships using a range of datasets, identifying hierarchical relationships, and deter-
mining the importance of predictor variables. In this study, we describe a framework for spatial prediction based 
on RF modelling where inverse distance weighted (IDW) predictors are used in conjunction with ancillary 
environmental covariates. The model was applied to predict the total concentration (mg kg− 1) and assess the 
prediction uncertainty of 56 elements, soil pH and organic matter content using 466 soil samples in western 
Kenya; the results of iodine (I), selenium (Se), zinc (Zn) and soil pH are highlighted in this work. These elements 
were selected due to contrasting biogeochemical cycles and widespread dietary deficiencies in sub-Saharan 
Africa, whilst soil pH is an important parameter controlling soil chemical reactions. Algorithm performance 
was evaluated determining the relative importance of each predictor variable and the model's response using 
partial dependence profiles. The accuracy and precision of each RF model were assessed by evaluating out-of-bag 
predicted values. The models R2 values range from 0.31 to 0.64 whilst CCC values range from 0.51 to 0.77. The 
IDW predictor variables had the greatest impact on assessing the distribution of soil properties in the study area, 
however, the inclusion of ancillary environmental data improved model performance for all soil properties. The 
results presented in this paper highlight the benefits of ML algorithms which can incorporate multiple layers of 
data for spatial prediction, uncertainty assessment and attributing variable importance. Additional research is 
now required to ensure health practitioners and the agri-community utilise the geochemical maps presented here 
for assessing the relationship between environmental geochemistry, endemic diseases and preventable micro-
nutrient deficiency.   

1. Introduction 

Digital soil mapping (DSM) employs a generic framework to predict a 
target variable or class at an unobserved location based on the quanti-
tative relationship between georeferenced observations and one or more 
environmental covariate which is likely to impact the variable or class of 
interest within a defined area (Asgari et al., 2020; Lagacherie et al., 
2006; McBratney et al., 2003; Sylvain et al., 2021; Wadoux et al., 2019; 
Zeraatpisheh et al., 2019). The spatial distribution of chemical elements 
in soils, originating from geogenic and anthropogenic sources, can 
provide critical information for assessing mineral exploration, environ-
mental monitoring, and assessing nutrient dynamics (Hengl et al., 2015; 

Johnson and Ander, 2008; Sylvain et al., 2021; Wadoux et al., 2019). 
The need for comprehensive, accurate and up-to-date soil information 
maps is an essential component for the formulation of agricultural pol-
icies, soil management strategies, and monitoring environmental impact 
arising from changing land use (Chagas et al., 2016; Hengl et al., 2015; 
Towett et al., 2015). 

Geochemical maps can be used to investigate the relationship be-
tween environmental geochemistry and endemic diseases. Esophageal 
cancer (EC) has a unique spatial distribution, particularly for the his-
tological subtype of esophageal squamous cell carcinoma (ESCC) which 
predominates across central Asia and along the eastern Africa corridor 
extending from Ethiopia to South Africa (Schaafsma et al., 2015). Whilst 
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co-presenting factors may explain the occurrence of this disease in 
young African patients (<30 years), the risk of ESCC was linked to 
suboptimal nutrient intake (Liu et al., 2013); however, evidence for the 
role of specific nutrients is not conclusive. Nevertheless, there is evi-
dence of an inverse association between selenium (Se) and zinc (Zn) in 
ESCC risk studies (Hashemian et al., 2014; Steevens et al., 2010). 
Micronutrient deficiencies are common in Africa, particularly for Zn, Se, 
and iodine (I), the prevalence of which has been shown to have large 
spatial variation (Joy et al., 2014). The variation of nutrient availability 
to crops is influenced by a large number of factors including soil prop-
erties such as pH. In Malawi, the reduced concentration of Se in crops 
grown on non-calcareous soils (pH < 6.5) compared to calcareous soils 
(pH > 6.5) was observed due to the limited phyto-availability of Se in 
acidic soils (Joy et al., 2015). Soil properties also affect I fixation, 
mobility, and speciation (Humphrey et al., 2020). Previous studies in 
western Kenya have highlighted that up to 12% of the population were 
potentially I deficient, while over 44% were considered to have an 
excess I intake (Watts et al., 2020). Additional research investigating the 
source apportionment of micronutrients in the diets of western Kenyans 
used urinary biomonitoring to provide a snapshot of population 
micronutrient status (Watts et al., 2019). The overall calculated defi-
ciency rates were close to or exceeded 90% for Se and Zn. Due to the 
strong reliance on locally grown food products, which are influenced by 
local soil properties, any elemental excess or deficiencies would pre-
dominantly or exclusively originate from local sources (Schaafsma et al., 
2015). Recently, Gashu et al. (2021) identified geographic hotspots of 
human micronutrient deficiency associated with the geospatial variation 
in the composition of micronutrients in crops in Ethiopia and Malawi. 
They highlighted that the location of rural households consuming 
locally sourced food is the largest influencing factor in determining the 
dietary intake of micronutrients from cereals. This makes soil 
geochemistry a crucial factor in understanding the spatial incidence of 
endemic diseases and the prevalence ESCC in Eastern Africa. 

Conventionally, spatial predictions of soil properties have been 
performed by kriging and its many variants (Goovaerts, 1999; Minasny 
and McBratney, 2007; Oliver and Webster, 1990; Zhu and Lin, 2010). 
Kriging is a linear unbiased predictor and one of the most applied spatial 
interpolation techniques for estimating soil properties as it also provides 
a measure of the probable error associated with the estimates (Webster 
and Oliver, 2007). Despite its advantages, kriging has several disad-
vantages which have only been partially addressed. Kriging makes 
several assumptions that residuals are normally distributed, stationary 
(with constant mean and unit variance) and isotropic and incorporating 
supplementary cross-correlated covariates introduces further challenges 
(Wadoux et al., 2020). In heterogeneous regions, the model fails to 
encapsulate gradual and rapid changes in soil variation, and dependent 
upon the sample size and prediction area, kriging can present significant 
computationally challenges (Wadoux et al., 2020). 

In recent years (supervised) machine learning (ML), referring to a 
large class of non-linear data-driven algorithms, have been applied to 
data mining, pattern recognition, regression and classification tasks 
(Hengl et al., 2018; Wadoux et al., 2019). First described by Breiman 
(2001) random forest (RF) is a hierarchical nonparametric ML algorithm 
that consists of a large number of individual tree models trained from 
bootstrap samples and has proven to be efficient for producing spatial 
predictions. The decision trees classify data by inferring the relation-
ships between a dependent variable and a set of predictors before the RF 
model aggregates the results of all individual trees to make a single 
prediction (Naimi et al., 2022; Pouladi et al., 2019). This approach has 
several advantages including its ability to model non-linear relation-
ships, using numerical, ordinal, binary, and categorical datasets; reduce 
potential overfitting and bias, identifying complex hierarchical re-
lationships between predictors and response variables; and relationships 
between predictors providing the relative importance of a predictor 
variable based on the regression prediction error of out-of-bag (OOB) 
predictions (Heung et al., 2014; Pouladi et al., 2019). Despite the 

increased use of the RF frameworks for spatial interpolation most do not 
consider that the observations are geo-referenced and may be spatially 
correlated (Sekulić et al., 2020). Hengl et al. (2018) introduced a RF for 
spatial predictions framework (RFsp) where Euclidean buffer distances 
from observation points are used as explanatory variables, thus incor-
porating geographical proximity effects into the prediction process to 
mimic spatial correlation used in kriging, it was noted that adding these 
covariates improved prediction. Cave (2017) and Sekulić et al. (2020) 
applied similar approaches using inverse distance weighted (IDW) and 
neighbouring observations as predictor variables, respectively, in RF 
models with environmental covariates to improve the models prediction 
performance. Inverse distance weighted (IDW) interpolation assumes 
that samples that are close to one another are more alike than those that 
are further apart (Fortin and Dale, 2006). Cave (2017) highlighted that 
the use of IDW covariates displays more structure in the data as it better 
considers localised variability in comparison to ordinary kriging, which 
uses a single variogram to estimate point weighting for the prediction 
area. Similarly to kriging, the RF methods can also produce prediction 
variance estimates derived from the bootstrap sampling of the data 
points (inherent in the RF algorithm). This approach has subsequently 
been used to predict the spatial distribution of persistent organic pol-
lutants in London (Vane et al., 2021), and produce spatial prediction 
models of the total and bioaccessible fractions of arsenic and lead in an 
urban environment (Wragg and Cave, 2021). 

The aim of this study was to use random forest modelling, utilising 
both IDW and ancillary environmental covariates, to spatially predict 
soil properties and assess their prediction uncertainty in western Kenya. 
The objectives of this study were to (1) develop optimised RF models 
using a feature ranking algorithm to identify statistically significant 
variables; (2) use a non-parametric post-processing tool to explain the 
importance of significant attributes; and (3) compare the performance of 
different soil mapping techniques. The model was applied to predict the 
total concentration (mg kg− 1) and assess the prediction uncertainty of 
56 elements, soil pH and organic matter content in 466 soil samples from 
western Kenya, the open-access database is available in Watts et al. 
(2021a). The results of iodine (I), selenium (Se), zinc (Zn) and soil pH 
are highlighted in this work. These elements were selected due to their 
contrasting biogeochemical cycles and reported widespread de-
ficiencies, while soil pH was assessed due to its profound impact on soil 
chemical reactions influencing elemental fixation, mobility, and 
speciation. 

2. Materials and methods 

2.1. Study area 

The soil geochemical data used in this study were derived from 
samples collected between October 2016 and November 2019 as part of 
a wider project described in Watts et al. (2019) which collected soil, 
crop, drinking water and urine samples from household ‘shambas’ 
(produce plots) in rural locations to estimate micronutrient intakes and 
subsequent risk of deficiencies. Topsoil (0–15 cm) samples were 
collected from 446 sampling sites in 15 western Kenya counties, 
including Bomet, Bungoma, Busia, Elgeyo Marakwet, Homa Bay, 
Kakamega, Kericho, Kisii, Kisumu, Nandi, Nyamira, Siaya, Trans Nzoia, 
Uasin Gishu, and Vihaga (Fig. 1). 

2.2. Ethical approval 

For the wider study, which included human biomonitoring (Watts 
et al., 2021b), ethical approval was obtained from Moi University 
Institutional Research Ethics Committee (IREC 000921). Permission and 
assistance were then requested from the Ministry of Health office for 
each county before proceeding to the field areas and subsequent 
engagement with participants via community health workers. Addi-
tional research permission granted in Kenya NACOSTI/P/19/43659/ 
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2.3. Soil data 

Soil samples (0.25 g) were digested in a mixed acid solution (HF:2.5 
ml/ HNO3:2 ml/ HClO4:1 ml/ H2O2:2.5 ml) for the determination of the 
total concentrations of a broad suite of major and trace elements on a 
programmable hot block as described in Watts et al. (2019). For I ana-
lyses, soil samples (0.25 g) were digested using 5ml of 5% v/v tetra-
methylammonium hydroxide (TMAH), heated in a 15ml Nalgene HDPE 
bottle at 70 ◦C in a drying oven for 3h and then diluted with 5ml of Milli- 
Q water followed by centrifugation at 3000rpm for 20min, from which 
the supernatant was used for analyses (Humphrey et al., 2020; Watts and 
Mitchell, 2009). 

The subsequent analyses of the acid digests were performed by an 
Agilent 8900 triple quadrupole ICP-MS (ICP-QQQ) using (i) collision cell 
mode (He-gas) for Li, Be, B, Na, Mg, Al, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, 
Ni, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Sb, Cs, Ba, La, Ce, Pr, 
Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Tl, Pb, Bi, Th and 
U; and (ii) H2-reaction cell mode for Se; and (iii) O2-reaction cell mode 
for As (mass shifted at mass 91). Internal standards Sc, Ge, Rh, In, Te and 
Ir were employed to correct for signal drift. For I analyses, the ICP-QQQ 
was operated in ‘no-gas’ mode and analysed separately as described in 
Humphrey et al. (2019), with all solutions analysed in a 0.5% TMAH 
matrix. The complete dataset, limits of detection and analytical perfor-
mance data are presented in full for certified reference materials in 
Watts et al. (2021a). 

Soil pH analysis was based on a US EPA SW-846 Test Method 9045D 
for calcareous soils using 5g of soil (<2 mm), stirred and mixed with a 
calcium chloride slurry (CaCl2) to a final ratio of 1:2.5. Organic matter 

content was estimated by loss-on-ignition (LOI) at 450 ◦C for 1g of soil, 
using a < 53μm particle size. 

2.4. Spatial modelling 

In this study, a RF modelling approach was adopted where IDW 
covariates are used as predictor variables. To predict a value for an 
undetermined location, IDW computes the score of query points based 
on the scores of their k-nearest neighbours, weighted by the inverse of 
their distances. As each query point is evaluated using the same number 
of data points, this method allows for strong gradient changes in regions 
of high sample density while imposing smoothness in data sparse regions 
(Fortin and Dale, 2006; Yu and Liu, 2021). Fundamentally, IDW requires 
2 parameters the inverse distance power (p) and the number of nearest 
neighbours (n) to use. The choice of p and n is subjective and there is no 
relation between the prediction and the actual spatial variability unlike 
other methods such as kriging where the model relates to the spatial 
variance of the parameter of interest through a variogram (Wragg and 
Cave, 2021). In this instance, we have taken a series of IDW predictors 
with multiple combinations of p and n and use these as the predictor 
covariates. The RF model combines these covariates to model the esti-
mated soil parameter at the prediction locations. 

Geological and geographic features have also been shown to be an 
important control on the geochemical composition of surface soils 
(Rawlins et al., 2012). In addition to the IDW predictors, environmental 
covariates were incorporated into the RF model. These ancillary vari-
ables included: elevation (m); average annual rainfall (mm); dominant 
parent material; major landform; and Euclidean distance to major rivers, 
urban areas, and waterbodies (Fig. S1, Table S1). 
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Fig. 1. Location of soil sampling points (n = 446) and prediction area within the study area in western Kenya. Inset maps show the study area in Kenya and Kenya 
in Africa. 
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2.5. Random Forest model parameterisation and optimisation 

The data analysis was carried out using the R programming Lan-
guage (R Core Team, 2020) and associated libraries. The “sf” library 
(Pebesma, 2018) was used to attribute the ancillary data to the sampling 
points and prediction grid. The “ranger” library (Wright and Ziegler, 
2017) was used to carry out the RF modelling and the “Boruta” library 
(Kursa and Rudnicki, 2010) was used to select the significant predictor 
variables in the RF model. The Boruta package generates a duplicate 
predictor (shadow attribute) data set with each predictor randomly 
shuffled and joins the shuffled dataset with the original predictors. It 
then builds a RF model on the combined dataset, evaluating the 
importance of the original variables with the randomised variables. Only 
variables having higher importance than the randomised variables are 
considered important and included in the optimised model (Kursa and 
Rudnicki, 2010). Preliminary checks showed that after the top 5–10 
most important IDW predictor combinations, the inclusion of further 
IDW predictors does not meaningfully improve the root mean square 
error of the prediction (RMSEP). The modelling and interpolation were 
performed at 540 m resolution in the following stages: 

1. A series of IDW predictor variables were made up from all combi-
nations of n values (3, 5, 7, 9,11,13,15) and p values (0.1, 0.5, 0.9, 
1.3, 1.7, 2.1, 2.5, 2.9), totalling 56 combinations. For the training set, 
the IDW predictors are calculated for each individual point using a 
leave-one-out strategy. A RF model was set up using the 56 IDW 
combinations as predictor variables for the determinand in question 
and the performance of the model assessed;  

2. The top 10 most important IDW combinations, as assessed in the RF 
model by the gini-index (Wright and Ziegler, 2017), were chosen and 
combined with the ancillary variable data. The model was then 
subjected to the Boruta algorithm which identifies the significant 
predictors against the shadow attributes (Kursa and Rudnicki, 2010);  

3. The RF model was optimised to get the best value of “mtry” (range 
1:55), which is the number of variables randomly sampled as can-
didates at each split in the decision trees used in the RF model 
(Wright and Ziegler, 2017);  

4. Finally, the optimised RF model was applied to 100 bootstrap 
resamplings of the original sampling points (recalculating the IDW 
predictors for each bootstrap resample) with each resampling pro-
ducing data on the model fit and predictions for the element of in-
terest. In the bootstrap sampling method, approximately about two 
thirds of the samples are used for training the trees, and the 
remaining one third are used to obtain the out-of-bag (OOB) error 
which was applied to estimate the performance of the model and 
guarantee its robustness (Tan et al., 2021). The number of trees 
selected for all RF models was 1000. The final prediction values were 
calculated as the median value from all resampling rounds. A pre-
diction error map, calculated as the median absolute deviation of all 
100 bootstrap resamplings provides the associated prediction 
uncertainty. 

2.6. Evaluation of algorithm performance and accuracy assessment 

The “DALEX” package (Biecek, 2018) was enlisted as a method for 
post-analysing the RF model to derive the relative importance of the 
significant predictor variables defined by the Boruta algorithm by 
measuring how much the root mean square error (RMSE) increases 
when a given parameter is randomly shuffled, thus determining its 
importance. To evaluate the performance of the RF model, “out-of-bag” 
(OOB) predicted values were compared against the measured values of I, 
Se, Zn and pH in the soil samples used to set up the model. Model per-
formance is ideally assessed using a large independent test dataset that 
was not used in the training procedure. When an independent dataset is 
unavailable, k-fold cross-validation is often used, however, RF uses an 
extension of cross-validation in the form of OOB samples. The OOB data 

are, in effect, independent samples with measured values not used in 
setting up the model as within each of the RF model decision trees, 
bootstrapped samples of the original data were used so that the samples 
left out by the resampling could act as independent checks. The OOB 
error provides an estimate of prediction accuracy which is similar to k- 
fold cross-validation (CV), whilst is may provide a biased estimate of 
model performance, previous studies have shown that it provides com-
parable values (Grimm et al., 2008; Svetnik et al., 2003; Hastie et al., 
2009; Heung et al., 2014). Moreover, OOB estimates of error are 
computationally less expensive than k-fold cross-validation. 

Ordinary kriging (OK), a geostatistical model, was also used as a 
benchmark to evaluate the performance of the RF models. A full 
description of the OK method used was published by Gashu et al. (2021). 
In brief, summary statistics were calculated and assessed to examine the 
need to transform the data (Table S2). A decision to use the absolute 
value or loge transformed data was determined based on the coefficient 
of octile skewness as a robust measure of asymmetry of the distribution 
(Brys et al., 2004). Variograms were estimated for each variable using 
three estimators: Matheron (1962), Cressie and Hawkins (1980) and 
Dowd (1984) (Table S3). A maximum lag distance of 100 km and lag 
bins with a width of 10 km were used. Exponential variogram functions 
were fitted to the estimates by weighted least squares (Webster and 
Oliver, 2007). The model was then tested by cross-validation, the 
selected models are shown in Fig. S2. The CV process consisted of 
removing each observation and predicting the remaining observations 
by ordinary kriging for each variogram model, before assessing the 
standardised squared prediction error (SSPE) with an expected value of 
0.455 (Lark, 2000). The Matheron estimator was selected if the fitted 
models' CV results were deemed appropriate (the median SSPE is within 
the 95% confidence interval). If the results suggest the model is not 
suitable either the Cressie and Hawkins and Dowd estimators were used 
based on the CV results. The best suited variogram model was then used 
to compute the predictions of soil concentrations and the kriging vari-
ance, as a measure of the uncertainty of the prediction, on a square grid 
by OK. 

The evaluation of algorithm performance, accuracy and quality of 
the models were assessed using three parameters, root mean squared 
error (RMSE), Lin's concordance correlation coefficient (CCC), and the 
coefficient of determination (R2), with the following formulas: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Pi − Oi)2

√

CCC =
2 r σoσp

σ2
o + σ2

p + (O′ − P′)2  

R2 = 1 −
∑n

i (Oi − Pi)2

∑n
i=1(Oi − O′)2  

where n is the number of samples, Oi and Pi are observed and predicted 
soil properties, O′ and P′ are the corresponding means and σ2

o and σ2
p are 

the corresponding variances, respectively. 

3. Results and discussion 

3.1. Iodine 

The predicted spatial distribution of total I (mg kg− 1) in soil, dis-
played in deciles, and a measure of the respective uncertainty in western 
Kenya are shown in Fig. 2. The mean I concentration in this study was 
12.05 ± 4.98 mg kg− 1, with a range of 2.01–25.43 mg kg− 1, and un-
certainty estimation between 0.06 and 11.62 mg kg− 1. The RF model 
selected 17 variables for predicting the total concentration of I and 
optimised the mtry value at 2. The lowest concentrations of I in the study 
area were located in the northwest of the region and around the 
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perimeter of the Winam Gulf, whilst the highest concentrations are 
found in the northeast and southeast. The highest uncertainty was 
typically limited to localised hotspots between bands of high and low 
concentrations. 

Soil I concentrations are heavily influenced by the wet and dry 
deposition of volatilised I compounds from marine sources (Humphrey 
et al., 2018). Despite the large distance of the study area from the coast 
(>800 km), the average concentration is approximately twice the global 
soil average (5.1 mg kg− 1) (Humphrey et al., 2018; Johnson, 2003). The 
biogeochemical cycling of I in soils is controlled by soil characteristics 
that affect retention against leaching, such as soil texture, pH, the con-
centration of organic matter and metal oxides (Fuge and Johnson, 
2015). Ferric and aluminium oxides strongly adsorb I in soils whilst in 
the presence of manganese oxide birnessite (δ-MnO2) the inorganic 
species iodide is oxidised to iodate, however, in the presence of organic 
matter the intermediate product of the oxidation is incorporated into 
organic matter (pH < 7) (Humphrey et al., 2020). The soils in western 
Kenya exhibit a positive Pearson correlation coefficient between I and 
the total concentration of Fe (r = 0.57, p < 0.01), Al (r = 0.63, p < 0.01) 
and Mn (r = 0.37, p < 0.01). The soils with the lowest total I (mg kg− 1) in 
the northwest of the study area and surrounding the Winam Gulf have 
high sand percentages; the highest I concentrations in the southeast 
region of the prediction area coincide with a landcover dominated by 
forests with a high organic matter content. Within the study area a 
positive correlation was found between soil I and organic matter content 
(r = 0.44, p < 0.01). These observations agree with Johnson (2003), 
who identified that soil texture affects I enrichment in soils and that soils 
with high sand ratios have lower I concentrations, whereas organic-rich 
soils can retain higher I concentrations (Humphrey et al., 2020). Rickard 
and Price (1984) reported that soils at high elevations have greater 
concentrations of I than low elevations soils. Within the prediction area 
there is good general agreement between I and elevation (r = 0.47, p <
0.01). Orographic lifting and subsequent precipitation may have a major 
influence on I concentrations in soils in western Kenya and has 

previously been identified as an important factor in determining I con-
centrations in terrestrial precipitation (Gilfedder et al., 2007). 

The relative importance of all predictor variables and the partial 
dependence of the top 10 predictor variables for I are shown in Fig. 3. 
Whilst the relative importance shows how integral the predictor variable 
is to the overall prediction, the partial dependence plot shows the 
marginal effect a single feature has on the predicted outcome of a ma-
chine learning model and can indicate whether the relationship between 
the target and a feature is linear, monotonic or more complex (Fried-
man, 2001). The variable importance plot of the RF model revealed that 
the IDW predictor variables have the greatest impact on predicting the 
distribution of total I in the study area, with a combined relative 
importance of 60.7%. The most important ancillary variable was 
elevation, followed by distance to waterbodies, rainfall and proximity to 
urban areas, respectively, these variables have a combined relative 
importance of 24.3%. The remaining geological and landform variables 
combine to have a 15% importance. The limited importance of these 
features in comparison to the IDW variables, elevation and rainfall 
highlight the unique biogeochemical cycling on I in the terrestrial 
environment. All of the IDW partial dependence plots follow a similar 
profile. The partial dependence plot for elevation shows a sharp increase 
between 1800 and 2100 m, prior to plateauing supporting the notion 
that orographic lifting and subsequent precipitation may significantly 
impact soil I concentrations. Interestingly, the partial dependence plot 
for distance to waterbodies shows that the closeness to a waterbody 
negatively affects the concentration of I in the soil. The largest water-
body in this study area is the Winam Gulf, and soils close to the gulf are 
sandy, thereby supporting previous observations on the importance of 
soil texture on I concentrations. 

3.2. Selenium 

The predicted spatial distribution of total Se (mg kg− 1) in soil, dis-
played in deciles, and a measure of the respective uncertainty in western 

Fig. 2. The spatial prediction of total soil iodine (mg kg− 1), displayed in deciles, and prediction uncertainty assessment in western Kenya.  
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Kenya are shown in Fig. 4. The predicted Se concentrations in the study 
area range from 0.24 to 1.52 mg kg− 1, which matches the global range of 
0.01–2.00 mg kg− 1 (Dungan and Frankenberger, 1999). The predicted 
mean Se concentration in the study area (0.71 ± 0.29 mg kg− 1) is 
slightly elevated in comparison to the global average (0.4 mg kg− 1). The 
RF model selected 22 variables for predicting the total concentration of 
Se and optimised the mtry value at 2. 

Selenium is an essential trace element for human health with food-
stuffs being an important source of Se to humans; however, Se intake is 
highly variable due to its heterogeneous distribution in the terrestrial 
environment and agricultural soils (Rayman, 2012). Whilst bedrock 
geology appears to be the most important factor for Se-rich soils it fails 
to explain the large-scale distribution of Se (Blazina et al., 2014). The 
ocean is an important reservoir of Se from where it can be transported 
inland via volatilisation and deposition events (Blazina et al., 2014). The 
spatial distribution of Se in the study area follows a similar pattern to I 
with the lowest concentrations in the northwest of the region and the 
area surrounding the Winam Gulf, whilst the highest concentrations are 
found in forested areas to the southeast. Haibo et al. (2005) reported 
similar concentrations of Se in woodland (1.36 mg kg− 1), grassland 
(0.67 mg kg− 1) and arable cropland (0.36 mg kg− 1) in Hong Kong. The 
comparable observations indicate that the concentrations of Se in soils 
vary with different landcover. In the present study, the highest uncer-
tainty was found in the central region of the study area and between 
bands of high and low concentrations. The dominant species of Se in 
soils are oxyanions selenite and selenate in acidic and alkaline soil, 
respectively, which are known to form complexes with clay minerals, 
organic matter, and adsorb to oxyhydroxides (Blazina et al., 2014; Xu 
et al., 2020). In the current study a positive relationship was found be-
tween Se and the total concentration of Fe (r = 0.55, p < 0.01), Al (r =
0.57, p < 0.01) and Mn (r = 0.49, p < 0.01), suggesting that soils with 
high content in oxyhydroxides can adsorb and retain more Se. However, 
the total concentration of Se does not accurately portray crop, and 
subsequent dietary availability as the mobility of Se in soil is affected by 
various biological and geochemical factors such as redox potential, pH, 

and soil organic matter (Pisarek et al., 2021). In Malawi, Hurst et al. 
(2013) observed that on calcareous soils (eutric vertisols), soil-to-crop 
transfer of Se was >10-fold higher compared to other soils and that 
pH markedly affected dietary Se intake. There was a negative correlation 
between Se and soil pH (r = − 0.33, p < 0.01) in this study, supporting 
previously published observations (Haibo et al., 2005). Due to the 
complexity of Se soil dynamics, additional research is required to fully 
utilise this predictive map. 

The relative importance of all predictor variables and the partial 
dependence of the top 10 predictor variables for Se are shown in Fig. 5. 
The variable importance plot of the RF model shows that the IDW pre-
dictor variables have the greatest impact on predicting the distribution 
of total Se in the study area, with a combined relative importance of 
62.4%. The most important ancillary variable was elevation (8%), fol-
lowed by distance to waterbodies (4.4%), rainfall (4.3%), and landform 
frequency (3.7%). The remaining predictor variables (geological fea-
tures) have a combined relative importance of 17.2%. In this study, 
there is a strong positive correlation (r = 0.77, p < 0.01) between I and 
Se, as expected due to the similarity of factors influencing their 
biogeochemical cycling and the similarities between the partial depen-
dence plots. The partial dependence plots show a positive relationship 
for both elevation and rainfall with the total concentrations of Se in the 
soils of western Kenya. Shao et al. (2018) observed that soil Se con-
centrations decreased from upstream to downstream in a watershed in 
southern China, which significantly correlated with elevation. In the 
present study a positive correlation (r = 0.49, p < 0.01) was also found 
between Se and elevation. Blazina et al. (2014) observed that high soil 
Se concentrations in northwest China are likely due to enrichment in 
drier saline-alkaline soils. However, the similarity between Se soil dis-
tribution and precipitation indicates that atmospheric Se inputs via 
precipitation also play an important role, and could be influential in 
other regions worldwide. The results in this study highlight that rainfall 
plays an important role in the biogeochemical cycling of Se. 

Fig. 3. Scaled variable importance plot from random forest model for factors predicting total iodine concentration (mg kg− 1) and response curves illustrating the 
relationship between iodine concentration (mg kg− 1) and the input variables in soils within the study area. 
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3.3. Zinc 

The predicted spatial distribution of total Zn (mg kg− 1) in soil, dis-
played in deciles, and an assessment of prediction uncertainty in western 
Kenya are shown in Fig. 6. The mean Zn concentration in the study area 
is 147.1 ± 67.8 mg kg− 1, with a range of 36.6–366.9 mg kg− 1, and an 
uncertainty estimation between 0.3 and 140.0 mg kg− 1. The average 
concentration of Zn in the current study is higher than the global 
average (55.0 mg kg− 1), however, our results are comparable to the 
typical range of Zn reported in soils (10.0–300.0 mg kg− 1) by Alloway 
(1995). The spatial distribution of Zn in the study area generally in-
creases from northwest to southeast. The lowest concentrations 
(36.6–62.5 mg kg− 1) are located in the northwest and the south-eastern 
shore of the Winam Gulf, whilst the highest concentrations 
(230.9–366.9 mg kg− 1) are found in a central hotspot and to the south- 
east of the study area. The highest uncertainty was found at a Zn hotspot 
located in the middle of the prediction area located in the middle of the 
urban centre of Kisumu, which is likely to explain the high concentra-
tions of Zn. The RF model selected 17 variables for predicting the total 
concentration of Zn and optimised the mtry value at 2. 

Zinc is an essential micronutrient for humans and plants and has 
diverse physiological functions in biological systems. It interacts with a 
large number of enzymes and other proteins in the body and performs 
critical structural, functional and regulatory roles (Cakmak and Kutman, 
2018). The total Zn content of a soil is largely dependent upon the 
geochemical composition of the weathering rock parent material on 
which the soil has developed, however, Zn can be incorporated into soils 
through anthropogenic activities such as pollution or fertiliser 

application (Alloway, 2008). Typically, high concentrations of Zn in soil 
correlate with basic igneous rocks, such as basalts due to Zn occurring in 
ferromagnesian minerals, where it has isomorphously substituted Fe2+

or Mg2+ (Alloway, 2008). Conversely, silica-rich igneous rocks have 
lower total Zn contents and their residual weathering product is usually 
quartz sand which gives rise to sandy soils with low concentrations of Zn 
and other essential micronutrients (Alloway, 2008). The results in the 
present study support these findings with the highest concentrations of 
Zn overlaying volcanic and basic igneous rocks in the southeast of the 
study site, whilst soils with the lowest concentrations have formed on 
quartz-rich granites and gneiss parent material (Fig. S1-F). Furthermore, 
soil texture plays an important role in the total concentration of Zn 
found in soils with clay-rich soils having greater capacity to adsorb and 
retain Zn relative to soils with lower percentages of clay and higher 
percentages of sand (Baize, 1997; Gorny et al., 2000; McGrath and 
Loveland, 1992). Despite the relative abundance of Zn in the soil of the 
study area Watts et al. (2019) calculated that the risk of Zn dietary 
deficiency, based on biomonitoring data, exceeded 90% in this region. In 
agricultural soils Zn is bound to clays, hydrous oxides and organic ma-
terial depending on various physicochemical soil factors mainly pH and 
organic matter content (Noulas et al., 2018). These factors ultimately 
determine the solubility of Zn in soil, and consequently, its bioavail-
ability for uptake by plants. As such, further research is required with 
additional layers to create predictive maps capable of providing rec-
ommendations to farmers for Zn fertiliser applications. 

The relative importance of all predictor variables and the partial 
dependence of the top 10 predictor variables for Zn are shown in Fig. 7. 
The variable importance plot of the RF model shows that the IDW 

Fig. 4. The spatial prediction of total soil selenium (mg kg− 1), displayed in deciles, and prediction uncertainty assessment in western Kenya.  
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predictor variables have the greatest impact for assessing the distribu-
tion of total Zn in the study area, with a combined relative importance of 
71.4%. In addition, the IDW variables all display a similar partial 
dependence profile. The most important ancillary variables were 
elevation (5.8%), waterbodies (4.8%), rainfall (4.2%), and the remain-
ing 13.8% was attributed to geological/landform features. The 
comparatively greater importance of the combined geological and 
landform features suggests that soil Zn concentrations were heavily 
influenced by the underlying geology. 

3.4. Soil pH 

The predicted spatial distribution of soil pH, displayed in deciles, and 
a correspondent measure of uncertainty in western Kenya are shown in 
Fig. 8. The mean soil pH in this region is 5.59 ± 0.47, with a range of 
4.45–7.56 and an uncertainty estimation between 0.01 and 1.08. The RF 
model selected fewer significant independent variables (10) for pre-
dicting soil pH in comparison to I, Se and Zn models and optimised the 
mtry value to 8, which is greater compared to the other models pre-
sented in this paper. The acidic nature of soils in western Kenya is well 
documented (Kisinyo et al., 2014). In the present study, the most acidic 
soils (4.46–5.09) were found in the northeast of the prediction area. 
Only 12% of all the soils collected in this study had a soil pH >7 which 
were predominantly located around the Winam Gulf and to the west of 
the study site. 

Soil pH is considered to be the “master variable” of soil chemistry 
due to its profound impact on chemical reactions involving essential 
nutrients and potentially toxic elements, therefore soil pH management 
is critical for both agronomic and environmental management (Neina, 
2019; Penn and Camberato, 2019). Inherent factors that affect soil pH 
include climate, mineralogy, and topography. The pH of a young soil is 
typically determined by the mineralogy of its parent material, whilst in 
older soils temperature and rainfall affect the intensity of leaching and 
the weathering of soil minerals. In warm, humid environments, soil pH 
decreases over time through acidification due to leaching caused by the 

high volume of rainfall (Fabian et al., 2014; Li et al., 2017; Slessarev 
et al., 2016). It has previously been reported that topographic factors are 
significantly correlated with soil pH at a range of latitudes (Chen et al., 
1997; Seibert et al., 2007). Within the current study, there is a signifi-
cant negative trend between soil pH and elevation (r = − 0.44, p < 0.01), 
with more acidic soils present at higher altitudes, subjected to high 
organic matter contents and greater precipitation, to the east of the 
study site (Fig. 8). Approximately 13% of Kenyan soils are acidic, with 
the majority found in western Kenya and the Rift valley which devel-
oped from non-calcareous parent materials such as syenites, phonolites, 
trachytes, olivines, older basic tuffs and nepholites (Kisinyo et al., 2014). 
The predicted results presented in the current study have good agree-
ment with previously published values in the same region (George et al., 
2002; Moebius-Clune et al., 2011; Muindi et al., 2015; Opala et al., 
2018; Otieno and Zingore, 2018). Due to the acidic nature of the soils in 
western Kenya, the vast majority of them have high exchangeable Al3+

ions which have led to high P sorption in these soils significantly 
reducing P availability to staple crops, such as maize, severely limiting 
crop yields in the area. Crop production in acid soils with Al toxicity and 
low soil available P may be improved by the use of lime and/or fertilisers 
with liming effects, as the application of agricultural lime increases Ca+/ 
Mg2+ ions and reduces the presence of Al3+, H+, Mn4+, and Fe3+ ions in 
soil solution (Kisinyo et al., 2014). The results presented in the current 
study could be used to provide agricultural practice recommendations to 
improve crop yields and improve micronutrient supply to the population 
in western Kenya. 

The relative importance of all predictor variables and the partial 
dependence of the top 10 predictor variables for soil pH are shown in 
Fig. 9. The variable importance plot of the RF model shows that the IDW 
predictor variables have the greatest impact on predicting the distri-
bution of soil pH in the study area, with a combined relative importance 
of 63.9%. The most important ancillary variable was elevation (11.7%), 
followed by distance to waterbodies (9.9%), rainfall (9.2%), and 
geological and landform frequency (5.2%). In contrast to the elemental 
variable importance plots, elevation and rainfall have a markedly higher 

Fig. 5. Scaled variable importance plot from random forest model for factors predicting total selenium concentration (mg kg− 1) and response curves illustrating the 
relationship between selenium concentration (mg kg− 1) and the input variables in soils within the study area. 
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importance in the RF model for predicting soil pH. The response curves 
for elevation and rainfall (Fig. 9) both indicate that with increased 
elevation and rainfall soils become more acidic in western Kenya. 
Elevation significantly influences local precipitation rates. In general, 
elevation and precipitation are positively correlated, and excess rainfall 
leads to the leaching of Ca and Mg ions, thereby acidifying soils 
(Badraghi et al., 2021). 

3.5. Model performance 

The accuracy, assessed by RMSE, CCC, and R2 values, of the spatially 
predicted soil properties where IDW covariates are used in conjunction 
with ancillary environmental covariates were compared to RF modelling 
only using IDW covariates and ordinary kriging (Table 1). The RF model 
with IDW and ancillary covariates and the OK interpolation method 
outperformed the RF model only using IDW covariates highlighting the 
importance of including ancillary values in the RF model. Furthermore, 
the RF model (IDW + Ancillary covariates) described in this paper 
surpassed or equalled all accuracy assessment indices compared to OK; 
excluding Zn RMSE where OK performed marginally better. 

To further evaluate the performance of the RF model (IDW +
Ancillary covariates) OOB predicted values were compared against the 
measured values of I, Se, Zn and pH in the soil samples used to set up the 
model (Fig. S3). The OOB data act as independent samples with 
measured values not used in setting up the model as within each of the 
RF model decision trees, bootstrapped samples of the original data were 
used so that the samples omitted by the resampling could act as inde-
pendent checks (Breiman, 2001). The distance of the points from the line 

of equivalence and the size of the vertical error bars on the OOB pre-
dictions provide the estimates for the accuracy and precision, respec-
tively. In general, the OOB-predicted values agreed with the actual 
values within the errors indicated by the error bars for all soil properties. 
However, it appears that there is a negative bias for the highest con-
centrations and a positive bias for the lowest concentrations for all soil 
properties. Despite the large variation and complex heterogeneity of 
total elemental concentrations and soil pH within the study area, which 
can be attributed to differences in parent materials between and within 
sites and to local pedologic, hydrological, and management factors our 
RF model using both IDW and ancillary covariates models performed 
very well. 

4. Conclusion 

In this study, we applied RF modelling utilising both IDW and 
ancillary covariates for spatially predicting and assessing the uncer-
tainty of the total concentration (mg kg− 1) of I, Se, Zn and soil pH in 
western Kenya. The RF models were optimised using a feature ranking 
algorithm identifying statistically significant variables and a powerful 
non-parametric post-processing tool was used to explain the importance 
of significant attributes used in the model. Whilst the IDW predictors 
were the most important covariates in all models the inclusion of 
ancillary covariates improved the prediction capability. Moreover, the 
RF models used largely outperformed ordinary kriging based on multi-
ple accuracy assessment indices (RMSE, CCC and R2). The RF modelling 
used in this paper where ML methods are used in conjunction with 
readily available environmental datasets could provide significant 

Fig. 6. The spatial prediction of total soil zinc (mg kg− 1), displayed in deciles, and prediction uncertainty assessment in western Kenya.  
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Fig. 7. Scaled variable importance plot from random forest model for factors predicting total zinc concentration (mg kg− 1) and response curves illustrating the 
relationship between zinc concentration (mg kg− 1) and the input variables in soils within the study area. 

Fig. 8. The spatial prediction of soil pH, displayed in deciles, and prediction uncertainty assessment in western Kenya.  

O.S. Humphrey et al.                                                                                                                                                                                                                           



Geoderma Regional 35 (2023) e00731

11

improvements to the accuracy and resolution of soil prediction maps. In 
addition, the model presented in this paper has been applied to spatially 
predict the total concentration of 56 elements in western Kenya, the 
open-access database is available in Watts et al. (2021a). Research is 
now required to assess how the geochemical maps presented can be used 
in conjunction with health practitioners to investigate the relationship 
between environmental geochemistry and endemic diseases, such as 
esophageal cancer. The method presented in this paper can be used 
harmoniously with additional layers of soil, staple crop and urinary 
biomarker data, to define geographic areas that would be at an elevated 
risk of micronutrient deficiency. Furthermore, the outputs from this 
modelling framework could be used to guide agricultural policy and 
farmer recommendations for fertiliser application or soil physi-
ochemical amendment intervention. 
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Fig. 9. Scaled variable importance plot from random forest model for factors predicting soil pH and response curves illustrating the relationship between soil pH and 
the input variables in soils within the study area. 

Table 1 
Comparison of model performance assessment indices for iodine, selenium, zinc 
and soil pH using different interpolation methods. The best performing model 
assessment indices are shown in italics.  

Soil 
property 

Accuracy 
assessment indices 

Interpolation method 

RF (IDW + Ancillary 
covariates)a 

RF (IDW 
covariates) 

OK 

I (mg 
kg− 1) 

RMSE 5.53 5.92 5.75 
CCC 0.63 0.58 0.59 
R2 0.46 0.38 0.42 

Se (mg 
kg− 1) 

RMSE 0.22 0.24 0.23 
CCC 0.77 0.74 0.76 
R2 0.64 0.58 0.61 

Zn (mg 
kg− 1) 

RMSE 58.6 59.5 54.4 
CCC 0.72 0.72 0.71 
R2 0.56 0.54 0.56 

pH 
RMSE 0.78 0.77 0.78 
CCC 0.51 0.47 0.47 
R2 0.31 0.29 0.31  

a Model used to create spatial prediction maps. 
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distribution in French forests: influence of environmental conditions. Sci. Total 
Environ. 774 (144), 962. 

Pouladi, N., Møller, A.B., Tabatabai, S., Greve, M.H., 2019. Mapping soil organic matter 
contents at field level with Cubist, Random Forest and kriging. Geoderma 342, 
85–92. 

R Core Team, 2020. R: A language and environment for statistical computing. 
Foundation for Statistical Computing, Vienna, Austria.  

Rawlins, B., McGrath, S., Scheib, A., Breward, N., Cave, M., Lister, T., Ingham, M., 
Gowing, C., Carter, S., 2012. The Advanced Soil Geochemical Atlas of England and 
Wales. 

Rayman, M.P., 2012. Selenium and human health. Lancet 379 (9822), 1256–1268. 
Rickard, W.H., Price, K.R., 1984. Iodine in terrestrial wildlife on the U.S. department of 

energy's Hanford Site in southcentral Washington. Environ. Monit. Assess. 4 (4), 
379–388. 

Schaafsma, T., Wakefield, J., Hanisch, R., Bray, F., Schüz, J., Joy, E.J.M., Watts, M.J., 
McCormack, V., 2015. Africa’s Esophageal cancer corridor: geographic variations in 

O.S. Humphrey et al.                                                                                                                                                                                                                           

http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0005
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0005
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0010
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0015
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0015
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0015
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0020
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0020
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0020
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0025
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0025
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0030
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0030
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0035
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0035
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0035
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0040
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0045
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0045
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0050
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0050
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0055
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0055
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0055
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0055
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0060
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0060
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0060
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0065
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0065
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0065
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0070
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0070
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0075
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0075
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0080
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0080
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0085
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0085
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0085
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0090
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0090
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0095
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0095
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0100
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0100
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0105
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0105
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0105
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0105
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0105
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0105
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0110
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0110
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0110
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0115
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0115
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0115
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0120
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0120
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0125
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0125
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0125
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0130
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0130
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0130
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0135
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0135
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0140
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0140
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0140
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0145
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0145
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0150
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0150
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0150
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0150
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0155
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0155
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0155
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0160
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0160
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0165
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0165
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0165
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0170
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0170
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0170
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0175
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0175
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0175
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0180
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0180
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0180
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0180
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0185
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0185
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0185
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0190
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0190
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0195
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0195
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0195
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0200
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0200
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0200
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0205
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0205
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0205
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0210
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0210
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0215
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0215
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0220
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0220
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0225
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0225
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0225
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0230
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0230
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0230
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0235
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0240
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0240
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0245
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0245
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0250
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0250
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0255
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0255
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0255
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0255
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0260
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0260
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0265
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0265
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0265
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0270
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0270
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0275
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0275
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0280
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0280
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0285
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0285
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0290
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0290
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0290
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0295
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0300
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0300
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0305
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0305
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0305
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0310
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0310
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0310
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0315
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0315
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0320
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0320
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0320
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0325
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0330
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0330
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0330
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0335
http://refhub.elsevier.com/S2352-0094(23)00127-X/rf0335


Geoderma Regional 35 (2023) e00731

13

incidence correlate with certain micronutrient deficiencies. PLoS One 10 (10), 
e0140107. 

Seibert, J., Stendahl, J., Sørensen, R., 2007. Topographical influences on soil properties 
in boreal forests. Geoderma 141 (1–2), 139–148. 
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