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Abstract

Highly simplified microbial communities colonise rocks and soils of conti-
nental Antarctica ice-free deserts. These two habitats impose different
selection pressures on organisms, yet the possible filtering effects on the
diversity and composition of microbial communities have not hitherto been
fully characterised. We hence compared fungal communities in rocks and
soils in three localities of inner Victoria Land. We found low fungal diversity
in both substrates, with a mean species richness of 28 across all samples,
and significantly lower diversity in rocks than in soils. Rock and soil commu-
nities were strongly differentiated, with a multinomial species classification
method identifying just three out of 328 taxa as generalists with no affinity
for either substrate. Rocks were characterised by a higher abundance of
lichen-forming fungi (typically Buellia, Carbonea, Pleopsidium, Lecanora,
and Lecidea), possibly owing to the more protected environment and the
porosity of rocks permitting photosynthetic activity. In contrast, soils were
dominated by obligate yeasts (typically Naganishia and Meyerozyma), the
abundances of which were correlated with edaphic factors, and the black
yeast Cryomyces. Our study suggests that strong differences in selection
pressures may account for the wide divergences of fungal communities in
rocks and soils of inner Victoria Land.

whereas, in contrast, fungal alpha diversity is typically
low (Pointing et al., 2009; Rao et al., 2012). Low fungal

The extreme environmental conditions of continental
Antarctic soils select for highly resistant fungi with
peculiar cellular adaptations, such as the ability to
synthesise cold-active enzymes and antifreeze proteins
(Krishnan et al., 2011, 2018; Robinson, 2001; Zucconi
et al., 2020). These fungi endure multiple combined
stressors, such as frequent freeze—thaw cycles, scar-
city of nutrients and bioavailable water, intense solar
radiation, and often high salinity (Godinho et al., 2013).
In continental Antarctica, and especially in the arid soils
of the region, bacterial communities are relatively
diverse (Cowan et al., 2014; Severgnini et al., 2021),

diversity in Antarctic environments is attributable to the
strong filtering imposed by the stressors described
above and the limited propagule dispersal of some
fungi. Despite aerobiological surveys in coastal Antarc-
tica suggesting that large numbers of viable cells and
spores can be transported over long distances (Bottos
et al., 2014; Duncan et al., 2010), the aerodispersion of
fungi from other continents is limited (Archer
et al., 2019), with the primary sources of propagules in
continental Antarctica being local hotspots such as
microbial mats associated with local water bodies
(Cowan et al., 2014; Hopkins et al., 2009). In addition, it
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has been shown that endemic Antarctic fungal taxa are
more likely to be metabolically active under extreme
environmental conditions than cosmopolitan species
that are present in soil (Cox et al., 2019). The broad
metabolic capabilities of fungi are crucial for cycling
scarce soil organic matter and, in the case of lichen
mutualism, which provides nutrients for other life forms
in severely oligotrophic Antarctic environments, for sus-
taining primary production (Onofri et al., 2007; Ruisi
et al., 2007).

Despite the pivotal role of fungi in the Antarctic,
studies on soil fungal diversity in continental Antarc-
tica are still limited in comparison with those focused
on bacterial communities (Bottos et al., 2014; Kim
etal.,, 2015; Tytgat et al., 2016; Van Horn et al., 2014).
Furthermore, previous studies of soil fungal diversity
in Antarctica have typically been carried out using cul-
turing methods (Arenz & Blanchette, 2011; Connell
et al., 2008). Many recent studies using cutting-edge
molecular techniques have been focused on the Mari-
time Antarctic (see for example, da Silva et al., 2020;
Duran et al., 2019; Newsham et al., 2021, 2022; Rosa
et al., 2020; Santos et al.,, 2020) or coastal sites in
continental Antarctica (Canini et al., 2020; Ji et al.,
2016; Siciliano et al., 2014), and with comparatively
few studies using these techniques on inner continen-
tal Antarctic fungal communities. The handful of
molecular mycological studies hitherto carried out in
inner continental Antarctica have revealed the domi-
nance of a narrow range of fungal taxa in soils, primar-
ily belonging to Ascomycota and Basidiomycota, with
the latter mainly being represented by yeasts (Arenz
et al., 2014; Pudasaini et al., 2017; Wei et al., 2016).
Most of the observed taxa have yet to be identified at
high taxonomic resolution. Additionally, abiotic environ-
mental factors, especially physicochemical soil param-
eters, appear to be the main predictors of the
distribution of species recorded using molecular
methods (Canini et al., 2020, 2021; Connell et al.,
20086).

Rocks also provide suitable habitats for fungi and
other microbes in continental Antarctica (Cary
et al., 2010; Cowan et al., 2014; Nienow & Friedmann,
1993). The porous nature of the sandstone rocks that
occur in the McMurdo Dry Valleys allows the ingress of
water and the exchange with the atmosphere of gases
close to rock surfaces, facilitating the photosynthesis of
algae and cyanobacteria (Friedmann, 1982). Further-
more, the absorption of solar radiation during austral
summer, which heats rock surfaces to >0°C (Kappen &
Friedmann, 1983), leads to increased microbial activity
(Friedmann et al., 1993). The microbial communities of
the rocks are stratified, with outer layers a few milli-
metres below the rock surface dominated by darkly-
pigmented fungal hyphae enveloping algal cells, dee-
per layers by hyaline hyphae, and the deepest layers
by abundant algae and cyanobacteria (Friedmann,

1982; Zucconi et al., 2016). The latter form lichens with
the fungi, which support the growth of other microor-
ganisms by screening excessive solar radiation and
increasing water and nutrient retention (Friedmann,
1982; Friedmann et al., 1993). Many studies have
described the fungal composition of endolithic continen-
tal Antarctic communities, in particular that of lichen-
dominated cryptoendolithic communities in the rock out-
crops that dominate the region (e.g., de la Torre
et al., 2003; Friedmann, 1982; Selbmann et al., 2005,
2017). These studies have highlighted the presence of
both lichen-forming and free-living fungi, with a preva-
lence of Lecanoromycetes and Dothideomycetes
(e.g., Archer et al., 2017; Coleine, Stajich, et al., 2018),
as well as the influence of abiotic variables on fungal
diversity and function (Coleine, Zucconi, et al., 2018).
However, previous studies have not compared the
diversity and taxonomic composition of fungal communi-
ties in rocks with those of surrounding soils in continen-
tal Antarctica.

The most obvious distinction between rocks and
soils is related to their microenvironmental characteris-
tics. Each substrate is subjected to strong environmen-
tal pressures, with, for example, higher water
availability combined with lower desiccation and physi-
cal disturbance in rocks than in soil (Chan et al., 2013;
Cowan et al.,, 2014; de los Rios et al., 2007; Wei
et al., 2016). Because of these buffered conditions, the
endolithic environment favours lichen photosynthetic
carbon fixation and carbohydrate metabolism (Cowan
et al.,, 2014), making it an oasis of productivity
(Pointing, 2016; Pointing & Belnap, 2012). As a conse-
quence, cryptoendolithic communities are considered
to be major sources of organic matter and microbial
propagules in oligotrophic continental Antarctic ecosys-
tems (Cary et al., 2010; Cowan et al., 2014; Cowan &
Tow, 2004). Given the significant differences in micro-
climatic conditions between rocks and soll, it is surpris-
ing that the possible filtering effects imposed by the two
environments on microbial communities have only
been marginally explored in Antarctic deserts (Rego
et al., 2019; Van Goethem et al., 2016). In addition, it is
not known if microbial propagules are exchanged
between rocks and soils, as might occur when rocks
frequently shatter under freeze—thaw processes and
are dispersed through the landscape by the strong
winds that characterise the McMurdo Dry Valleys
(Campbell & Claridge, 1987; Friedmann, 1982).

Here, we hypothesised that, despite the low fungal
diversity in continental Antarctic deserts, rocks, and
soils would strongly select for different fungal communi-
ties, possibly as a result of their different microclimatic
conditions. To test this hypothesis, we collected rock
and surrounding soil samples from different locations in
a remote continental Antarctic desert and examined
them for the potential presence of substrate-specific
fungal taxa.
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(A)

FIGURE 1
sandstone outcrops at (D) Battleship Promontory and (E) Trio Nunatak.

MATERIAL AND METHODS

Sampling and physicochemical
parameters

Rock (sandstone) and surrounding soil samples were
collected in the austral summer of 2018-2019 from
three different localities in Victoria Land, namely Battle-
ship Promontory, Trio Nunatak, and Richard Nunatak
(Figure 1). At each location, a sandstone outcrop show-
ing evident lithic colonisation was sampled in triplicate,
with visibly colonised areas of rock (Figure 1D, E) being
sampled immediately below the surface. Similarly, soils
at 0, 50, and 100 m from each outcrop were collected
in triplicate at 5-10 cm depth. All samples were col-
lected using sterile utensils and were preserved in ster-
ile bags at —20°C until laboratory analyses. An aliquot
of each soil sample was also used for the determination
of physicochemical parameters, viz., total carbon
(C) and nitrogen (N), total and available phosphorus
(P), moisture, pH, cation exchange capacity, the con-
centrations of the main exchangeable cations (Na™,
K*, Ca®*, and Mg®"), and soil texture according to the
standard methods of SISS (Societa Italiana della
Scienza del Suolo; Colombo & Miano, 2015).

Landscapes at (A) Battleship Promontory, (B) Trio Nunatak, (C) Richard Nunatak, and details of exfoliated surfaces of colonised

DNA extraction and sequencing

Total DNA was extracted from 1 g of rock or soil sam-
ples using a DNeasy PowerSoil Kit (QIAGEN, Hilden,
Germany), following the manufacturer's protocol. The
ITS1 region was amplified using ITS1F (Gardes &
Bruns, 1993) and ITS2 (White et al., 1990) primers, and
libraries were prepared following the protocol of Smith
and Peay (2014). Amplicons and/or good-quality librar-
ies from soil samples collected at 0 m from Trio Nuna-
tak rock outcrops could not be obtained. The equimolar
pool of uniquely barcoded amplicons was paired-end
sequenced (2 x 250 bp) on an lllumina MiSeq platform
at Macrogen, Inc. (Seoul, South Korea).

Bioinformatic and statistical analyses

Bcl files were converted into Fastq files and demulti-
plexed using bcl2fastq (v 2.18). Demultiplexed
sequences were processed with the Amplicon ToolKit
(AMPtk) for NGS data (formally UFITS) v.1.3.0 (Palmer
et al., 2018). The starting reads were subjected to qual-
ity trimming and PhiX screening via USEARCH with
default parameters (v. 11.0.667; Edgar, 2010). Reads
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of <100 bp were removed, those of >250bp were
trimmed, and paired-end reads were merged in a single
step. As recommended by recent studies
(Kauserud, 2023; Tedersoo et al., 2022), the reads were
clustered into operational taxonomic units (OTUs) at a
97% species identity threshold, using VSEARCH v 2.22.1
(Rognes et al., 2016), simultaneously removing putative
chimaeras. Taxonomy was assigned manually to OTUs
by comparing the results of analyses using the hybrid
SINTAX/UTAX approach against a curated database that
includes the full UNITE + INSD database (Edgar, 2010),
and best hits in the BLAST database. Additionally, OTUs
with uncertain assignments were also screened manually
in BLAST considering all good quality hits. Rare OTUs
(i.e., OTUs with <5 reads in the dataset) and OTUs with
<70% identity to any known fungal sequence were
excluded from downstream analyses. The OTU table
obtained was normalised for the following statistical ana-
lyses by rarefying the number of reads per sample to the
smallest library size (30,702 reads) using the rrarefy func-
tion in the vegan package v. 2.6-4 (Oksanen et al., 2022)
inRv.4.2.1 (R Core Team, 2018).

Differences in richness and Shannon diversity
between rocks and soils, and between soils collected at
0, 50, and 100 m from outcrops, were tested with a
Kruskal-Wallis test (McKight & Najab, 2010) followed by
Dunn multiple comparisons (Dunn, 1964), with p-values
adjusted using the Benjamini-Hochberg method. Beta
dispersion was calculated for fungal OTUs to test if the
groups had the same centroids and heterogeneity. Non-
metric multidimensional scaling (NMDS) was used to
visualise beta diversity. Permutational multivariate analy-
sis of variance (PERMANOVA) was applied to assess
drivers of beta diversity. The OTU table was centred log-
ratio transformed to remove the compositional constraints
from the taxonomic variables, and then the relationships
between the most frequent OTUs in soil samples (occur-
ring in at least 33% of the samples) and physicochemical
parameters were tested using Pearson correlations
(Aitchison, 1982). Linear discriminant analysis (LDA)
effect size (LEfSe), based on LDA scores of >2 and p-
values of <0.05, was used to characterise the fungal taxa
associated with rock and soil (Segata et al., 2011). Cos-
mopolitan and specialist OTUs in rock and soil samples
were determined using a multinomial species classifica-
tion method (CLAM) using the ‘vegan’ package and the
function ‘clamtest’ in R (Chazdon et al., 2011; Pedrinho
et al., 2020). The differences in the distribution of the soil
samples based on their physicochemical parameters
were analysed by principal component analysis (PCA),
performed with the ‘prcomp’ command in R.

RESULTS

From the initial 6,886,050 reads obtained, 6,051,905
valid reads were retained after quality filtering.

Clustering, after chimaera removal, resulted in 1160
valid OTUs, corresponding to 4,692,229 reads mapped
to OTUs (77.5% of the total). After removing rare OTUs,
977 OTUs were retained. Of these, 625 OTUs that had
no match to fungal sequences in the databases were
removed. The dataset consisted of 328 OTUs following
rarefaction. Among these, 170 OTUs were present in
only one sample and only two OTUs were present in
>70% of the samples. The mean species richness was
27.6 £ 13.2 OTUs per sample. Thirty-five and 271 OTUs
were unique to rock and soil samples, respectively, with
a statistically significant difference in mean richness
between rocks and soils (12.2 + 4.2 and 33.3 + 10.5
OTUs, respectively; Figure S1a). Richness was consis-
tently lower in rocks than in soils at each of the three
sites (Figure S1c). At the taxonomic level, 122 OTUs
were not assigned to any known fungal phylum, and
nine different phyla were identified, with Ascomycota
and Basidiomycota representing 107 and 64 OTUs,
respectively. At a lower taxonomic level, 15 classes
and 33 orders were identified among all samples.

The NMDS ordination indicated a clear separation
in the composition of the fungal communities in rock
and soil samples (Figure 2). The beta-dispersion analy-
sis showed uniform dispersion in both substrates (F-
value = 0.2959 and p-value = 0.7466) and localities
(F-value = 2.8793 and p-value =0.1032). PERMA-
NOVA indicated that the differences in community com-
position were significant when considering substrates
(R? = 0.161, p-value = 0.001), localities (R? = 0.098,
p-value = 0.002), and the interaction between these
two factors (R? = 0.098, p-value = 0.001). However,
the analyses showed no statistically significant
changes in the richness and Shannon diversity
(Figure S1a, b) or the composition of soil fungal com-
munities at increasing distances from rock outcrops (p-
value >0.05; Figure 2).

The LDA indicated that the differences observed in
fungal community composition between rocks and soils
were driven by the differential abundance of a large
number of OTUs assigned to a few genera. In particu-
lar, comparing rock and soil samples from all localities,
40 taxa that were enriched in rock were mainly
assigned to lichen-forming fungi in the Lecanoromy-
cetes, with OTUs resolved at the genus level being
assigned to Buellia, Lecidea, Carbonea, Pleopsidium,
and Lecanora (Figure 3; Table S1). Additionally, two
other taxa enriched in rock samples belonged to the
Acarosporaceae and the genus Friedmanniomyces
(Dothideomycetes) (Figure 3; Table S1). In contrast,
65 taxa that were more abundant in soils than in rocks
mainly belonged to yeast taxa, such as the genera Tri-
chosporon, Naganishia, and Meyerozyma, and to the
black yeast-like genus Cryomyces (Dothideomycetes)
(Figure 3; Table S1). The ascomycete genus Aspergil-
lus (Trichocomaceae) and five other unclassified taxa,
including unidentified members of the Chytridiomycota,
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effect size (LEfSe) method.

Basidiomycota, Saccharomycetales, and Chaetothyr-
iales, were more abundant in soil than in rocks
(Figure 3, Table S1). A similar trend was recorded
when differentially abundant taxa at the three localities
were examined separately (Table S1). At Richard Nun-
atak, the taxa that were significantly enriched in rocks
compared to soil all belonged to the Lecanoromycetes,
and included the genera listed above, and at Battleship
Promontory, rocks were also enriched in taxa mainly
assigned to lichen-forming fungi. In addition, the genus
Vermiconia (Dothideomycetes) was significantly more

abundant in rock than in soil samples at Battleship
Promontory. It was not possible to define differentially
abundant taxa between the two substrates at Trio
Nunatak.

The CLAM test indicated that 21 and 175 OTUs
were restricted to rocks and soils, respectively, and that
only three generalist OTUs were characteristic of both
substrates (Figure 4; Table S2). One of these generalist
OTUs was a member of the Extremaceae, whereas the
other two could not be identified below the kingdom
level.
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PCA was used to assess how soil samples from
different locations were separated based on their
physicochemical properties (Table S3; Figure S2).
The first two components explained about 70% of
the observed variance, with a separation of the
samples from the three localities in the first compo-
nent. The main parameters contributing to the dif-
ferentiation along the first component were the
concentrations of C, N, Mg?*, and Ca®" in soil and
the relative abundances of two texture categories
(fine silt and sand; Table S4). Correlations between
the abundances of the 20 most frequent taxa in the
soil samples and physicochemical parameters were
significant for four OTUs (Figure 5). Two of these
OTUs (OTU105 and OTU4) were identified only as
fungi. The abundance of OTU105 was positively
associated with the C/N ratio, whilst that of OTU4
was negatively associated with soil C concentration
and the percentage of fine silt (Figure 5). The abun-
dance of OTU15, which was assigned to Naga-
nishia spp. at 99.6% identity, was positively
associated with soil Mg®" concentration (Figure 5).
That of OTU29, which was assigned to Meyero-
zyma sp. at 100% identity, was positively associ-
ated with concentrations of soil Mg®", Ca®*, and N
(Figure 5).

DISCUSSION

In the present study, we compared the diversity and
composition of fungal communities inhabiting rocks
and nearby soils in the permanently or seasonally ice-
free hyper-arid deserts of Victoria Land. In confirmation
of our hypothesis, rocks and soils were strongly
selected for different fungal taxa, with the two sub-
strates selecting predominantly for lichen-forming fungi
and yeasts, respectively. As in previous studies (Canini
et al., 2020, 2021; Pudasaini et al., 2017; Wei
et al., 2016), we found both substrates to be charac-
terised by very low fungal diversity, with, on average,
28 fungal taxa being present in each sample, suggest-
ing that only a few taxa are adapted to local conditions
and can persist in these harsh environments. Cosmo-
politan soil fungal taxa, such as Aspergillus spp. (Cox
et al., 2019) were infrequent, possibly owing to the
remoteness of the sites studied and the limited inter-
continental dispersal of some fungi (Archer
et al., 2019). Despite rocks providing suitable habitats
for microbial growth (Friedmann, 1982; Nienow &
Friedmann, 1993), and being thought to host the high-
est biomass of any substrates in Antarctic terrestrial
environments (Cary et al., 2010; Cowan et al., 2014;
Cowan & Tow, 2004), fungal diversity was lower in
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indicate significant correlations (p-values <0.05).

rocks than in soils, with an average of 12 and 33 fungal
taxa present in each substrate, respectively. Our
results corroborate previous studies showing lower pro-
karyotic diversity in rocks than in soils of the McMurdo
Dry Valleys and Maritime Antarctica (Canini et al., 2023
under review; Garrido-Benavent et al., 2020; van
Goethem et al., 2016).

The reasons for the lower diversity of fungal com-
munities in rocks than in soils are still unclear. It is pos-
sible that differences in the thermal properties of the
two substrates in temperature, which is associated with
fungal diversity in Antarctica (Newsham et al., 2021,
2022), might explain the lower number of fungal taxa in
rocks. Although continuous monitoring of rock, soil, and
air temperatures at Battleship Promontory, Trio Nuna-
tak and Richard Nunatak indicate that average rock
temperatures in January exceed those in soil and air at
all three locations, the temperatures of rocks fall below
those of soils at night, particularly at Battleship

Promontory and Trio Nunatak, and rocks thus
experience up to 10°C wider diurnal fluctuations in tem-
perature than soils (Table S5). It is thus apparent from
these observations that sandstone in the McMurdo Dry
Valleys may not provide a more thermally stable habitat
than soil, perhaps accounting for the lower diversity of
fungi present in cryptoendolithic communities. Further
studies are needed to identify whether biologically
available water, a strong determinant of fungal species
richness (Tedersoo et al., 2014), is similarly more vari-
able in the rocks of Victoria Land than in surrounding
soils, and might hence provide further explanation for
the lower fungal diversity recorded in the former sub-
strate. Furthermore, soils are a more open environment
than rocks, and can therefore receive wind-transported
propagules that may increase their diversity. Although it
has been shown that relic extracellular DNA persists in
soil and inflates microbial diversity estimates (Carini
et al, 2016), we do not anticipate that the
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comparatively high diversity of fungi in soil recorded
here is associated with the accumulation of DNA in the
substrate, since recent research at the three sites stud-
ied here shows bacterial diversity to remain higher in
soils than in rocks following extracellular DNA depletion
(Canini et al., 2023 under review). Despite the higher
diversity of fungi in soils than in rocks, soil fungal diver-
sity recorded here is significantly lower than that
reported in other studies on continental Antarctic envi-
ronments, such as those in coastal areas, where milder
climatic conditions allow the presence of more diverse
fungal communities (Canini et al., 2020; Ji et al., 2016;
Siciliano et al., 2014).

Lichen-forming fungi have for decades been widely
recognised as the dominant component of Antarctic
endolithic communities (Friedmann, 1982), with all of
the lichenized genera reported here, such as Leca-
nora, Buellia, and Lecidea, being more abundant in
rock than in soil samples. These genera include spe-
cies endemic to continental Antarctica, such as Leca-
nora fuscobrunnea (Ruprecht et al., 2012), Buellia
frigida, and Lecidea cancriformis (Ovstedal &
Smith, 2001). A dominance of lichens in rocks has
similarly been recorded on a glacier forefield in the
less extreme environment of Maritime Antarctica
(Garrido-Benavent et al., 2020), confirming the specific
selective pressure of the substrate for this microbial
group. Endolithic lichens adopt a different growth form
and lifestyle in rocks compared with their correspond-
ing epilithic forms (Friedmann, 1982). They are particu-
larly well adapted to endolithic growth due to their
minimal nutrient requirements, resistance to freezing
(Kappen, 2000), and ability to photosynthesize at low
temperatures, with minimum temperatures for net pho-
tosynthesis of between —6 and — 8°C and optimal
temperatures of 1-9°C (Lange & Kappen, 1972;
Kappen & Friedmann, 1983).

The soil fungal communities at the three sites stud-
ied here were rich in yeasts and yeast-like fungi, nota-
bly the genera Naganishia and Trichosporon, the latter
of which is known to occur in other McMurdo Dry Val-
leys soils (Fell et al., 2006). Several studies have
shown that the yeast growth form is widely distributed
in Antarctic soils and other cold environments (Atlas
et al, 1978; Buzzini et al., 2012; Newsham
et al., 2021). This is owing to a range of physiological
adaptations, such as the capacity of yeasts to produce
polysaccharide capsules, to increase the proportion of
unsaturated fatty acids in cell membranes to ensure
their fluidity at sub-zero temperatures, and to express
cold-active enzymes (Buzzini et al., 2012; Connell
et al., 2008; Yusof et al., 2021). In addition, polysaccha-
ride substances exuded by yeast cells promote the for-
mation of soil aggregates by holding soil particles
together, improving water and nutrient retention capac-
ity, and enhancing soil properties for microbial colonisa-
tion (Pushkareva et al, 2016). Members of

Chytridiomycota were also found to be more abundant
in soils than in rocks. The Chytrids, a group of flagel-
lated basal fungi, have similarly been shown to occur in
soils close to ephemeral streams and ponds in the Ant-
arctic Dry Valleys and maritime Antarctica (Bridge &
Newsham, 2009; Canini et al., 2021; Rojas-Jimenez
et al,, 2017), and, more widely, in aquatic habitats
worldwide (Grossart et al., 2016).

Several fungal species endemic to Antarctica,
recognised for their remarkable adaptations, belong to
the so-called ‘black meristematic fungi’ (BMF) group.
Many of these species have been described from endo-
lithic environments (Selbmann et al., 2005), including
members of the genus Friedmanniomyces, one of the
more commonly reported BMF found using culturing
and DNA-based techniques (Onofri et al., 1999; Selb-
mann et al., 2015a). In agreement with these findings,
this genus was more abundant in rocks than in soil in
the study reported here. In contrast, the genus Cryo-
myces, previously reported to be a common rock colo-
nist (Onofri et al., 2007), was found to be more
abundant in soils than in rocks. Other molecular studies
have similarly revealed the presence of this genus in
soils (Canini et al., 2021; Czechowski et al., 2016), sug-
gesting that it could be among a small number of resil-
ient taxa that are frequently found in rocks but which
also survive in soils. Cryomyces antarcticus,
which shows remarkable resistance to salinity, desicca-
tion, toxic compounds, and ionising radiation (Aureli
et al., 2020, 2023; Onofri et al.,, 2007; Pacelli
et al., 2017b, 2018), survives extraterrestrial exposure
in low Earth orbit (Onofri et al., 2019), and Cryomyces
and other black yeasts are thus considered to be model
organisms for studies investigating the lifeforms that
might be able to colonise planets with characteristics
similar to hyper-arid Antarctic deserts, such as Mars
(Selbmann et al., 2015b, Zucconi, et al., 2015; Simdes
et al., 2023).

As found in other studies (e.g., Chong et al., 2012;
Smith et al., 2010; Zhang et al., 2020), the analyses
here demonstrated the importance of soil physicochem-
ical parameters in determining the abundances of fun-
gal OTUs in Antarctic soils. Interestingly, in addition to
other abiotic parameters known to determine the abun-
dance of soil fungal taxa in Antarctica, such as soil tex-
ture and cation concentrations (Canini et al., 2020,
2021; Connell et al., 2006), soil C and N concentrations
also strongly affected the abundances of fungi and, as
revealed by the PCA analysis, were discriminant vari-
ables separating soil samples. In agreement with stud-
ies showing increased abundances of yeasts in
nutrient-amended oligotrophic Antarctic soils
(Newsham et al., 2022), two genera of yeasts, Naga-
nishia and Meyerozyma, the main constituents of the
soil fungal communities at the three study sites,
showed positive correlations with cation concentrations
in soil. These data confirm previous studies showing
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soil cation concentrations affect the richness and com-
position of Antarctic soil fungal communities (Canini
et al., 2020). They also corroborate studies indicating
that yeasts may have developed strategies to rapidly
utilise the low-energy compounds available in these
soils (Chan et al., 2013), which possibly originate from
microbial mats surrounding ephemeral water bodies
(Cowan et al.,, 2014; Hopkins et al., 2009; Pointing
et al., 2009).

Sandstone in the McMurdo Dry Valleys shatters
under the influence of freeze—thaw events and micro-
bial growth (bioweathering) and is subsequently dis-
persed widely throughout the landscape by wind
(Campbell & Claridge, 1987), suggesting that rocks
may be a source of propagules for the colonisation of
soil by microbes (Friedmann, 1982). However, we
found strong differentiation in the composition of fungal
communities inhabiting rock and soil, with numerous
unique taxa in both substrates and only three OTUs,
including a member of the Extremaceae, shared
between them. We also found no apparent changes to
the diversity of soil fungal communities at increasing
distances from rock outcrops. This suggests that,
despite the possible dispersal of fungi in colonised rock
fragments (Friedmann, 1982), strong selective pres-
sures act on the two substrates and select for different
fungal species, even in soil samples collected close to
rock outcrops.

CONCLUSIONS

Fungal communities in rocks and soils in hyper-arid
continental Antarctic deserts showed wide divergence,
with rocks being dominated by endemic lichen-forming
fungi and soils by yeasts, and with lower fungal diver-
sity being found in rocks than in soils. There is little
exchange of microbial propagules between the two
substrates, with the occurrence of numerous specialist
taxa in rocks and soils and a CLAM test identifying just
three out of 328 taxa as generalists. Additionally, the
abundance of frequent yeast taxa in soils was corre-
lated with edaphic factors. Our observations suggest
that stronger temperature fluctuations in rocks than in
soils might be responsible for the lower fungal diversity
recorded in the former substrate.
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