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INTRODUCTION 

Land subsidence is one of the main issues in Vietnam, especially in Hanoi, due to the urban growth 
and its associated excessive consumption of natural resources such as groundwater and increased 
construction. This abstract describes the assessment of land subsidence in Central Hanoi by using 
InSAR, engineering geological characteristics obtained from boreholes and a weight of evidence 
statistical method. The result is presented as a land subsidence susceptibility map.  
 

STUDY AREA 

Hanoi is the capital city of Vietnam located within the Red River Delta. Geologically the city consists of 
unconsolidated Quaternary sediments of fluvial and marine origin (50-90m deep), resting on Neogene 
deposits (Trafford, 1996). Regarding engineering geology, Quaternary sediments are divided into 24 
layers starting from man-made soils on the upper part (sandy clay with mixture of construction 
materials) to Le Chi formation at the bottom, which consists of grey and brown clayey sand with gravel 
(Phi and Strokova, 2015). Regarding hydrogeology, Holocene and Pleistocene aquifers are the key 
aquifers of the city which are mainly recharged from the Red River in an approximately 5 km wide 
zone (Berg et al., 2008).  
 

URBAN GROWTH IN HANOI AND LAND SUBSIDENCE  

Hanoi city is the second largest city of the country with 7.4 million inhabitants, however, the 
population is projected to reach 9–9.2 million by 2030 and approximately 10.8 million by 2050 (Kubota 
et al., 2017). Such growth in urban habitants in Hanoi is placing significant pressure on existing land 
and resources and has resulted in substantial land cover changes (Novellino et al., 2021). Additionally, 
it has also caused increased consumption of natural resources, such as groundwater. The rate of 
groundwater abstraction has been increasing rapidly since the 2000s, and the number of private wells 
used for factories and households has been growing. This unregulated groundwater usage presents a 
risk of declining groundwater levels and associated ground subsidence, which is one of the main 
hazards in the city. 
 

DATA AND METHODOLOGY 

To investigate the land subsidence, the test area (22 x 25km) is restricted to central Hanoi due to the 
limited borehole data availability. For contributing factors to subsidence, from the 271 boreholes, 
lithology proportions (clay, fine-medium sand and medium-coarse sand) are extracted. The borehole 
records were exported to GOCAD software to build a 3D model of the area.  Figure 1 displays the 
geographical distribution of boreholes and a selected area on the left-hand side of the image and the 
constructed 3D geological model on the right. 



2 
 

 

Figure 1 Geographical location of boreholes and 3D geological model of the Central Hanoi area (271 
boreholes data to create the 3D geological model was obtained from the General Department of 
Geology and Minerals of Vietnam (GDGMV), Ministry of Natural Resources and Environment, 
Vietnam, during the BGS ODA “Urban geology” project 
 
From the 3D geological model, the proportions of clay, fine-medium sand, and medium-coarse sand 
are extracted in a raster format with a cell size of 1 x 1 km. The thicker proportion of clay is observed 
in the west and south parts of the area, whereas fine-medium sand is distributed mainly in the north 
and south-east of the area. Medium-coarse sand can be seen in the south-east and in the central parts. 
(Figure 2). 

 

Figure 2 Proportion of clay, fine-medium sand, and medium-coarse sand. The legend shows from 
blue to red which means the proportion is gradually increasing  
 

To model susceptibility, a subsidence inventory map is required, however due to unavailability of such 
data, InSAR images are used to extract subsiding areas.  For the InSAR analysis we downloaded 147 
Single Look Complex (SLC) Sentinel-1 images from descending track 91, spanning 2 July 2015 to 7 
January 2021 and used these images to form 291 interferograms using the Interferometric synthetic 
aperture radar Scientific Computing Environment (ISCE) software (Rosen et al., 2012). To improve the 
signal-to-noise ratio we multilooked each image by 9 pixels in range and 3 pixels in azimuth giving 
pixel sizes of approximately 50 m. For the InSAR time series analysis we processed the 291 small 
baseline interferogram stack using the Miami InSAR Time-series software in PYthon (MintPy) (Yunjun 
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et al., 2019). This resulted in a geocoded line-of sight displacement time series for every pixel in the 
dataset. The average velocity through the time series is shown in Figure 3. 
 
 

 
 
 
Figure 3 The average line-of-sight velocity from the InSAR time series analysis. Red colours represent 
range increase from the satellite. Contains Copernicus Sentinel data 2022 
 

We ran a Principal Component (PC) analysis on the InSAR time series and considered the first seven 
PCs to guide the clustering of the InSAR time series. Clustering is an unsupervised machine learning 
technique where an algorithm groups similar data points starting from a collection of unlabelled data 
(Hubert and Arabie, 1985). In this work the Euclidean K-means algorithm has been used to cluster the 
standardised InSAR time series. The K-means algorithm clusters data by trying to separate samples in 
n groups of equal variances, minimizing a criterion known as the inertia or within-cluster sum-of-
squares and this algorithm requires the number of clusters to be specified. The code used for the post-
processing of the InSAR results is available on GitHub at 
https://github.com/Alessandro13751/InSAR_clustering. The results are shown in Figure 4. 
 

 

Figure 4  K-means clustering for seven groups  
 

Of the 4,377,112 points analysed, the majority belong to cluster 1 (30.5%), 4 (26.9%) and 6 (20.3%). 
The clusters associated to the fastest subsidence rates (2 and 3) account for ~7% of the total 
population. Following the clustering method, it is possible to highlight areas with the fastest rates of 
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subsidence, specifically 2, 3, 5, 6 that were used for the analysis. The points belonging to these clusters 
were extracted by using ArcGIS tool “selection”.  
 
After this step, the point data were transformed to raster data with resolution of 1 x 1km. For this 
work a bivariate statistical method such as weight of evidence based on Bayes theorem was used 
(Bonham – Carter et al.,1989). Land subsidence susceptibility index was created by overlaying rasters 
of contributing factors in GIS. To use a supervised classification approach, the raster data from InSAR 
are randomly divided into two groups where one group (80%) is assigned to train the model, the other 
to test it (20%).  By overlaying maps of contributing factors (proportion of clay, fine-medium sand and 
medium-coarse sand), land subsidence susceptibility is developed. Validation is carried out by using 
Receiver Operating Characteristic curve (ROC), a graph showing how the classification model was 
performed which plots true positive rate and false positive rates.  In addition, an area under curve 
(AUC) value is used to assess the performance of the model. 
 

RESULTS AND DISCUSSION 

The susceptibility map presented in Figure 5 depicts the areas with high susceptibility to subsidence 
which are located in the south-west and in the north-west. High clay proportion also identified in these 
areas (Figure 2).  The result of the AUC-ROC curve for the model is 0.7. The AUC value ranges from 0 
to 1 implying the higher the value the better the performance. If the value is from 0.9 – 1 the model 
performance can be classified as excellent, 0.8 – 0.9 very good, 0.7-0.8 – good, 0.6 – 0.7 average and 
under 0.6 is poor performances (Yesilnacar and Topal, 2005). Therefore, the result can be classified as 
average to good model accuracy.   

 

Figure 5 The results of the susceptibility mapping for Central Hanoi 
  
These results could be improved by using better resolution data. In addition, borehole records for a 
larger area will allow a proportion of lithologies for a more expansive space to be obtained, therefore, 
it would be beneficial to extend the study area. In situ land subsidence monitoring data would also 
improve the results. Even though the model accuracy is not in an excellent range, from this study, it is 
possible to draw initial evaluation of high subsidence areas in Central Hanoi.  This susceptibility map 
could be used for strategic planning by decision makers, urban planners, and engineers to identify 
subsidence risk.   
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CONCLUSION  

This work aims to evaluate land subsidence issues in Hanoi by using InSAR techniques and develop a 
susceptibility index for the study area. Due to data scarcity, only geological factors such as the 
proportion of lithologies are used as the contributing factors. The results of the InSAR dataset are used 
as a land subsidence inventory map. The resolution of the data was 1 x 1 km for a study area of 22 x 
25 km. The susceptibility model obtained by using a weight of evidence method shows that the 
accuracy of the model prediction is average. However, it could be improved by using additional data.  
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