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Abstract

Biological invasions are one of the main drivers of global biodiversity decline. At the same time, gla-
cial retreat induced by climate warming is occurring at an alarming rate across the globe, threatening 
unique taxa and ecosystems. However, we know little about how introduced species contribute to the 
dynamics of colonisation in newly-deglaciated forelands. To answer this question, detailed invento-
ries of plant and invertebrate communities were undertaken during two summer field seasons in the 
forelands of three tidewater and three inland glaciers that are retreating on the sub-Antarctic Island 
of South Georgia. The vascular plant communities present included a large proportion of South 
Georgia’s native flora. As expected, plant richness and cover increased with time since deglaciation 
along a deglaciation chronosequence. Introduced plants were well represented in the study sites and 
two species (Poa annua and Cerastium fontanum) were amongst the earliest and most frequent colo-
nisers of recently-deglaciated areas (occurring on more than 75% of transects surveyed). Introduced 
arthropods were also present around tidewater glaciers, including an important predatory species 
(Merizodus soledadinus) with known detrimental impacts on native invertebrate communities. Our 
study provides a rare and detailed picture of developing novel communities along a deglaciation 
chronosequence in the sub-Antarctic. Introduced species are able to track glacial retreat on South 
Georgia, indicating that further local colonisation and spread are inevitable as the region’s climate 
continues to warm.
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Introduction

Species introduced through human activities (commonly referred to as introduced, 
alien, non-native, exotic) are considered invasive when they establish and have neg-
ative impacts on native biodiversity and ecosystems (Colautti and MacIsaac 2004). 
Biological invasions are a key component of global environmental change and rep-
resent a major threat to biodiversity across the globe (Pyšek et al. 2020; Roy et al. 
2023), especially on islands (Moser et al. 2018), and this threat is likely to grow unless 
effective biosecurity measures are put in place (Seebens et al. 2021). Sub-polar, polar 
and mountain biomes are increasingly exposed to the cumulative threat of invasive 
species and global warming (Thorarinsdottir et al. 2014; Alexander et al. 2016; Rew 
et al. 2020). Although remote sub-Antarctic islands are expected to be particularly 
vulnerable, data on introduced species are limited and little is known about future in-
vasion trajectories in the face of climate change (Frenot et al. 2005; Leihy et al. 2023).

In most cold biomes across the globe, glaciers have been rapidly retreating over 
recent decades (Zemp et al. 2019) and, even in the least extreme scenarios of global 
warming, the majority of the world’s mid- and low latitude glaciers are likely to be 
lost by 2100 (Rounce et al. 2023). This alarming phenomenon impacts biodiversi-
ty across multiple spatial and temporal scales, ranging from the loss of specialised 
communities in the immediate vicinity of retreating glaciers (Hotaling et al. 2017; 
Wilkes et al. 2023) to regional impacts on water regimes and sea level (Barnett et 
al. 2005; Zemp et al. 2019). When glaciers melt, new communities are built and 
an ecological succession becomes apparent from the filtering gradient of environ-
mental conditions along the deglaciation chronosequence (Ficetola et al. 2021; 
Pothula and Adams 2022). Some specialised taxa may lose their habitat, while 
others may benefit from colonisation opportunities provided by the newly-deglaci-
ated areas (Cauvy-Fraunié and Dangles 2019; Bosson et al. 2023). To protect these 
highly vulnerable ecosystems, it is key to describe and understand the processes of 
ecological succession following glacial retreat (Jacobsen et al. 2012).

To date, biological invasions in glacier-associated communities have received 
very little research attention. This is surprising, given that invasive species can fun-
damentally alter the speed and trajectory of ecological succession in other ecosys-
tems (Kuebbing et al. 2014; Bellingham et al. 2016; Gallego-Tévar et al. 2020). 
In proglacial streams and fjords, it has been suggested that introduced species may 
arrive late in the succession process following glacial retreat, but clear evidence for 
this is lacking (Cauvy-Fraunié and Dangles 2019).

To start to understand interactive effects between biological invasions and glacial 
retreat, we assessed when and to what extent introduced species infiltrate the early 
successional sequence of proglacial communities. We surveyed pioneer communi-
ties of plants (with a focus on vascular plants and key lichens and bryophytes) and 
invertebrate species (with a focus on macroinvertebrates and Collembola) colonising 
glacial forelands around three tidewater and three inland glaciers on the sub-Antarc-
tic Island of South Georgia. South Georgia is an important location to investigate 
how introduced species enter the sequence of colonisation in newly-deglaciated ar-
eas, because it harbours multiple introduced plant and invertebrate species (Frenot 
et al. 2005; Convey et al. 2010; Black 2022). In parallel, most of South Georgia’s 
glaciers have been rapidly receding for decades and are predicted to continue to do 
so (Gordon et al. 2008; Cook et al. 2010; Rounce et al. 2023), creating large areas 
of habitat suitable for colonisation by both native and introduced species.
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Materials and methods

Study area

The Island of South Georgia is about 170 km long and up to 40 km wide and is 
located in the South Atlantic, between 54°S–54°55'S and 35°50'W–38°W, about 
1000 km north-east of the Antarctic Peninsula. Despite its geographical isolation 
and relatively harsh sub-Antarctic climate, South Georgia currently hosts species 
of plants and invertebrates that were introduced by sealing – and later shore-based 
whaling – industries between the late 18th and mid-20th centuries (Convey and 
Lebouvier 2009; Convey et al. 2011; Black 2022) with new introductions occur-
ring up to the present day (Convey et al. 2010; Tichit et al. 2023). Some intro-
duced species have negative impacts on native communities (Ernsting et al. 1995; 
Houghton et al. 2019) and the island’s terrestrial ecosystems may be particularly 
vulnerable to introductions due to the presence of vacant niches that are readily 
available to new competitive invasive taxa (Convey and Lebouvier 2009; Hough-
ton et al. 2019). To tackle this issue, the Government of South Georgia & the 
South Sandwich Islands (GSGSSI) has implemented rigorous biosecurity measures 
and invasive mammals have been successfully eradicated from the Island (GSGSSI 
2013; Martin and Richardson 2019). However, some plant species such as the dan-
delion Taraxacum officinale agg. and the meadowgrass Poa annua and invertebrates 
such as the carabid beetles Trechisibus antarcticus and Merizodus soledadinus may 
now be too widespread for any realistic possibility of eradication (GSGSSI 2021).

To assess the ability of established introduced species to colonise deglaciated 
areas, we surveyed six glacial foreland sites during the austral summer on the north 
coast of South Georgia (Fig. 1). Three sites, investigated in April 2022, were located 
in the vicinity of the following tidewater glaciers at low elevation (46 ± 40 m a.s.l.): 
the Nordenskjöld Glacier between Barff and Greene Peninsulas, the Harker Glacier 
between Greene and Thatcher Peninsulas and the Lyell Glacier that defines the 
western limit of Thatcher Peninsula. In January and February 2023, the surround-
ings of three extant or recently-extinct inland cirque glaciers at higher elevation 
(378 ± 122 m a.s.l.) were surveyed: Hodges and Col Glaciers on Thatcher Penin-
sula and an unnamed icecap west of Husvik on Busen Peninsula (locally known as 
Husvik Glacier). Of these three sites, only Col Glacier currently persists as an ice 
remnant approximately 30 × 100 m in size. Hodges Glacier rapidly receded after 
1970 and was lost in 2008 (Bakke et al. 2021), while Husvik Glacier was lost by the 
late 1950s (“Map of Falkland Island Dependencies: South Georgia” 1958).

To assess the dynamics of foreland colonisation by terrestrial communities, loca-
tions with contrasting times since deglaciation (tsd) were sampled at each foreland. 
For tidewater glaciers, detailed maps of glacial front changes were available (Cook 
et al. 2010; South Georgia GIS, accessed February 2022), enabling us to sample 
locations positioned with precision along former glacial fronts with tsd between 
five and 30 years. Depending on site accessibility and logistical constraints asso-
ciated with fieldwork, we were able to sample one to three replicates uniformly 
distributed and at least 80 m apart on the retreat line for two to four values of tsd 
at the foreland of each tidewater glacier (Suppl. material 1). As no map or record of 
deglaciation dynamics was available for the inland glaciers, an area with recent tsd 
was identified closest to the current (Col Glacier) or last known position (Hodg-
es and Husvik Glaciers, “Map of Falkland Island Dependencies: South Georgia” 
1958) of the ice remnant (Suppl. material 1). For comparison, a second area with 
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older tsd was determined at a distance of approximately 200 m in the flow direc-
tion of the glacier. The validity of this approach relies on the unverifiable assump-
tion that the retreat rate was similar across the three inland glaciers and over their 
deglaciation history. For both recent and older tsd, three approximately equidistant 
replicate locations were sampled.

Sampling

At each sampled location, plant communities were surveyed along a 30 m transect. 
All vascular plants present within six adjacent quadrats (5 × 5 m) either side of 
the transect line were recorded (yielding 12 records of plant presence/absence per 
transect), while the cumulative number of bryophyte and lichen morpho-species 
(photographs provided as Suppl. materials) across two quadrats at opposite ends 
of the transect was recorded. For the tidewater glacier sites, the cover of plants and 
lichens was measured through a point-contact sampling procedure using a frame 
with 10 equidistant pins (length = 50 cm), placed every 2 m along the transect 
(yielding 15 records of plant cover per transect). The vegetation at inland glacier 

Figure 1. Maps and overview of the six glacier sites on the north coast of South Georgia. Plant and 
invertebrate communities at three tidewater glacial forelands (1–3 purple) and three inland degla-
ciated sites (4–6 blue) were surveyed. Centre-right: example of transects (black dots) along former 
deglaciation fronts (from 1993 to 2017, light to dark purple) in the vicinity of Nordenskjöld Glacier.
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sites was too sparse to achieve representative point-contact sampling; we therefore 
used a Braun-Blanquet scale to estimate the cover of plants and lichens in each 5 m 
quadrat (Suppl. material 2; yielding 12 records of plant cover per transect).

Several invertebrate sampling methodologies were applied in order to achieve 
the most comprehensive description of the communities present. Ground-dwell-
ing (and secondarily flying) arthropods were sampled using pitfall traps (n = 3) 
consisting of 250-ml beakers half-filled with a water/washing detergent solution 
and buried to ground-level at the start, middle and end of each transect. Traps 
were retrieved after being deployed for approximately 48 h. Macro-invertebrates 
were extracted from approximately 200 ml of substrate obtained at the same three 
positions along the transect, using Tullgren extractions for 8 h. Micro-invertebrates 
were sampled on an opportunistic basis from soaked aliquots of the same substrate. 
Invertebrates sampled using this non-quantitative method were not included in 
statistical analyses. Finally, ground-dwelling invertebrates under stones and debris 
were recorded and sampled during hand searches of 8 min and flying insects were 
captured using sweep nets along a span of 5 m either side of the transect. All sam-
pled invertebrates were rapidly transferred to ethanol for preservation.

Sample identification

All vascular plants were readily identifiable to species level in the field, based on 
published description and nomenclature (Burton and Croxall 2012b; POWO 
2023) with the exception of the native lesser rush, Juncus inconspicuus that was 
considered to be a synonym of the native greater rush Juncus scheuchzerioides 
Gaudich (Kirschner 2002). Observations of the hybrid between the native greater 
and lesser burnet Acaena magellanica × tenera were merged with the data for A. 
magellanica. The introduced species aggregate Taraxacum officinale may contain 
several micro-species and so was reported as Taraxacum officinale agg.

While some macroinvertebrates could be identified to species level in the field 
(Burton and Croxall 2012a), most specimens required detailed assessment of an-
atomical features under stereo- or light microscopy, with reference to the avail-
able literature (Enderlein 1912; Hendel 1937; Gressitt 1970; Convey et al. 1999; 
Kits 2011). Identification confidence for each taxon was categorised as ‘possible’, 
‘probable’ or ‘certain’. All macro-invertebrates and springtails were identified to 
species-level. All Sminthuridae were reported as Sminthurinus jonesi, since there 
were no consistent taxonomic features supporting the presence of other species, 
contrary to what was suggested by Convey et al. (1999). Mites and other micro-in-
vertebrates were categorised into morphotaxa.

Statistical analyses

All statistical analyses were performed in R (R Core Team 2022). To assess if the 
observed presence data reflected the true presence of organisms in the glacial fore-
land communities (Buddle et al. 2005), we plotted species accumulation curves for 
each transect with the function specaccum from the package ‘vegan’ (Oksanen et al. 
2007). Visual inspection of these curves indicated if the encounter rate of new spe-
cies across samples taken was sufficient to compute representative diversity metrics.

To visualise the taxonomic composition of vascular plant communities across 
tsd and glacier site, we performed an ordination on a Jaccard dissimilarity matrix of 
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the presence/absence data at the transect level, using non-metric multidimensional 
scaling (nMDS) with the function metaMDS in ‘vegan’ (Oksanen et al. 2007). The 
score of each species was displayed on the ordination plot.

The presence data were modelled as a function of tsd and glacier site through an 
ordination with the function cca from the package ‘vegan’ (Oksanen et al. 2007). 
ANOVA-like permutation tests (n = 999 permutations) for constrained correspon-
dence analysis with the function anova.cca were used to test whether community 
composition was significantly constrained by tsd, glacier site and their interaction.

To investigate the effects of deglaciation time on the richness of communities 
and the presence or cover of species, we employed multivariate models using Bayes-
ian Inference with the package brms (Bürkner 2017), treating the glacier site and 
tsd as the main explanatory variables. Tidewater and inland glaciers were modelled 
separately. As the response of communities may depend on glacier sites, we ran a 
model with a simple interaction between glacier site and tsd. For tidewater glaciers, 
we ran a model with a quadratic term for tsd to reflect non-linear responses, as well 
as a model with both interaction and quadratic terms. We selected the simplest and 
most informative model using pairwise comparisons of the expected log pointwise 
predictive density (ELPD) with function loo (Vehtari et al. 2017, Suppl. material 
3). The variable tsd was a categorical variable for inland glacier sites (recent or old), 
but continuous and scaled to zero mean and unit variance for tidewater glacier 
sites. As the availability of mapped former glacial fronts in the period 1993–2018 
varied between tidewater glaciers (Cook et al. 2010), the sampling of tsd was het-
erogeneous and not synchronised across glaciers, which prevented the use of a 
categorical variable to model tsd. When the sampling unit (pitfall traps, pin frame 
or 5 m quadrat) was nested within a transect, transect identity was included as a 
random effect. Response variables were observed for species richness, plant cover 
(at species level or higher) and species presence/absence and were modelled using 
Poisson, zero-inflated binomial and Bernoulli distributions, respectively. Weak-
ly-informative priors determined by a Gaussian distribution (mean µ = 0, standard 
deviation σ = 10) were used to model the effects of predictors. Random effects were 
drawn from a Student’s t-distribution (df = 3, mean µ = 0, standard deviation σ = 
10). Models were run using four chains for 5000 iterations (including 2500 burn-
in iterations). Traces of the sampling behaviour of each predictor were scrutinised 
(Suppl. material 4) and the R-hat convergence diagnostic (Vehtari et al. 2021) 
was computed (Suppl. material 5) to verify that the models converged towards 
reliable predictions. A posterior predictive check was used to compare modelled 
and observed data and evaluate the quality of the models (Suppl. material 4). The 
significance of each effect being positive or negative was assessed using Bayesian 
95% credible intervals (CI95).

Results

Taxonomic inventory

Eighteen native species of vascular plant were found at tidewater glacier sites 
(Suppl. material 6), representing 78% of the native species known from South 
Georgia. At inland glaciers, only seven native species were observed (30%). Four 
introduced species occurred on both types of glacier sites: Poa pratensis, Taraxa-
cum officinale agg., Cerastium fontanum and Poa annua (Suppl. materials 7, 8). 
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At tidewater glaciers, C. fontanum was the second and P. annua was the seventh 
most frequent species (Fig. 2a). On forelands of inland glaciers, P. annua was the 
second, C. fontanum the fourth and T. officinale agg. the eighth most frequent 
species (Fig. 2b).

Sixteen native species of terrestrial invertebrates were identified with high confi-
dence at tidewater glacier sites (Suppl. material 6), representing 48% of the native 
species on South Georgia. At inland glacier sites, only five native species were 
present, representing 15% of known native species. Five introduced species were 
found at the tidewater glacier sites and none at the inland sites (Suppl. material 
7): Merizodus soledadinus (Coleoptera), Hypogastrura viatica (Collembola), Aptero-
thrips secticornis (Thysanoptera), Mycomya sp. (Diptera) and Trichocera regelationis 
(Diptera). Merizodus soledadinus and H. viatica were the fourth and tenth most 
frequent invertebrate species, respectively, at tidewater glacier sites (Fig. 2c).

Sampling quality

Accumulation curves of vascular plant species were close to saturation for most 
of the sampled transects (n = 39, Suppl. material 9), indicating that samples were 
largely representative of the communities present. However, accumulation curves 
of invertebrate species did not reach a plateau or were not possible to produce 
when transects were the smallest replication unit. In the following analyses, we thus 
calculated diversity metrics only for plants, for which an assumption of near-com-
plete detection was reasonable. We investigated drivers of presence for a subset of 
the ten most frequently encountered invertebrate species, assuming that detection 
– though likely incomplete – remained equally probable across sampling sites.

Figure 2. Frequency of occurrence across transects of the 10 most common vascular plants around tidewater glaciers (a, n = 21 transects), 
inland glaciers (b, n = 18 transects) and most frequent invertebrates around tidewater glaciers (c, n = 21 transects). Introduced species are 
highlighted in red.
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Community-wide effects of time since deglaciation and glacier site

The structure of vascular plant communities was significantly constrained by tsd, 
glacier site and marginally by their interaction in forelands of both tidewater and 
inland glaciers (Table 1, Fig. 3).

Around tidewater glaciers, the number of bryophyte morpho-species increased lin-
early with tsd, while the number of vascular plant species initially increased and then 
reached a plateau (Fig. 4, Suppl. material 5). Bryophytes seemed to be more abundant 
at intermediate tsd and there was no clear effect of tsd on the cover of vascular plants, 
but the cover of lichens was higher in areas exposed for longer (Suppl. materials 5, 
10). Compared to Harker Glacier, Lyell Glacier hosted a lower number of vascular 
plant species and a higher number of bryophyte morphospecies, while Nordensköld 
Glacier was associated with a higher cover of bryophytes (Suppl. materials 5, 10).

Table 1. Summary of results from ANOVA-like permutation tests (n = 999 permutations) for con-
strained correspondence testing whether community composition was significantly constrained by 
tsd, glacier site and their interaction.

Tidewater glaciers Inland glaciers

Variable F df p F df p

Time since deglaciation (tsd) 3.23 1 0.001 3.45 1 0.007

Glacier site 3.06 2 0.001 4.86 2 0.001

Interaction tsd: Glacier site 1.41 2 0.068 2.28 1 0.046

Figure 3. Taxonomic composition of vascular plant communities across time since deglaciation (tsd in 
years) at tidewater (a) and inland (b) glacier sites. The two first components of a non-metric multidi-
mensional scaling (NMDS) from an ordination on the presence data at the transect level are mapped. 
Each circle, rectangle or triangle corresponds to a transect from a given site and deglaciation time 
(black to red). Small crosses represent the score of the ten most frequent species on the ordination plots.
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At inland glacier sites, there were significantly more vascular plant species in 
older than in recently-deglaciated areas (Fig. 4, Suppl. material 5), as well as a 
higher cover of vascular plants and bryophytes (Suppl. materials 5, 10). Compared 
to Husvik Glacier, Col Glacier hosted a lower number of vascular plant species and 
reduced cover of vascular plants and of bryophytes (Suppl. materials 5, 10). Hodg-
es Glacier did not differ from Husvik Glacier in terms of community-level metrics.

Species-level effects of time since deglaciation and glacier site

At tidewater glacier sites, the introduced Cerastium fontanum and Poa annua were 
most likely to occur across a broad range of intermediate tsd (Fig. 5a, Suppl. ma-
terials 5, 10), which was also the case for the native species Deschampsia antarcti-
ca and Colobanthus quitensis. The probability of occurrence of the native Phleum 
alpinum initially increased and then reached a plateau with increasing tsd. The 
native Festuca contracta, Acaena tenera, A. magellanica, Rostkovia magellanica and 

Figure 4. Effect of time since deglaciation (tsd in years) on the number of vascular plant species and bryophyte morpho-species at tide-
water (a, b) and inland (c, d) glacier sites modelled with Bayesian Inference. Transparent points represent the original data. Lines (a, b) or 
points (c, d) are the estimated mean effects of tsd. Purple, turquoise and yellow areas (a, b, Harker: purple, Lyell: turquoise, Nordenskjöld: 
yellow) or intervals (c, d, Husvik: purple, Col: turquoise, Hodges: yellow) represent the Bayesian 95% credible intervals, respectively.
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Figure 5. Scaled effect of time since deglaciation (tsd in years) on plant presence (a), vascular plant cover (b) and invertebrate presence (c) 
at tidewater glaciers modelled using Bayesian Inference. Effects on introduced and native species are represented in red and blue, respec-
tively. Points are the mean effects of tsd on the logit scale. Intervals represent the Bayesian 95% credible intervals. The vertical dotted lines 
correspond to the null hypothesis (effect is zero).

Galium antarcticum were more frequent at older deglaciated sites. Similarly, the 
two lichens Stereocaulon sp. and Pseudocyphellaria sp. and the mosses Syntrichia 
robusta and Polytrichum sp. were more likely to occur in older deglaciated areas, 
while the presence of the liverwort Marchantia berteroana was not affected by tsd. 
The cover of C. fontanum decreased with increasing tsd (Fig. 5b, Suppl. materi-
als 5, 10), while the cover of P. annua showed no evidence of change. Amongst 
native vascular plants, the cover of C. quitensis showed no evidence of change 
with tsd, D. antarctica and P. alpinum were most abundant at intermediate tsd 
and F. contracta had higher cover in older deglaciated areas. Amongst bryophytes 
and lichens, the cover of Stereocaulon sp., Pseudocyphellaria sp. and Marchantia 
berteroana showed no evidence of change with tsd, while Polytrichum sp. was most 
abundant at intermediate tsd and Syntrichia robusta increased in cover with tsd.

At inland glacier sites, the occurrence of the invasive Taraxacum officinale agg. 
did not differ between old and recent areas of deglaciation (Fig. 6a, Suppl. materi-
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als 5, 10), while the invasive P. annua and C. fontanum were more frequent in old-
er deglaciated locations. The native D. antarctica, A. magellanica and Polystichum 
mohrioides did not significantly differ between tsd, while all other native plants 
became more frequent in older deglaciated areas. The cover of all plants (with the 
possible exception of D. antarctica and P. alpinum) was higher in old deglaciated 
areas (Fig. 6b, Suppl. materials 5, 10).

At tidewater glacier sites, the native spider Micromaso flavus seemed more fre-
quent at older deglaciated sites, but there was no clear effect of tsd on the presence 
of other reliably sampled invertebrates (Fig. 5c, Suppl. materials 5, 10).

For both inland and tidewater glaciers, there were notable differences between 
sites in the presence and cover of species (Suppl. materials 5, 10). The invasive 
C. fontanum was scarce at Lyell Glacier and abundant at Nordenskjöld Glacier, 
where the introduced springtail Hypogastrura viatica was also more common, while 
P. annua was more frequent at Harker Glacier. At inland sites, T. officinale agg. was 
more frequent at Hodges Glacier, while P. annua was less abundant at Col Glacier.

Discussion

Colonisation by introduced species

Introduced vascular plants and invertebrates were well represented in the recent 
stages of community assembly after glacial retreat on South Georgia. Four intro-
duced vascular plants were found on glacial forelands, with Cerastium fontanum 

Figure 6. Effect of time since deglaciation (tsd) on vascular plant presence (a) and vascular plant cover (b) at inland glaciers modelled 
using Bayesian Inference. Effects on introduced and native species are represented in red and blue, respectively. Points are the mean effects 
of tsd on the logit scale. Intervals represent the Bayesian 95% credible intervals. The vertical dotted lines correspond to the null hypothesis 
(effect is zero).
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and Poa annua being very frequent, while Taraxacum officinale agg. and P. pratensis 
were rarely observed. Around tidewater glaciers, C. fontanum and P. annua oc-
curred across a broad range of tsd and C. fontanum was more abundant in recently 
rather than in older deglaciated sites, indicating that these species are effective 
pioneers on glacial forelands along South Georgia’s coast. Notably, flowering spec-
imens of C. fontanum were found in areas deglaciated less than five years prior to 
the survey, approximately 50 m from the terminus of Lyell Glacier. Both species 
originate from temperate regions of the Northern Hemisphere (POWO 2023, 
Suppl. material 7), are widespread on South Georgia (Black 2022) and have suc-
cessfully invaded most islands in the sub-Antarctic (Frenot et al. 2005). Poa annua 
is invasive on the maritime Antarctic South Shetland Islands (Molina-Montenegro 
et al. 2012; Hughes et al. 2015) and both species are also early colonisers of new-
ly-deglaciated areas on a glacier foreland on the sub-Antarctic Kerguelen Islands 
(Frenot et al. 1998). At tidewater glaciers on South Georgia, the rapid colonisa-
tion by C. fontanum and P. annua outpaced that of most native vascular plants, 
with the possible exceptions of Deschampsia antarctica and Colobanthus quitensis, 
with these invasive plants effectively short-cutting the successional sequence fol-
lowing glacial retreat. At inland sites, C. fontanum and P. annua were less common 
in more recently-deglaciated areas, but direct comparisons with tidewater glaciers 
are not possible due to methodological differences. In contrast, the dandelion T. 
officinale agg. appeared equally capable of colonising old and recently-deglaciated 
areas inland, which likely results from its seeds being wind-dispersed over large 
distances.

We also documented the presence of five introduced invertebrate species on 
recently-deglaciated forelands, indicating an ability to disperse and survive in chal-
lenging environments. This capacity to track glacial retreat is particularly remark-
able for three of these invertebrates that are flightless and suggests high mobility 
through passive dispersal (Hågvar et al. 2020) or active locomotion, as previously 
reported for the carabid beetle Merizodus soledadinus (Convey et al. 2011; Renault 
2011; Laparie et al. 2013; Lebouvier et al. 2020). The invasive springtail Hypo-
gastrura viatica was frequent on coastal forelands (in particular at Nordenskjöld 
Glacier), which underlines the high dispersal capacity of this species that is also in-
troduced on other sub-Antarctic islands and in parts of the South Shetland Islands 
(Frenot et al. 2005; Greenslade and Convey 2012).

What characteristics of introduced plants and invertebrates make them capa-
ble of infiltrating the dynamics of colonisation on glacial forelands? The isolation 
and harsh environment of sub-Antarctic islands generate environmental filters 
that may provide opportunities for invaders with a mixture of typical invasive 
traits that guarantee high resource acquisition and efficient dispersal (Laparie et 
al. 2013; Liao et al. 2021) and pioneer traits such as low plant height and resis-
tance to abiotic stress (Laparie et al. 2012; Mathakutha et al. 2019; Bazzichetto 
et al. 2021). Both P. annua and C. fontanum are small annual plants with shallow 
roots (although P. annua can adopt a perennial life cycle and develop into swards), 
investing heavily in rapid growth and early reproduction and lack the vegetative 
and longer-lived tissues typical of the perennial native species that allow multi-year 
survival under stressful abiotic conditions (Frenot and Gloaguen 1994; Frenot et 
al. 1998; Chwedorzewska et al. 2015; Johner 2020). It is possible that ruderal 
traits act as pre-adaptations that provide a colonisation advantage as communities 
develop around receding glaciers.
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Possible impacts of introduced species

Although native plants seem to co-occur with the two invasive pioneers C. fonta-
num and P. annua, these invasive plants may have impacts on native communities 
in glacial forelands. During competition experiments in the field in the South 
Shetland Islands, P. annua reduced the biomass and photosynthetic abilities of 
C. quitensis and D. antarctica (Molina-Montenegro et al. 2012). On South Geor-
gia, C. quitensis and D. antarctica might also be the native plants most likely to 
experience direct competition with C. fontanum and P. annua, given their similar 
early position in the succession on glacial forelands. Competitive interactions be-
tween invasive and native taxa are likely to change with ongoing environmental 
changes and climate warming, possibly to the advantage of introduced species that 
generally originate from more temperate regions (Molina-Montenegro et al. 2019; 
March-Salas and Pertierra 2020; Convey and Hughes 2022; Daly et al. 2023). 
However, our data also show that C. fontanum declines in abundance, while P. an-
nua remains equally common in post-glacial plant communities as they are even-
tually colonised by native perennial plants, suggesting that native plants can be 
stronger competitors than some invasive annuals. Despite this, the two invasive 
plants remain a component of plant communities at least 30 years after deglacia-
tion both in inland and coastal forelands and these taxa are now so widespread on 
South Georgia that large-scale control is not feasible (Black 2022).

Current and future impacts of introduced species will likely vary between gla-
cier locations. For instance, we found that Nordenskjöld Glacier had higher plant 
cover, but was also more invaded by introduced plants and invertebrates than the 
two other tidewater sites. Whether these local differences are due to contrasting 
topography, microclimate, soil quality or disturbance by macrofauna or human 
activities is still to be investigated, but they deserve consideration when assessing 
impacts of biological invasions on glacier-associated communities and developing 
conservation strategies.

Introduced invertebrates may also have impacts on the terrestrial ecosystems of 
sub-Antarctic islands (Convey et al. 2010; Houghton et al. 2019). In our study, 
they were restricted to coastal sites, suggesting that inland sites might provide ref-
uges for native taxa (but see Lebouvier et al. (2020) who note that M. soledadinus 
is now invading inland and higher altitude locations on the Kerguelen Islands). 
However, with very limited representative survey data available away from coastal 
locations on South Georgia, it is also unclear whether inland areas would be suit-
able for many/most native taxa given their high degree of isolation, inhospitable 
conditions and low diversity of habitats. The presence of the predatory M. soleda-
dinus is of great concern for the native invertebrate diversity as it can locally drive 
prey species to extinction, impact the life cycle of co-existing species and funda-
mentally reshape invertebrate communities (Convey et al. 2011; Lebouvier et al. 
2020). The introduced springtail, H. viatica, might act as a food source to the 
introduced predator, as well as competing directly or indirectly with native species, 
such as Cryptopygus antarcticus (Convey et al. 1999). Our results suggest that com-
munities in newly-deglaciated areas may not be exempt from the negative effects 
of invasive invertebrates that may alter the trajectory of invertebrate community 
succession compared to when they are absent.

The early expansion of introduced species likely modifies soil characteristics, 
provides biomass and generates biotic interactions in newly-deglaciated areas 
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(Badenhausser et al. 2022), which might have consequences for the entire suc-
cession process following glacial retreat. In other systems, biological invasions can 
alter the speed (Gallego-Tévar et al. 2020) and trajectory of primary successions 
(Flory and Clay 2010), but little is known in the context of glacier-associated 
communities. Moreover, the impacts of invasive species in glacial forelands may 
not be exclusively negative (Walther et al. 2009), as some native taxa might benefit 
from a modified succession. Our study highlights the need for future research to 
understand if and how introduced taxa can alter the trajectory and speed of colo-
nisation dynamics following glacial retreat.

Community changes and underlying mechanisms along the 
deglaciation chronosequence

Overall, we found an increase in the cover and diversity of plants along the chrono-
sequences in glacial forelands. This is consistent with the basic process of primary 
succession following glacial retreat (Jones and Henry 2003; Flø and Hågvar 2013; 
Vater and Matthews 2015; Glausen and Tanner 2019; Gwiazdowicz et al. 2020; 
Pothula and Adams 2022) and we can presume that a similar trend would have been 
found with invertebrate communities if sampling quality had allowed. Although 
our study did not include sites deglaciated more than 30 years previously, we found 
evidence that the rate of accumulation of vascular plant species decreased along the 
chronosequence, which contrasts with proglacial successions across the world (Jones 
and Henry 2003; Pothula and Adams 2022), eventually reaching a plateau repre-
senting a high proportion of the native flora of South Georgia. Contrasting with 
other regions globally where glacier-associated taxa represent a very small propor-
tion of the overall biodiversity, these differences may relate to the specificity of the 
flora on sub-Antarctic islands, that typically consists of species with higher dispersal 
ability and adaptations enabling survival in harsh abiotic conditions (Convey 1996).

There were interspecific differences in the colonisation speed of native plants 
that may help to disentangle the mechanisms underpinning the deglaciation chro-
nosequence. Deschampsia antarctica and Colobanthus quitensis were the first na-
tive species to colonise tidewater glacier sites alongside two genera of lichen (Ste-
reocaulon and Pseudocyphellaria), followed by Phleum alpinum and, subsequently, 
Acaena magellanica, A. tenera, Festuca contracta, Rostkovia magellanica, Galium 
antarcticum and three bryophyte taxa. Interestingly, D. antarctica and C. quitensis 
are the only two native angiosperms in the more extreme maritime Antarctic and 
are known for their high degree of tolerance to adverse conditions (Cavieres et al. 
2016; Clemente-Moreno et al. 2020), which may contribute to their ability to 
colonise very recently-deglaciated sites on South Georgia. The pattern of primary 
succession following deglaciation on the sub-Antarctic Kerguélen Islands showed 
some differences to South Georgia, as cushion-forming Colobanthus species and 
tussock-forming Poa kerguelensis, but not D. antarctica, were amongst the first colo-
nisers (Frenot et al. 1998). The early succession on South Georgia resembles progla-
cial communities of glaciers at high latitudes and altitudes where lichens, mosses 
and some grasses are first to colonise, but later trajectories differ due to the presence 
of shrubs and trees (Jones and Henry 2003; Nakatsubo et al. 2005; Garibotti et al. 
2011; Fickert and Grüninger 2018; Ruka et al. 2023). Regional idiosyncrasies in 
the successional colonisation of deglaciated areas on sub-Antarctic islands are likely 
a result of missing species in disharmonious floras which may lead to increased 
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vulnerability of developing native communities to invasive plants with traits largely 
absent for the native species pool. Even across glaciers of the same type on South 
Georgia, community composition was largely determined by glacier identity, which 
underlines the importance of the local microenvironment and the composition 
of adjacent communities in shaping successions following glacial retreat (Bayle et 
al. 2023). Native invertebrate communities around tidewater glaciers primarily 
consisted of mites, springtails, dwarf Linyphiidae spiders, Promecheilidae beetles 
and winged dipterans, resembling proglacial arthropod communities across alpine, 
sub-polar and polar ecosystems (Kaufmann 2001; Hodkinson et al. 2004; Franzén 
and Dieker 2014; Hågvar et al. 2020; Moret et al. 2020; Ruka et al. 2023).

Conclusions

Besides providing an important baseline on the patterns of community assembly 
along a deglaciation chronosequence in the sub-Antarctic, this study highlights 
the need for future research that quantifies the impacts of invasive pioneers on 
the speed and trajectory of ecological succession in glacier-associated ecosystems. 
While current colonisation dynamics suggest that invasive species infiltrate the 
sequence without outcompeting native colonisers, further studies are required to 
determine whether this co-occurrence will persist with ongoing climate change, 
glacial retreat and habitat transformation. On South Georgia and other sub-Ant-
arctic islands, invasive species will likely track the ongoing and future retreat of 
glaciers where they are present. Our study illustrates that synergies between the 
effects of climate change and biological invasions constitute a key research avenue 
in vulnerable montane, polar and sub-polar ecosystems.
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Effect of time since deglaciation on the presence of plant and invertebrate species at 
tidewater and inland glacier sites modelled with Bayesian Inference
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Supplementary material 12
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