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Calculations of extreme sea level rise
scenarios are strongly dependent on ice
sheet model resolution

Check for updates

C. Rosie Williams 1,7 , Pierre Thodoroff2,7, Robert J. Arthern1, James Byrne 1, J. Scott Hosking 1,3,
Markus Kaiser2,4, Neil D. Lawrence2 & Ieva Kazlauskaite5,6

TheWest Antarctic Ice Sheet (WAIS) is losing ice and its annual contribution to sea level is increasing.
The future behaviour of WAIS will impact societies worldwide, yet deep uncertainty remains in the
expected rate of ice loss. High-impact low-likelihood scenarios of sea-level rise are needed by risk-
averse stakeholders but are particularly difficult to constrain. Here, we combine traditional model
simulations of the Amundsen Sea sector of WAIS with Gaussian process emulation to show that ice-
sheet models capable of resolving kilometre-scale basal topography will be needed to assess the
probability of extreme scenarios of sea-level rise. This resolution exceeds many state-of-the-art
continent-scale simulations. Our ice-sheet model simulations show that coarser resolutions tend to
project a larger range of sea-level contributions than finer resolutions, inflating the tails of the
distribution. We therefore caution against relying purely upon simulations 5 km or coarser when
assessing the potential for societally important high-impact sea-level rise.

Quantifying the contribution of the Antarctic Ice Sheet (AIS) to global sea
level rise over the coming centuries is crucial for policy makers and wider
stakeholders due to the huge quantity of ice it contains1 and the rapid
acceleration of ice loss over the last few decades2,3. In particular, the West
Antarctic Ice Sheet (WAIS) alone contains enough ice to raise mean global
sea level by up to 4 metres and it is currently the largest contributor of sea
level rise from Antarctica, adding 6.5mm to mean global sea level between
1992 and 20213. The biggest changes are found in the Amundsen Sea sector
ofWAIS, which contains two of themost rapidly thinning ice streams, Pine
Island Glacier (PIG) and Thwaites Glacier (TG)4. These ice streams are
particularly vulnerable because the bedrock beneath lies below current sea
level and deepens towards the interior of the ice sheet. This can lead to an
instability whereby a retreat of the grounding line into deeper water leads to
increased ice thickness at the grounding line, which in turn leads to further
ice acceleration and increased grounded line retreat (the ‘Marine Ice Sheet
Instability’ (MISI)5,6). This processmay be irreversible on human timescales
once it has begun7,8, and these ice streams may soon or may already have
passed a tipping point9. The role of submarinemelting within this system is
well documented: basalmelt belowafloating ice shelf causes the shelf to thin,
reducing the buttressing of the upstream ice which is grounded on bedrock
and causing it to thin, accelerate and retreat10–13. Basalmelting of thefloating
ice shelves accounts for approximately half of themass loss fromAntarctica

[with iceberg calving approximately accounting for the other half,14,15]. In
forward regional simulations of the AIS, the amount of basal melting under
the floating ice shelves has a large effect of howmuch ice is lost7,16–18, and can
trigger the MISI.

Despite the clear importance of the ice sheets, ice loss fromAntarctica is
the largest uncertainty in projections of sea level change over the next cen-
tury, and deep uncertainty remains19,20. This is in part because key physical
processes are challenging to incorporate into ice sheet models, and because
such models rely on parameter choices that are not well constrained21,22. In
addition, the future forcing is also unknown and subject to climate model
uncertainties and biases23, and ice-sheet models are sensitive to variations in
initialisation procedures24. Together, this means large ensembles of different
forward simulations are required to make probabilistic projections of sea
level contribution (SLC), and the high-impact low-likelihood (HILL) sce-
narios are particularly difficult to constrain as they occur in the less sampled
upper tails of thedistributions19,25. Furthermore, to incorporate keyprocesses
and feedbacks, coupling of different elements of theEarth systemsuchas ice-
oceanmodelling26–28 and ice-atmospheremodels27 are required, andphysics-
based models of processes such as ice fracture need to be incorporated29,30.
While necessary for making more realistic projections, such modelling
strategiesmassively increase the computational costs and reduce the number
of model simulations that can feasibly be produced.
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In terms of ice sheetmodel simulations, much progress has beenmade
in recent years, with continent-scale projections of sea level change pro-
duced either by a specific model31–33 or as part of a multi-model ensemble
under certain assumptions34,35. In a previously unprecedented effort, the
ISMIP6 community generated a multi-model ensemble of sea level pro-
jections for Antarctica under common future forcing scenarios, generating
over 300 simulationsof theAntarctic Ice Sheet36.While this is a very valuable
multi-model ensemble, the complexity and the large computational cost of
running these simulations limits our ability to explore the parameter space
and calculate uncertainties. A complimentary approach is to use some form
of model emulation to move from a relatively small number of model
simulations to a much larger ensemble of predicted model realisations,
potentially under new forcings, thus enabling probabilistic projections that
account for parametric uncertainty more robustly than could otherwise be
achieved. Using this approach, Edwards et al.20 take the ISMIP6 ensemble
generated by Seroussi et al.36 together with additional simulations and use
statistical emulation to produce projections that explore the known
uncertaintiesmore fully under new climate forcingswithout the need to run
new computationally expensive simulations. Similarly, Berdahl et al.37 also
use statistical emulation, this time of a specific ice-sheet model, to better
quantify uncertainties in Antarctic sea level rise, further highlighting the
ability of emulation toproduceprojectionsovermuch larger ensembles than
would be possible by direct simulation.

Spatial resolution can also be a limiting factor when generating
ensembles of ice sheet simulations. Previous model inter-comparisons on
idealised geometries have shown that sufficiently fine resolution is required
to capture thephysical processesand reproduce either analytical solutionsor
expected advance and retreat under specific scenarios38–40. In particular,
even if subgrid interpolation of the grounding line is employed, sufficiently
fine resolution (finer than 5 km) is required to resolve the grounding line39.
Thus, although some models now have sophisticated adaptive mesh
schemes41,42 or sub-grid parameterisation of the grounding line18,43–45, the
requirement to run at high resolution still hampers the construction of
sufficiently large ensembles for probabilistic forecasting. This is especially
true when these ensembles have to be re-simulated as new forcings are
computed from climate models, or as new data become available to refine a
likely parameter range.Thus,many ice sheetmodels are still run at relatively
low resolutions (coarser than 4/5 km) when running simulations of the
AIS35,36.

Machine learning techniques have also been used to interpret sea level
projections using attribution approaches. Rohmer et al.46 take the ISMIP6
multi-model ensemble for the Greenland Ice Sheet (GRIS) and assess the
effects of various choices of numerical model, model initialisation, ice-sheet
processes and environmental forcing on the SLC projections. Within this
framework they find that using a coarse spatial resolution influences the
projections, and that this may dominate all other modelling assumptions.
Other studies also find that without fine resolution, local maxima and
minima in areas of complex bed topography are not well represented and
simulations of sea-level contribution vary with resolution16,47,48. Thus, there
is a clear need to run ice sheet models at fine resolutions (at least 4 km),
despite the computational challenges this entails. Both Rohmer et al.46 and
Edwards et al.20 alsomake a strong argument for using experimental design
protocols to improve the generation of ensembles and reduce the uncer-
tainties in SLC in the future49.

In this studywe conduct a systematic evaluation of the effects of spatial
model resolution and basal melt rate on probabilistic estimates of sea level
contribution, with a particular focus on how model resolution affects the
high-impact low-likelihood scenarios (the upper ‘tails’ of the resulting
probability distributions). This is particularly important for risk-averse
stakeholders who are especially concerned with these ‘worst case’
scenarios25,50,51, because they pose the greatest risks and most expensive
adaption challenges, especially when considering the long term commit-
ment to sea level beyond the year 2100 and the associated levels ofmitigation
needed. To do this, we use a multi-resolution model simulation and emu-
lation approach that explores the effects of basal melt, one of the most

important processes leading to sea-level rise in WAIS52. Specifically, we
combine traditional physics-based modelling with Gaussian process emu-
lation to quantify the effects of model resolution on probabilistic distribu-
tions of sea level contribution, in particular focusing on the high-impact
low-likelihood scenarios.We deploy our ice sheet model and emulator over
a realistic and rapidly changing domain: theAmundsen Sea sector ofWAIS.
Using a realistic rather than an idealised domain ensures the complex real
world behaviours are simulated in the ensemble. We show that the upper
tails of the SLC distributions are highly sensitive to the spatial resolution of
the ice sheetmodel.We thus caution against relying only on coarse (coarser
than 5 km) resolution simulations when considering extreme scenarios.

Results
Ice sheetmodel simulations dependent onbasalmelt and spatial
model resolution
Weuse a state-of-the-art ice sheetmodelWAVI to produce the simulations
of mass loss that are used to build a Gaussian process emulator. This
emulator is then used to quantify the effects of model resolution, R, on sea
level contribution (SLC).WAVI is a vertically integrated, three dimensional
ice sheet model which includes both the membrane stresses in the ice and
the effects of vertical shear in order to simulate flow of both grounded and
floating ice18,53,54.Weuse theAmundsenSea sector of theWAIS as themodel
domain, as shown in Fig. 1.

There aremany uncertain parameter values that are required as inputs
to ice sheet models, and realistic projections of SLC need to account for as
many of these uncertain inputs as possible. Here, we focus on the process of
basal melting of the underside of the floating ice shelves. Although coupled
ice-ocean models can be used to calculate basal melt rates in forward
simulations26,28, these models are complex and computationally expensive
and would massively limit the number of ensemble members we could
produce55. Thus, we choose to use a well known depth-dependent para-
meterisation for basal melt, for which a fixed temperature-salinity profile is
selected and a calibration coefficient, γT, is used to set the average melt rate
over all fully-floating points across the ice domain at the start of each
simulation, denotedMt0

56,57, seeMethods]. It is this parameterMt0
(directly

linked to γT) that we choose to vary between simulations. Within each
simulation, the melt rate varies with depth such that it is non-constant over
the shelves, and the resulting average melt rate varies over time as the
geometry of the ice sheet evolves; it is only the parameter γT that is heldfixed
throughout each simulation.

Mt0
is varied between 0 to 150m/a in intervals of 12.5m/a. This large

range with values considerably higher than those observed is used to build
the emulator and to ensure improbable scenarios are accounted for, which is
important for defining the upper tails of the resulting probability distribu-
tion.We chose to vary only this parameterMt0

alongwithmodel resolution
because this gives sufficient andmanageable ensembles on which to analyse
the effects of resolution. More realistic forcings could vary the underlying
temperature and salinity directly. As suchwe are exploring these effects in a
limited ensemble rather than making projections. However, the method is
easily extendable to larger ensembles in which a wider range of parameters
are sampled.

WeuseBedmachine version358,59 for the bed topography (and initial ice
thickness and surface elevation at t = 0 years) provided at 500 metre spatial
resolution. We run an ensemble of simulations at a range of resolutions
R = 8 km to R = 2 km (Fig. 2 shows example plots of grounding line retreat
for two different resolutions). At eachR, n different Bedmachine realisations
are sampled by choosing points along the diagonal of the square of possi-
bilities (seeMethods for details). This samplingmethod assumes that the bed
is isotropic and that the noise is uncorrelated in the bed topography. Due to
computational cost increasing considerablywith resolution,we samplemore
Bedmachine realisations for coarser resolution simulations than finer reso-
lution, with a minimum of n = 8 (see Methods for details).

Separate initialisations and relaxations are performed for each Bed-
machine realisation at each resolution in order to start with an ice sheet
configuration that captures the grounding line position, surface velocities
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and rate of thinning of grounded ice for approximately the year 2015 (see
Methods and Supplementary Note 1 for full details). WAVI is then run
forward for 150 years using a persistence-based forcing in which accumu-
lation remains constant over each run, the ice front does not move, and the
thermocline profile and melt tuning parameter γT in the depth-dependant
melt-rate parameterisation do not change within the forward simulation,
but averagemelt rates over the shelves can vary, as described above (see also
Methods). Sea level contributions at every year are averaged over all Bed-
machine realisations for each resolution and melt rate, giving a measure of
uncertainty on the SLCdue to bed topography for a givenMt0

andR. This is
shown by the shading in Fig. 3, and by the results of theWAVI simulations
in in Fig. 4, where each black cross represents the SLC at time t = 150 years
for a givenMt0

and a givenBedmachine realisation at resolutionR. It is clear
thatmodel resolutionhas a large affect at allmelt rates: for everyMt0

, amuch
larger rangeof SLCs are foundat coarse resolutions (coarser than5 km) than
at fine resolutions i.e. the uncertainties decrease roughly with resolution.
Themagnitude of this effect is also notable in the example shown in Fig. 1b,
where for Mt0

¼ 25m a−1 the range of simulated SLC over time is over 3
times larger for R = 8 km compared to R = 2 km. This is because at finer

resolution each realisation capturesmore of the fine scale bed topography48,
and there is less variation between different realisations. These plots
emphasise the difficulty in taking one Bedmachine realisation at each
resolution when using low spatial resolution.

Figure 3 shows the effect of melt Mt0
on SLC over time for (a) 8 km

resolution and (b) 2 km resolution. As expected, in both cases, higher melt
rates lead tomore rapid loss of grounded ice and higher SLC. In the nomelt
case,Mt0

¼ 0 m/a, there is substantial sea level rise.While thismay indicate
a tipping point has passed, SLCmay be overestimated in this case due to the
lack of an evolving damage field limiting the healing and regrowth of the
shelf 28. When Mt0

≥ ≈ 100m a−1, the SLC converges. In these cases of
extrememelt, the ice shelves are essentiallymelted so quickly that it becomes
an unbuttressed ice sheet and further melt does not increase the rate of
grounding line retreat. In these plots the SLCs at each time point are
averaged over all bed realisations at the specified resolution and the shaded
area corresponds to the uncertainty. Comparison of panels (a) and (b)
shows that there are higher uncertainties at coarse resolution (8 km) com-
pared to fine (2 km), which is also indicated by the spread of the SLCs from
WAVI in Figs. 1b and 4.

Fig. 1 | Geographical model domain for the Amundsen Sea Sector of West
Antarctica and examples of the effects of spatial model resolution on mass loss.
aModel domain and initial state at 2 km resolution from data assimilation: colours
show ice velocities (m a−1) and elevation contours are at 200 m intervals. b Example
WAVI simulations of SLC over 150 years forMt0

¼ 25 m a−1 and R = 8 km (orange

lines) and R = 2 km (blue lines), with each line representing a different Bedmachine
realisation at resolution R. Differences in simulated ice thickness at t = 150 years
between a 2 km and an 8 km (c), 5 km (d) and 3 km (e) resolution Bedmachine
realisation for Mt0

¼ 25 m a−1. In each case, the coarser resolution thickness is
interpolated on to the 2 km grid and thickness at 2 km is subtracted from this.
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To explore why coarse resolution can produce such a spread of dif-
ferent SLC for the sameMt0

, in Fig. 2 we compare an example of grounding
line retreat over bed topography whenMt0

¼ 25 m a−1 for one 2 km Bed-
machine realisation (a,d) and two different realisations at 8 km: one that
approximatelymatches the 2 kmmass loss at the end of the simulation (b,e),
and one which produced much higher SLC (c,f). Pinning points at
x ≈ −1400 km and −500 km< y < −400 km are more pronounced in the
8 km simulation shown in panels (b,e), and the grounding line stays in this
area for a longer time for this realisation compared to in panels (c,f), which
has fewer and less pronounced pinning points (approximately 30 years
compared to 15 years). This leads to substantially different SLC at t = 150
years in these two cases, and explains the divergence between the 2 km and
8 km curves in Fig. 3.

Gaussian process emulation
In order to produce useful information from ice sheet simulations, we need
tomove fromensemblesofWAVI simulationsunder different conditions to
probabilistic predictions of specific scenarios of sea level change. To do this,
it is vital to account for known uncertainties in both the parameter choices
and the input data ofWAVI.Here, this corresponds to themelt averageMt0
and the different Bedmachine realisations at different resolutions. Practi-
cally, this translates into uncertainty in the predictions of SLC. To provide
information for decision makers, one way is to produce probability density
functions (PDFs) that describe the probability of observing a specific
amount of sea level increase (within a range) at a specific point in time t.
Such PDFs can be obtained by defining a prior over the melt-average Mt0
and integrating WAVI’s prediction (described below). To make this pro-
blem computationally tractable, we leverageWAVI simulation runs to fit a
probabilisticmodel usingGaussian Processes (GP) to the distribution of sea
level contribution at time t as a function ofMt0

(see ‘Gaussian Processes’ for
full details). Here, emulation via Gaussian Processes acts as a surrogate
model that predicts the sea level contribution based on a givenmelt rate and
resolution. The predictions are obtained by calculating the mean and cov-
ariancematrices for theGaussian processmodel. Thesematrices summarize
the relationships between the observed melt rates and sea level contribu-
tions. By utilizing these relationships, the surrogate model can make
probabilistic predictions of the sea level contribution for newmelt rates (see
‘Sea level contributions from emulation’ for more detail). This offers an
effective, efficient, and accurate alternative to exhaustive simulations,
allowing us to quickly explore the effects of different assumptions regarding

the prior distribution ofmelt rates. This strategy is similar to the one used by
Berdahl et al.37 (Fig. 1) and allows us to sample the distribution muchmore
than would be possible using WAVI alone, which is especially useful for
defining the low-probability high-impact upper tails of the distributions.

Results of the GP emulation are displayed in Fig. 4 at t = 150 years. To
obtain an estimate of the PDF, we optimize the hyper-parameters of the
Gaussian Process (length scale and variance) using a maximum likelihood
objective (see ‘Maximum likelihood estimation’). The predicted mean is
shown along with the results of the WAVI simulations that represent the
SLC at time t for a given Bedmachine realisation at resolution R (black
crosses). The dependency on resolution of the uncertainty arising from the
different samplings (as discussed above) is clear to see: the confidence bands
aremuch tighter when resolution is finer than 4 km, resulting in confidence
bands of approximately 200mm for 8 km and <50mm for 2 km at t = 150
years at 97.5th percentile.

To construct probability density functions (PDF) over the SLC at a set
timepoint, a non-uniformprior is used to account for expert knowledge that
not all values of the melt parameter are equally likely. The choice of a log-
normal prior is standard in suchcases, and is described by twoparameters, μ
and τ, which are the mean and standard deviation, respectively, of the
normal distribution that results when the logarithm of the melt rates is
taken. Based on recent observations, an average melt rate of 20m a −1 gives
an appropriate approximate estimate of present day mean value15,60. We
explore the sensitivity of the resulting probability density functions to the
prior by also selectingMt0

¼ 10 m a−1 andMt0
¼ 40 m a−1; higher (lower)

mean values for the prior represent the effect of increasing (decreasing)melt
rates in the near future. All priors selected account for the fact that the very
high end of the range of melt rates used to construct the emulator are not
likely to occur in reality (see section ‘Gaussian Processes’ for full details).

Results for all three priors are shown inFig. 5: the top row illustrates the
probability density function (PDF) over the SLC at t = 150 years. These
distributions are derived through the integration of Gaussian Process (GP)
predictions based on the providedprior of themelt average. As the posterior
is not available in closed form for a log-normal prior, we estimate the
posterior through numerical methods by initially sampling N = 1000 melt
averages from the log-normal prior. Subsequently, for eachmelt average, we
determine the approximate normal distribution using the GP and sample
K = 1000 points from this distribution. We obtain the probability density
function by fitting a kernel density estimator61,62 to the gathered data set,
which consists of 1,000,000 data points (N × K).

Fig. 2 | Bed topography and grounding line retreat plots for Thwaites Glacier
over 150 years. Simulations with M = 25 m a−1 are shown in (a, d) for a 2 km
simulation, and in (b, e) and (c, f) for two different 8 km simulations. Grounding

lines are shown every 5 years, with colours as shown in legend, going from black at
t = 0 to yellow at t = 145 years. d–f show a zoom in of the area in the white box in
panels (a–c).
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For the prior distributionwithmeanMt0
¼ 10 orMt0

¼ 20ma−1, the
coarse resolutions (coarser than 4 km) slightly overestimate the SLC after
150 years, whereas for higher prior distribution meanMt0

¼ 40 m a−1, the
means of thedistributions are fairly similar.However, for coarse resolutions,
the larger range of uncertainties shown in Figs. 3 and 4 results in broader
distributions, particularly for prior of 20m a−1 or greater. At resolutions of
5, 6 and 7 km, for t = 150 years, the predicted means and overall distribu-
tions are similar while 8 km has a lower mean and broader distribution.

The upper tails of PDFs are of particular interest, since they represent
high-impact low-likelihood (HILL) scenarios. In Fig. 5, these tails vary
considerably with resolution: the high-impact SLC scenarios are assessed to
have greater probability if coarse resolution is used (5 km or coarser). For
our model, resolution of 4 km appears to be a threshold between fine and
coarse resolutions, such that the upper tails for 4 km or finer are relatively
similar. At coarse resolution, these broaddistributionswith long tails are not

only causedby large SLCsunderunrealisticallyhighmeltMt0
: large SLCsare

also predicted for some bed realisations for more realistic values such as
Mt0

= 25ma−1 (e.g. at 8 km resolution withMt0
= 25m a−1, SLC > 200mm

after 150 years). The use of priors with very little weight for high melt
scenarios (Mt0

> 100m a−1, see section ‘Sea level contributions from emu-
lation’) causes these extreme scenarios to be sampled much less frequently
than the realistic melt scenarios that can also produce large SLCs at coarse
resolution. Thus, both high melt and lower, more realistic scenarios of melt
contribute to the increased probability of HILL scenarios at coarse
resolutions.

The effects of resolution on the tails is amplified over time: the dif-
ference inprobability between coarse andfine resolutionmodels of a specific
high-impact scenario occurring increases between t = 100 and t = 150 years.
Table 1 summarises this information for the prior distribution with mean
Mt0

¼ 20 m a−1: the dependence on resolution of the probability exceeding

Fig. 4 | Gaussian process (GP) emulation for sea level contribution at
t = 150 years. a–g SLC computed as a function of the average melt rate at t = 0,
denotedMt0

: a GP model was fitted separately for each resolution from R = 2 km to

R = 8 km. The black crosses show the WAVI output, the blue line is the predicted
mean and the shaded area shows the confidence of the GP model (97.5th percentile
of the data).

Fig. 3 | Sea level contributionover 150 years for a range of averagemelt rates. a Sea
level contributions (mm) for Mt0

¼ 0–150 m a−1 with a model resolution of 8 km.
b Sea level contributions (mm) for Mt0

¼ 0–150 m a−1 with a model resolution of
2 km. Each solid line represents the average over all Bedmachine realisations at a set

resolution and melt rate and the shaded area corresponds to the 95th percentile of
the data. Coloured lines represent different average melt rates:Mt0

¼ 0 m a−1 (black
lines), Mt0

¼ 12:5 m a−1 (orange),Mt0
¼ 25:0 m a−1 (yellow), with other colors

shown in the legend.
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a given threshold is displayed, where the threshold is chosen as the 95th
percentile for R = 2 km. In this case, at t = 100/125/150 years there is a 5%
chance of exceeding 107mm/161mm/206mm when R = 2 km, and a
2.5–8.2% forR≥ 5 km, rising to 6.6–11.2%at t = 125years and20.8–34.2%at
t = 150 years (see also Supplementary Fig. 6). For all priors explored, the
overestimation of the tails at resolutions coarser than 4 km was observed.
Increasing themeanof the prior distribution slightly amplifies thedifference
in the upper tails between resolutions (Fig. 5). These results indicate that the
overestimation of the upper tails of the SLC distributions (the HILL sce-
narios) at coarse resolutions is not dependent on the prior used.

Figure 6 shows the root mean squared error between the R= 2 km and
each resolution R= 3–8 km for both the PDF and CDF at each year from
t= 0–150 years, allowing an analysis of the error caused by resolution over
time. These errors are calculated over the full distributions and calculating the
RMSE error between PDFs puts more emphasis on the higher moments of
the distribution compared to calculating the RMSE error between CDFs.
Thus, the non-linear effects of resolution in the full PDFs (including means)
in Fig. 5 result in some noise in the errors over different resolutions in Fig. 6a
(i.e. errors do not increasemonotonically with resolution). For the CDF errors
(panel b), the clear trend in upper tails seen in Fig. 5 results in amore uniform
trend of error with resolution: there is an increasing divergence (within noise)
between the SLC distributions at coarse and fine resolution (2 km) over time,
indicating the sensitivity of HILL scenarios to resolution. The exception is that
for 8 km resolution, the CDF error only starts to increase markedly after 100
years. Inspecting the PDFs and CDFs at t = 100 years (see Supplementary
Note 2 and Supplementary Fig. 6), there is relatively high agreement between
the 2 km and 8 km in terms of both mean and variance at t <= 100 years,
which appears to be coincidental and diverges at later times.

Sea level contribution estimation with limited budget
We have highlighted how fine resolution simulations (finer than 5 km) are
critical for obtaining accurate estimates of SLC. However, due to the large
run time required for such simulations, it is often not computationally
tractable to run a sufficient number of simulations for a range of parameters
to fully characterise the probability distributions at fine resolutions. To
address this, in this sectionwe examine the efficacy of estimating SLCwithin
the constraints of afinite budget.For example, givena computational budget

of T, you could potentially run either three 2 km simulations or twenty 8 km
ones. The key question here is: which of these options will yield a more
accurate estimate of sea level contribution?

In practical terms, we vary the available computational budget T
(defined in section ‘Cost-constrained estimation’), select the number of
points this budget allows for at a certain resolution, and compute the dis-
crepancy between the predicted probability distribution function and the
PDF calculated at 2 km resolution that incorporates all points (with no
computational constraint, hence acting as the ground truth distribution).
We estimate the discrepancy by calculating the root mean squared error
(RMSE) between the pairs of distributions.

Figure 7 shows the error in estimating the PDF at t = 150 years with
limited computational budget.Overall this shows that for all priors explored,
with sufficiently high computational budget, the error is not decreased by
performing a large number of coarse resolution simulations. Thus, with
sufficiently high budget it is advisable to run the simulations at the finest
resolution possible. However, there is a region of the budget space (up to 103

units) in which the RMSE is lower if coarser simulations are selected. This
indicates that there are some instances under a constrained budget when it
can potentially be advantageous to runmore coarser resolutions than fewer
finer resolutions simulations. This trend is the same for all priors explored,
but the magnitude of the error and, thus, the choice of which resolution to
run under a constrained budget is also dependent on the choice of prior.
This signifies that the choice of resolution needs to be data-driven, based on
collected samples49, andpoints to the potential power of a fullymulti-fidelity
approach, in which the choice of resolution can be guided by consideration
of both the computational cost and accuracy of coarse resolution simula-
tions (see also ‘Discussion’).

Discussion
It has already been documented that coarse resolution simulations do not
fully capture the dynamics of ice flow across the grounding line, even if
subgrid or parameterisation schemes are used38,39,44. However, due to the
large computational cost of running fine resolution simulations over large
domains such as the Greenland and Antarctic Ice Sheets, and the need for
projections of the sea level contribution from these vast areas, low resolution
simulations (5–32 km) are often used in ensembles to make probabilistic

Fig. 5 | Probability density functions (PDFs) and cumulative density function
(CDFs) for sea level contribution at t= 150 years. Prior distribution means of (a)
Mt0

¼ 10 m a−1, (b) Mt0
¼ 20 m a−1, and (c) mean Mt0

¼ 40 m a−1 are shown.

P(S < S*) describes the probability of drawing a sample S that is less than a given
value (S*) selected on the x-axis. Colours indicate resolution: 2 km (blue), 3 km
(orange), 4 km (green), 5 km (red), 6 km (purple), 7 km (brown), 8 km (pink).
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projections20,36. In this study, we have shown the specific and considerable
effects that coarse spatial resolution (5 km or coarser) has on such prob-
ability distributions, in particular in the high-impact low-likelihood upper
tails of these distributions. This was shown by using a method in which we
used a traditional ice-sheet model to produce simulations over the most
rapidly thinning region in Antarctica, the Amundsen Sea sector of theWest
Antarctic Ice Sheet. These simulations were used to construct a Gaussian
process emulatorwithwhich to calculate probability density functions of sea
level contribution.

For risk-averse end-users, the upper tails of the probability distribu-
tions of SLC are hugely important: for example, in coastal riskmanagement,
those living in low lying, densely populated regions have a strong desire to
protect against not just the mean sea level rise but also the worst-case
scenarios, given the huge impact such scenarios would have on lives and
livelihoods50. If a cost-benefit analysis framework is used, then interpreta-
tion of upper tails can lead to strategies of proactively retreating or pro-
tecting areas63. In the simulations presented here, coarse resolution models
assign overly high probabilities to very high sea level contributions: for
example, at 150 years, the chance of exceeding 206mm is approximately 5%
at 2 km resolution but over 34% at 8 km. This considerable level of uncer-
tainty based on resolution makes decision-making based on projections
from the upper tails extremely risky if sufficiently fine resolution is not used.
It could lead to economically inefficient decisions and policies, such as the
unnecessary abandonment of an asset or area, or a huge financial waste in
unnecessarily protecting against an event that is extremely improbable. If
other model processes and uncertain parameters were also included it is
possible that fine resolution simulationsmay exhibit dynamics not found at
coarse resolutions, and this may lead to further differences in weight in the
upper tails between resolutions. Furthermore, othermodels have found that
fine resolution simulations (2 km) yielded more sea level compared to

coarse resolution (8 km, 4 km)16, and, thus, using coarse resolution results
could underestimate the probable risk of sea level rise. Thus, we expect the
effects on model resolution on the upper tails to be model dependent.
However, using projections with too little rather than too much weight in
the upper tails would also be problematic for planners, as potentially dan-
gerous strategies of insufficient adaption may be implemented. For these
reasons, we strongly advise caution when using coarse resolution simula-
tions in decision-making concerning high-impact scenarios, and recom-
mend that modellers assess the impact of resolution and bed sampling/
interpolation specifically on these scenarios.

Part of the uncertainty in these estimations relates to the specific
Bedmachine realisation, particularly at low resolution: for example, at 8 km
resolution, for Mt0

¼ 50 m a−1, over all realisations the highest SLC after
150 years is more than double that of the lowest. Previous studies find that
small scale features in the bed ranging from a few kilometres to sub-
kilometer scale can have a large effect on the current and future stability of
the ice sheet as they can form pinning points on which the ice shelf can
ground, increasing buttressing and slowing theflowof the ice and the retreat
inland16,64,65. In accordance with this, the difference in bed topography
between different realisations at coarse resolution can result in differences in
localmaxima andminima (e.g. sub-grid scale pinningpoints and troughs48).
Thus, is it not a surprise that the SLC varies so considerably with bed
realisation at coarse resolution. For example, it is the timing of the unpin-
ning from relatively high and poorly resolved bedrock shown in Fig. 2 that
causes a large spread of SLC for different 8 kmbed realisations.Ourfindings
explicitly demonstrate the need to account for the large effects of bed
sampling on future projections at coarse resolution when the bed topo-
graphy is complex, such as the Amundsen Sea Sector. In other regions, such
as the interior of Antarctica, if the bed topography is less complex wemight
expect resolution to have a smaller effect.

Fig. 6 | Error variation with resolution over time. a The dimensionless RMSE
between the optimal 2 km PDF and coarser resolutions. b The discrepancy between
the optimal 2 km CDF and coarser resolutions. In both panels, the melt average is

M = 20 ma−1. Colours indicate resolution: 2 km (blue), 3 km (orange), 4 km (green),
5 km (red), 6 km (purple), 7 km (brown), 8 km (pink).

Table 1 | The probability of SLC exceeding a given threshold

Year Probability (%) at various resolutions (km) Threshold (mm)

2 km 3 km 4 km 5 km 6 km 7 km 8 km

100 years 5.0 2.2 0.1 3.7 7.2 8.2 2.5 107mm

125 years 5.0 2.5 0.2 6.6 11.2 7.6 7.0 161mm

150 years 5.0 2.5 0.4 23.5 24.3 20.8 34.2 206mm

Probabilities are shownaspercentages.Here, themean of theprior distribution is 20ma−1 and the threshold is picked as the 95th percentile of the 2 km resolution. This table illustrates the overestimation of
SLC by coarse resolution runs.
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In this study, we produce different Bedmachine realisations by sub-
sampling grid points from the Bedmachine data set, essentially sampling
along thediagonal of anRkmsquare of possible bedoptions (with additional
samplings off-diagonal for 2 kmand3 km resolutions to ensure aminimum
of 8 realisations at each resolution). By choosing this sampling, we are
assuming the bed noise is isotropic and uncorrelated, and we construct a
non-random cover of the potential space. In reality the Bedmachine data
also has an error, which is made up of measurement error (accuracy),
sampling length of the input data to Bedmachine, and interpolation error
that is introducedwhen thedata is transferred onto theBedmachine grid.To
fully propagate all these sources of errors alongside our sampling strategy
errors into the PDF would require multiple realisations of the bed topo-
graphy product to be constructed, taking in to account the error covariance
structure, and to then sample from these as we have done here. Our
approach is appropriate if the input data is accurate and well sampled, so
that the differences between possible Bedmachine realisations due to data
errors is small. However, if themeasurement errors are sufficiently large and
were also sampled, it is feasible that the difference between resolutions
would decrease. Similarly, using a bilinear interpolation schememay have a
small effect on our results, but it could not remove all of the variance we see:
the bedwould remain unresolved due to features such as troughs and ridges
that are smoothed out during interpolation. While there may be sampling
strategies that can minimise the misrepresentation of the coarse resolution
models, in reality it would be difficult to sufficiently capture the features of a
fine resolution bed. This is primarily because the effects of both water depth
and buttressing need to be accounted for. Even if the effects of water depth
could be captured by, for example, integrating the water depth over a coarse
resolution cell based on the high resolution data, the effects of buttressing
would be harder to incorporate. Essentially, one would have to use the fine
resolution bed to learn a parameterisation for pinning points. This is an
active area of research, and is beyond the scope of our study.

In a recent study on the same domain with the same initial state, issues
with the bathymetry near the grounding line of Pine Island Glacier were
found when compared with data28. As a result, the bed was ‘dug’ in order to
better match the fine resolution data and to stop unrealistic advance of the
PIG grounding line in a coupled ice-ocean model simulation. Here, we do
not alter the bed data set provided from Bedmachinev3, and as a result we
see less mass loss from PIG than in Bett et al.28. Wernecke et al.66 also
quantify the effect of bed topography uncertainties on SLC projections, in
their case under PIG, by using different bed data sets alongside statistically
modelled beds that take into account bed topography uncertainties. They
conclude that the bedrock uncertainty creates a 5–25% uncertainty in the
predicted sea level rise contribution at the year 2100. Spectral analysis of bed
roughness from this region shows variance increasing linearlywith length of
profile67. Sampling every 8 km leaves exposure to interpolation errors with
four times the variance relative to 2 km. Combined with the strong

dependence of ice flux upon water depth at the grounding line6, this may
explain the large scatter on model results from 8 km resolution. Mis-
representation of grounding line physics at low resolution will also
contribute39. More broadly, these findings relating to the sensitivity of
simulations to the bed topography indicate that small scale features in the
bed exert a large influence on simulated future ice loss from this region, as
in48. Thus, accurate, fine resolution data from underneath ice shelves and
grounded ice is essential formaking realistic projections of sea level rise over
the coming centuries.

Here, we have focused on a simple basal melt parameterisation. In
order to use this method for making realistic probabilistic projections, a
more physically realistic parameterisation or, ideally, a coupled ice-ocean
model is required28,57,68. The upper end of the range of basal melt rates we
used is extreme, leading to caseswith almost total removal of the shelves and
essentially an unbuttressed ice sheet, somewhat like ABUMIP, an ice-sheet
model inter-comparison that explored these high end scenarios35. The
simulations we have present are a limited set to explore the methodology
and the specific effects of resolution on the upper tails, and do not span the
range of uncertainties needed tomake realistic projections. In particular, we
have neglected uncertainty arising from parameters involved in the model
initialisation and in the basal sliding and ice viscosity, and we have not
included ice fracture and calving front motion in this model. Although the
importance of the marine ice cliff instability (MICI) is still being assessed, it
has the potential to have large affects on SLC projections29. Future models
will need to incorporate this process andassess the affect onSLCprojections,
adding further to the uncertainties from model parameters.

Despite the caution we advise here, the pressing need to project Ant-
arctica’s contribution to sea-level change remains. As models evolve to
capture more of the missing processes, and coupled ice-ocean-atmosphere
models emerge, the computational cost of running many fine resolution
simulations over a range of uncertain parameters and future forcings will
also increase. Improvements in computing power will go some way to
alleviating this pressure, but producing probability distributions to fully
characterise the probability of a particular outcomewill remain challenging.
Strategic experimental design, as suggested by Rohmer et al.46 and Edwards
et al.20, and machine learning methodologies have the potential to aid with
construction of computationally cheaper probability distributions of sea
level. As afirst step towards this, similar to Berdahl et al.37, we usedGaussian
processes to emulate the SLC as a function of average melt rate, in order to
enable the production of many more samples than are possible using the
WAVI model alone and with reduced computational cost. This increases
our ability to characterize probabilistic distributions of sea level change from
Antarctica, with sufficient sampling in the upper tails to provide informa-
tion on the high-impact low-likelihood scenarios of societal relevance.

We evaluated strategies for producing PDFs with limited computa-
tional budgets, comparing accuracywith our highest resolution simulations.

Fig. 7 | The dimensionless RMSE error of the PDF as a function of the compu-
tational budget T. This is derived from comparing the predicted PDF at t = 150 years
under budgetT at resolutionR to the the full calculatedPDF at aR = 2 kmwith all points
included (i.e. no computational constraint). Results are shown for a prior distribution

mean of (a)Mt0
¼ 10ma−1, (b)Mt0

¼ 20ma−1, and (c)Mt0
¼ 40ma−1. The plots are

obtained by calculating the mean error over 500 trials and the shading represents the
95% interval. Colours indicate resolution: 2 km (blue), 3 km (orange), 4 km (green),
5 km (red), 6 km (purple), 7 km (brown), 8 km (pink).
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For low budgets, there are examples where coarser resolution simulations
may be preferred, but as budget increases, fine resolution simulationswould
always be selected. In the future, this approach of devising run strategies
using information on cost and accuracy could be a useful tool to optimise
large ensemble studieswith the aimofmakingprobabilistic SLCprojections.
Although here we have performed a post-simulation calculation, our
findings point the way towards using a multi-fidelity approach in the
future49. Multi-fidelity experimental design (MFED) serves as a data-driven
methodology for automating decisions related to computation, aiming to
achieve the most accurate estimates within predefined computational
budgets. Practically, given a computational budget, MFED algorithms aim
to select the next best point (resolution and parameter) to reduce the
uncertainty in the objective given by the user. As the complexity of ice-sheet
simulations grows due to the incorporation of additional parameters and
processes, the computational costs required for obtaining a probabilistic
estimate will increase dramatically. Data-driven computational decision
making removes theburdenon the researcher to estimate the computational
parameters of their simulations. For example, the optimal sampling strategy
can vary depending on user requirements; for instance, studies focusing on
extreme scenarios may necessitate more frequent use of higher-resolution
simulations.

Themethodology presented herein is not ice-sheet model specific, and
in the future could be deployed for any ice sheet model output and over a
larger geographical region such as the whole of AIS. It also has the capacity
to include other uncertain model parameters in GP emulation used for
producing sea level projections. Additionally, although this study focuses on
the issues of model resolution, emulation, and producing SLC projections
under limited budget for ice sheet modelling, the techniques and discussion
herein will be relevant to other areas in which high resolution models are
both required and computationally expensive, such as in climate
modelling69. In those areas, it is also a huge challenge to run models to
convergencewith spatial resolution, and strategies will need to be developed
in order to make robust model predictions. The findings presented here
indicate that it is essential to address the issues surrounding model reso-
lution and computational cost in order to satisfy the pressing need to pro-
vide realistic, usable projections of sea level to decision and policy makers.

Methods
The WAVI ice sheet model
Here, we use the Wavelet-based Adaptive-grid Vertically-integrated Ice-
sheetmodel (WAVI).WAVI is based on53,54, but is rewritten in Julia and can
be found at https://rjarthern.github.io/WAVI.jl/. WAVI includes the
grounded ice and floating shelves and incorporates stresses to capture the
dynamics linking the two regions over the grounding line. The model
includes membrane stresses and is vertically integrated but retains the
vertical profile of velocity implicitly. WAVI is a finite difference model and
the equations are solved numerically over a rectangular uniform mesh. In
this study, the same resolution R is used in both horizontal directions. A
subgrid parameterisation is used to represent the grounding linemovement
on finer scale than the grid resolution alone43,45,70; full details can be found in
Arthern & Williams18.

Bed topography sampling
The bed topography is provided from the Bedmachine version 3 data set58,59,
which has resolution of 500 metres. To generate grids of bed, ice thickness
and surface elevation at a coarser resolutions, we sample this data by
selecting points R kilometres apart. At each resolution there are (2R)2

possible choicesof bed topographyandcorresponding thickness and surface
elevation.Running simulations for all of thesedifferent realisationswouldbe
hugely computationally expensive. Instead, we select n different realisations
for eachR: due to the increasing computation cost with resolution, we select
n = 8 for R = 2, 3, 4 km, n = 10 for R = 5 km, n = 12 for R = 6 km, n = 14 for
R = 7 km and n = 16 for R = 8 km. As previously stated, we do this by
choosing points along the diagonal of the square of possibilities (e.g. starting
at the grid corner and moving one along in both x and y directions). This

method allows us to ensurewe are covering each horizontal and vertical grid
column/row once, rather than using a random sample in which not every
dimension may be covered. For 2 km and 3 km, 4 and 2 extra realisations
were also selected to ensure n = 8. In the absence of other information, these
were selected along the other diagonal.

Model initialisation and relaxation
For each Bedmachine realisation, a separate initialisation is performed54. In
brief, two-dimensional spatially-varying fields of basal drag and ice stiffness
coefficients are calculated in a data assimilation framework by matching
modelled surface velocities with surface velocities [Measures 2014/1571],
thinning rates72 and accumulation rates73. Englacial temperatures are from
Pattyn74. The ice geometry is keptfixed during the initialisation.An example
of an initial state is shown in Supplementary Fig. 4.

A surface relaxation is then performed for 4000 years for each initial
state, duringwhich the accumulationarelax is set asadata−dh/dtdata, in order
to bring the flux divergence into better agreement with observations of
thinning and accumulation, usually at a slight loss in agreement between the
modelled and observed surface speeds. During the relaxation the grounding
line is fixed in place by not allowing thickness change over the shelves or the
grounding line area. Ice thickness inland can vary. The basal drag and ice
stiffness coefficients are held constant during the relaxation. This leads to an
initialised, relaxed state that has the prescribed 2015 grounding line and is
thinning at the observed rate i.e. it is initialised into a retreating state, so at
the start of the forward simulations the ice sheet is losing mass (it is not at
steady state). The use of a separate initialisation and relaxation for each
Bedmachine realisation ensures that the same process is followed for each
sampling at each resolution and avoids the introduction of interpolation
errors. This leads to a total of 78 different initial states. Examples of the
match between the initial states both before and after relaxation can be
found in Supplementary Note 1 (Supplementary Figs. 1–3) alongside
summary statistics for thematch between thickness, surface speed and rates
of thinning at each resolution (Supplementary Table 1).

Melt rate parameterisation and calibration
We use the depth-dependent melt parameterisation56,57. Following the
nonmenclature of Favier et al.57, we use the quadratic, local dependency form
of the parameterisation, which is widely used55. Other parameterisations,
such as the non-local form, could alternatively have been used. Here, melt
rateMt0

is given by:

m ¼ γT
ρswcpo
ρiLi

� �2

ðTa � Tf Þ2; ð1Þ

γT is the heat exchange velocity that is usually calibrated [see57, discussed
further below], ρsw = 1028.0 kg m−3 and ρi = 918 kg m−3 are the respective
densities of ocean water and ice, cpo= 3.974e × 103 J kg−1 K−1 is the specific
heat capacity of the oceanmixed layer, and Li = 3.35 × 105 J kg−1 is the latent
heat of fusion of ice.Tf is themelting-freezing point at the interface between
the ocean and the ice-shelf basal surface and is defined as

Tf ¼ λ1Sa þ λ2 þ λ3zb; ð2Þ

where λ1 =−5.73 × 10−3 °C PSU−1, and λ2 = 8.32 × 10−4 °C and
λ3 = 7.61 × 10−4 °C m−1 are the liquidus slope, intercept and pressure coef-
ficient respectively, zb is the ice base elevation. Sa(z) and Ta(z) are the
practical salinity and ambient temperature taken from the far field ocean
boundary. Here, we take a layered structure for Ta (°C) and Sa (PSU),
defining them as piece-wise linear functions of depth such that:

TaðzÞ ¼
1:2 z <� 700m

1:2� 2:2 zþ700
400 �700m≤ z ≤ � 300m

�1 z >� 300m

8><
>: ð3Þ
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SaðzÞ ¼
34:6 z <� 700m

34:6� 0:6 zþ700
400 �700m≤ z ≤ � 300m

34:0 z >� 300m

8><
>: ð4Þ

These functions represent profiles with a linear transition between an upper
layer of Winter Water and a lower layer of Circumpolar Deep Water
(CDW). The values we have used here are roughly consistent with condi-
tions in the Amundsen Sea75, and were also used in an idealised study76.
Since we are interested in the effects of resolution and the upper tails of
distribution, this provides a sensible choice to demonstrate our methodol-
ogy. Formore realistic projections covering the rangeof thermoclineprofiles
observed over time77, these temperature and salinity profiles could be varied
directly rather than solely varying the γT parameter.

In our case, we run many different Bedmachine realisations over 7
different resolutions. This means that if we want the melt rate Mt0

to
represent the average melt rate under all fully floating points in our domain
at t = 0 years, we need to calibrate γT separately for each Bedmachine rea-
lisation (values can be found in the associated published data set78). Once
γTcalibrated is calculated for each resolution as the value required at each
spatial resolution to give an average melt rate ofMt0

¼ 1 m/a at t = 0 years,
γT in equation (1) is then set by simply scaling γTcalibrated with the required
average melt rateMt0

:

γT ¼ γTcalibrated ×Mt0
: ð5Þ

This value of γT is then not varied within each simulation. As the grounding
line retreats new cavities open underneath the ice shelves, the depth-
dependant parameterisation provides the melt rate in these new cavities.
Melt rates elsewhere can also vary as the ice shelf thins. Thus, the average
melt rate under all shelves varies within a simulation due to differences in
evolving geometry.

Previous studies have shown that retreat of the grounding line and,
thus, SLC is very sensitive to whether melt is applied to partially grounded
cells18. While Seroussi & Morlighem26 recommend not applying melt in
these cells, Leguy et al.79 find otherwise (applying some melt is often ben-
eficial in CISM), and conclude that there is likely not a single best approach
for all models. Thus, this model choice should be an informed decision
based on testing eachmodel separately. Based onprevious sensitivity studies
to this choice forWAVI18, we apply nomelt in partially grounded cells in all
simulations.

Forward model simulations
WAVI simulations were run forward in time from the relaxed state for 150
years. We use a persistence-based approach in which we prescribe the
present day accumulation and keep the calving front fixed. Although
unrealistic, as in reality the calving front is likely to change over this time-
scale, it is a useful conservative assumption that allows us to investigate the
effects of melt rate and resolution on the mean and upper tail of the SLC
distributions. No damage evolutionmodel was used, so initial damage from
the initialisation remains for the full forward simulation.

The average melt rate at t = 0,Mt0
, is prescribed using the calibration

coefficient γT, as described above. This coefficient is then kept the same
throughout each full forward simulation. Since the melt rate varies with
depth, it is non-constant over the shelves and varies over time as the geo-
metry of the ice sheet evolves: as new cavities open up, the parameterisation
appliesmelt dependent on the bed topography, and as such the averagemelt
rate over the fully floating points varies when t > 0 years. It is only the
average melt at t = 0 years, denoted Mt0

, that is prescribing by setting the
calibration coefficient γT. The range ofMt0

used is justified in the ‘Results’
section.

The same velocity time step was used for 3–8 km, dtv = 0.1 years, but a
smaller time step of dtv = 0.05 was required for 2 km resolution. A smaller
subtime step dth was also used to evolve the ice thickness: at this time step,
the thickness and divergence were updated but not the velocity. The melt

rates are calculated from the thickness field at each thickness time step dth.
Since the velocity update is approximately 99% of the cost of a forward time
step, this is an efficient way to ensure better resolutions of ice thicknesses
without a large computational cost (see Supplementary Methods and
Supplementary Fig. 5 for more details). This time step was set as
dth < = 0.025 for all simulations.

Gaussian process emulation
Here, we used Gaussian process emulation to compute the probability
density function (PDF) and cumulative distribution function (CDF)
describing the SLC based on a prior distribution over melt average. To
obtain these quantities, we first fit the Gaussian process to the the SLC
predicted byWAVI.We then sampled the melt average from the prior and
finally calculated the PDF and CDF using the GP surrogate model. In the
sections below, we provide a detailed explanation of all the parameters and
methods used for this computation.

Gaussian Processes
A Gaussian Process (GP) is a collection of random variables for which any
finite subset has a joint Gaussian distribution. A GP is fully defined by its
mean function, often taken as zero, and a covariance function or kernel,
which measures the dependence between different points in the function.

GPs are nonparametric models, meaning they do not make strong
assumptions about the functional form of the data, offering flexibility.
Additionally, as a probabilisticmodel, aGPnotonly gives aprediction for an
unseen point but also provides a measure of certainty or confidence in that
prediction. This feature is crucial in understanding the risk and variability
associated with different future scenarios.

Mathematically, a Gaussian Process is defined as:

f ðxÞ � GPðmðxÞ; kðx; x0ÞÞ ð6Þ

where f (x) is the function we want to estimate,m(x) is the mean function,
which we assume to be zero for simplicity as is common practise, and
kðx; x0Þ is the covariance function or kernel.

The choice of the covariance function is crucial for GPs, and one of the
most commonly used kernels is the squared exponential kernel, also known
as the Gaussian or Radial Basis Function (RBF) kernel. The squared
exponential kernel is a real-valued function of two variables and is used to
measure the similarity between these variables. The squared exponential
kernel is defined as:

kðx; x0Þ ¼ σ2 exp � 1

2l2
ðx � x0Þ2

� �
ð7Þ

where x and x0 are two points in the input space, σ2 is the variance that
controls the vertical variation, l is the length-scale parameter that controls
the horizontal variation or how quickly the function values can change. The
kernel function can be interpreted as ameasure of similarity: points that are
closer in the input space have a higher kernel value and are therefore more
similar.

Maximum likelihood estimation
We estimate the parameters of the kernel using Maximum Likelihood
Estimation (MLE). The aim is to find the parameter values that maximize
the likelihood function, given the SLC predicted by WAVI. The likelihood
function measures how probable the obtained SLC are, given a specific
parameter value. Practically,finding themaximum likelihood estimateoften
involves numerical optimizationmethods as the solutionmay not be easy to
compute analytically. We use L-BFGS optimization algorithm to find the
optimal value. All the algorithms used in this paper were developed using
GPy80. We standardize the inputs (i.e. remove the mean and scale by the
variance) to improve the convergence of the MLE estimates.
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Emulator validation
To assess the emulator’s effectiveness, we validate the model’s accuracy
using a leave-one-out strategy20. With this approach, for every specific melt
rate, we leave the SLC predicted byWAVI for the chosenmelting rate aside
and train the GPmodel on the remaining SLC predictions. Once themodel
is trained,weuse it to predict the SLC for the excludedmelting rate.We then
calculate the Root Mean Squared Error (RMSE) by comparing this pre-
diction with the empirical SLC obtained from WAVI. This process helps
validate the effectiveness of our model across all ranges of melt rate.

As previously mentioned, we use a squared exponential kernel due to
the smoothness of the SLC outputs from WAVI. We optimize the length
scale of the kernel by maximizing the evidence of the WAVI SLCs. The
RMSE for the GP model without hyper-parameter tuning (default values
provided by the library GPy) is 3.12mm whereas it decreases to 1.95mm
when tuning the length scale to an appropriate value. We normalize our
experimental data, allowing the library’s default hyper-parameters to serve
as reasonable initial values for our runs. These experiments validate the
effectiveness of the surrogatemodel aswell as the parameter tuning strategy.

To verify the accuracy of the uncertainty bounds of the surrogate
model, we calculate the percentage of the SLCs predicted byWAVI that fall
within these bounds (defined as the 95% credible interval). Over 97% of the
SLC points lie within the set uncertainty bounds of our surrogate model.

Sea level contributions from emulation
The first step to obtaining the PDF over SLC is to sample a dataset of
N = 1000 melt average points from a log-normal prior displayed in Fig. 8.

Using theGPmodel from theprevious section,wepredict for eachmelt
average value the corresponding normal distribution (mean and variance)
of SLC. For each normal distribution, we sample K = 1000 points which
yields a dataset of 1000 × 1000 points.

To compute the PDF, we use a Kernel Density Estimator on the col-
lected dataset. A Kernel Density Estimator (KDE) is a non-parametric way
to estimate the probability density function of a random variable62, pro-
viding a continuous and differentiable estimate of the distribution for
visualizations and subsequent analysis. To compute the CDF, we discretize
the SLC axis and compute the number of elements from the dataset that fall
above the given threshold.

Cost-constrained estimation
In the section Sea level contribution estimation with limited budget, we
demonstrate the errors incurred when estimating the PDFs with limited
WAVI simulations. To emulate limitedWAVI simulations, we calculate the
costs of running each simulation based on the runtime required by the
resolution (see Supplementary Table 2). We calculate the number of points
for a specific resolution by using the formula T

C for costs C within a given

budget T. Supplementary Table 3 displays the corresponding number of
points for each resolution.

Through the application of WAVI simulations, we generate a dataset
composed of the points mi, ri, yi, with mi denoting the average melt, ri
representing the resolution, and yi indicating the resulting SLC.

To extract N points with a budget of T, we initially sample N average
melts from the log-normal prior, and identify the closest point derived from
the simulation. This is achieved by computing the Euclidean distance
between the sampled averagemelt and the datasets ofmi. TheseN points are
subsequently employed in the computation of the PDF. The error between
the computed PDF and the gold standard (a 2 km resolution with no
computational limitations) is assessed using themean squared errormetric.

Data availability
The following data sets were used to initialise the ice sheet model: Bed-
machine (version 3) (https://doi.org/10.5067/FPSU0V1MWUB659), MEa-
SUREs (https://doi.org/10.5067/9T4EPQXTJYW971), thinning rates from
https://digital.lib.washington.edu/researchworks/handle/1773/45388(acces-
sion no. 4538872), accumulation73, and englacial temperatures74 (accumu-
lation rates and temperatures are also stored in the model output data set78).
A data set of the model outputs from theWAVI simulations is stored in the
UK Polar Data Centre (https://doi.org/10.5285/4de39bc0-fc2b-4232-ac39-
3cc1fd723f6478). Ensembles of sea level contributions from the WAVI
simulation outputs used for the Gaussian process emulation and the pro-
duction of probabilisitc sea level curves can be found alongside the model
codes at https://github.com/pierthodo/multi_resolution_ice_sheet and in
Zenodo (https://doi.org/10.5281/zenodo.1442277081).

Code availability
The open sourceWAVI ice sheetmodel can be found at https://github.com/
RJArthern/WAVI.jl. The version used for these simulations is also stored in
Zenodo (branch: subtimestepping, commit: 669dc49, https://doi.org/10.
5281/zenodo.1439352182). The analysis code for the Gaussian process
emulation and calculation of computational budgets can be found at https://
github.com/pierthodo/multi_resolution_ice_sheet and stored in Zenodo
(https://doi.org/10.5281/zenodo.1442277081). The model ensembler tool
used to efficiently run the WAVI model ensembles is available at https://
github.com/jimCircadian/model-ensembler.
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