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Abstract 
We present a genome assembly from an individual male Mamestra 
brassicae (the Cabbage Moth; Arthropoda; Insecta; Lepidoptera; 
Noctuidae). The genome sequence is 576.2 megabases in span. Most 
of the assembly is scaffolded into 31 chromosomal pseudomolecules, 
including the Z sex chromosome. The mitochondrial genome has also 
been assembled and is 15.38 kilobases in length. Gene annotation of 
this assembly on Ensembl identified 12,891 protein coding genes.
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Species taxonomy
Eukaryota; Metazoa; Eumetazoa; Bilateria; Protostomia; Ecdyso-
zoa; Panarthropoda; Arthropoda; Mandibulata; Pancrustacea; 
Hexapoda; Insecta; Dicondylia; Pterygota; Neoptera; Endoptery-
gota; Amphiesmenoptera; Lepidoptera; Glossata; Neolepidoptera; 
Heteroneura; Ditrysia; Obtectomera; Noctuoidea; Noctuidae;  
Hadeninae; Mamestra; Mamestra brassicae (Linnaeus, 1758).

Background
The Cabbage Moth, Mamestra brassicae (Linnaeus, 1758) 
is a common moth, found throughout most of Britain and 
the Channel Islands. It is recorded less frequently in western  
Scotland, and in Ireland. In the UK, the moths are best known 
as a pest of cultivated brassicas, hence the common name. 
However, the larvae will feed on leaves of many wild or  
cultivated herbaceous plants, and have also been found on  
woody species such as sallow and oak (Waring et al., 2017). 
Larvae develop through six instars, the first five of which have 
a coppercoloured head, with a light green abdomen and a  
white stripe along the stigmata (Devetak et al., 2010). The final 
instar larvae have a dusky dorsal stripe, speckled with white 
and a yellow/green or dusky brown strip down both sides, still  
with the copper-coloured head.

The adult moth is a dark brownish grey, although sometimes 
is paler or even blackish, often with brown blotches. The 
forewings have a span of 35–50 mm. A distinguishable char-
acteristic on the forewing is a chalky-white mark that resem-
bles a kidney shape, surrounded by a white border (Figure 1). 
Adults fly from May to October in the UK and there are one to  
two generations of larvae, per year. Mamestra brassicae has 
an annual life cycle. The moth overwinters underground in 
the pupal stage, and sometimes as a larva. This is mainly  
during the later summer and autumn. The species is not 
considered as being under threat, and is not listed on the  
International Union for Conservation of Nature (IUCN) red list 
(Freyhof, 2014).

Mamestra brassicae has been cultured for over 40 years, and 
is used as an important research species for the ecological study 

of host-parasite interactions (Burden et al., 2003). A laboratory 
population maintained at UKCEH (UK Centre for Ecology 
& Hydrology) is known to harbour persistent, covert viruses 
(Hughes et al., 1993). As the moth is also a prevalent pest of 
cultivated crops, other studies have focussed on the opportu-
nity for biological control, using baculoviruses as biopesti-
cides (Hesketh & Hails, 2015). More recently, M. brassicae  
has been used for developing high through-put bioassay  
methods for toxicity testing in Lepidoptera (Badder et al., 2023).

This genome will provide further insights into lepidopterans, 
a group that play important ecosystem roles and are recog-
nised as an ecologically relevant indicator of environmental 
health (Goldstein, 2017). More specifically, the current research 
groups that utilise M. brassicae will benefit, leading to a 
greater understanding of the molecular biology underlying both 
host-pathogen interactions and the sensitivity of beneficial  
non-target species to anthropogenic contamination.

We present a chromosomally complete genome sequence for the 
moth, Mamestra brassicae, generated using a specimen taken 
from a laboratory culture kept at the UKCEH (Wallingford), 
as part of the Darwin Tree of Life Project. This project is a col-
laborative effort to sequence all named eukaryotic species in the  
Atlantic Archipelago of Britain and Ireland.

Genome sequence report
The genome was sequenced from one male Mamestra  
brassicae grown in culture at UKCEH, Wallingford, Oxfordshire, 
UK. A total of 35-fold coverage in Pacific Biosciences  
single-molecule HiFi long reads and 61-fold coverage in 10X  
Genomics read clouds were generated. Primary assembly  
contigs were scaffolded with chromosome conformation Hi-C  
data. Manual assembly curation corrected 18 missing joins or  
mis-joins, reducing the scaffold number by 23.64%.

The final assembly has a total length of 576.2 Mb in 42 
sequence scaffolds with a scaffold N50 of 19.4 Mb (Table 1). A  
summary of the assembly statistics is shown in Figure 2, while 
the distribution of assembly scaffolds on GC proportion and  
coverage is shown in Figure 3. The cumulative assembly plot 
in Figure 4 shows curves for subsets of scaffolds assigned to  
different phyla. Most (99.95%) of the assembly sequence was 
assigned to 31 chromosomal-level scaffolds, representing 
30 autosomes and the Z sex chromosome. Chromosome- 
scale scaffolds confirmed by the Hi-C data are named in 
order of size (Figure 5; Table 2). While not fully phased, the  
assembly deposited is of one haplotype. Contigs correspond-
ing to the second haplotype have also been deposited. The  
mitochondrial genome was also assembled and can be found  
as a contig within the multifasta file of the genome submission.

The estimated Quality Value (QV) of the final assembly is 
56.9 with k-mer completeness of 99.99%, and the assembly 
has a BUSCO v5.3.2 completeness of 98.9% (single = 98.5%, 
duplicated = 0.5%), using the lepidoptera_odb10 reference set  
(n = 5,286).

Figure 1. Photograph of adult Mamestra brassicae by Olaf 
Leillinger (not the specimen used for genome sequencing).
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Table 1. Genome data for Mamestra brassicae, ilMamBras1.1.

Project accession data

Assembly identifier ilMamBras1.1

Assembly release date 2021-01-18

Species Mamestra brassicae

Specimen ilMamBras1

NCBI taxonomy ID 55057

BioProject PRJEB42134

BioSample ID SAMEA7524129

Isolate information ilMamBras1, male: mid-body (DNA sequencing and Hi-C data) 
ilMamBras2 and ilMamBras4: mid-body (RNA sequencing)

Assembly metrics* Benchmark

Consensus quality (QV) 56.9 ≥ 50

k-mer completeness 99.99% ≥ 95%

BUSCO** C:98.9%[S:98.5%,D:0.5%], 
F:0.2%,M:0.8%,n:5,286

C ≥ 95%

Percentage of assembly mapped to 
chromosomes

99.95% ≥ 95%

Sex chromosomes Z chromosome localised homologous pairs

Organelles Mitochondrial genome assembles complete single alleles

Raw data accessions

PacificBiosciences SEQUEL II ERR6412357

10X Genomics Illumina ERR6002683, ERR6002681, ERR6002682, ERR6002684

Hi-C Illumina ERR6002679, ERR6002680, ERR6002678

PolyA RNA-Seq Illumina ERR6002685, ERR6787417

Genome assembly

Assembly accession GCA_905163435.1

Accession of alternate haplotype GCA_905163405.1

Span (Mb) 576.2

Number of contigs 70

Contig N50 length (Mb) 17.8

Number of scaffolds 42

Scaffold N50 length (Mb) 19.4

Longest scaffold (Mb) 35.5

Genome annotation

Number of protein-coding genes 12,891

Number of non-coding genes 1,528

Number of gene transcripts 21,647
* Assembly metric benchmarks are adapted from column VGP-2020 of “Table 1: Proposed standards and metrics for 
defining genome assembly quality” from (Rhie et al., 2021).

** BUSCO scores based on the lepidoptera_odb10 BUSCO set using v5.3.2. C = complete [S = single copy,  
D = duplicated], F = fragmented, M = missing, n = number of orthologues in comparison. A full set of BUSCO scores  
is available at https://blobtoolkit.genomehubs.org/view/Mamestra%20brassicae/dataset/CAJHZQ01.1/busco.
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Metadata for specimens, spectral estimates, sequencing runs, 
contaminants and pre-curation assembly statistics can be  
found at https://links.tol.sanger.ac.uk/species/55057.

Genome annotation report
The Mamestra brassicae genome assembly (GCA_905163435.1) 
was annotated using the Ensembl rapid annotation pipe-
line (Table 1; https://rapid.ensembl.org/Mamestra_brassi-
cae_GCA_905163435.1/Info/Index). The resulting annotation 

includes 21,647 transcribed mRNAs from 12,891 protein-coding  
and 1,528 non-coding genes.

Methods
Sample acquisition and nucleic acid extraction
Mamestra brassicae specimens were harvested from a cul-
ture at UKCEH, Wallingford, Oxfordshire, UK on 2020-03-17. 
The specimens were cultured by Helen Hesketh and Alex  
Robinson (UKCEH) and collected by Stephen Short and Amaia  

Figure 2. Genome assembly of Mamestra brassicae, ilMamBras1.1: metrics. The BlobToolKit Snailplot shows N50 metrics and BUSCO 
gene completeness. The main plot is divided into 1,000 size-ordered bins around the circumference with each bin representing 0.1% 
of the 576,184,143 bp assembly. The distribution of scaffold lengths is shown in dark grey with the plot radius scaled to the longest 
scaffold present in the assembly (35,467,487 bp, shown in red). Orange and pale-orange arcs show the N50 and N90 scaffold lengths 
(19,384,296 and 13,925,230 bp), respectively. The pale grey spiral shows the cumulative scaffold count on a log scale with white scale lines 
showing successive orders of magnitude. The blue and pale-blue area around the outside of the plot shows the distribution of GC, AT 
and N percentages in the same bins as the inner plot. A summary of complete, fragmented, duplicated and missing BUSCO genes in the 
lepidoptera_odb10 set is shown in the top right. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/
Mamestra%20brassicae/dataset/CAJHZQ01.1/snail.
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Green Etxabe (UKCEH). The specimens were identified by  
Amaia Green Etxabe, and flash frozen in liquid nitrogen. The 
specimen used for DNA sequencing and Hi-C data was a 
male with specimen ID SAN0001209 (ToLID ilMamBras1), 
while specimens with IDs SAN0001210 (ToLID ilMamBras2) 
and SAN0001212 (ToLID ilMamBras4) were used for RNA  
sequencing.

DNA was extracted at the Tree of Life laboratory, Wellcome 
Sanger Institute (WSI). The ilMamBras1 sample was weighed 
and dissected on dry ice with tissue set aside for Hi-C sequenc-
ing. Mid-body tissue was disrupted using a Nippi Power-
masher fitted with a BioMasher pestle. High molecular weight 
(HMW) DNA was extracted using the Qiagen MagAttract 
HMW DNA extraction kit. Low molecular weight DNA was  

Figure 3. Genome assembly of Mamestra brassicae, ilMamBras1.1: BlobToolKit GC-coverage plot. Scaffolds are coloured by phylum. 
Circles are sized in proportion to scaffold length. Histograms show the distribution of scaffold length sum along each axis. An interactive 
version of this figure is available at https://blobtoolkit.genomehubs.org/view/Mamestra%20brassicae/dataset/CAJHZQ01.1/blob.
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removed from a 20 ng aliquot of extracted DNA using the 0.8X 
AMpure XP purification kit prior to 10X Chromium sequencing; 
a minimum of 50 ng DNA was submitted for 10X sequencing. 
HMW DNA was sheared into an average fragment size 
of 12–20 kb in a Megaruptor 3 system with speed setting 
30. Sheared DNA was purified by solid-phase reversible  
immobilisation using AMPure PB beads with a 1.8X ratio of  
beads to sample to remove the shorter fragments and con-
centrate the DNA sample. The concentration of the sheared 

and purified DNA was assessed using a Nanodrop spectro-
photometer and Qubit Fluorometer and Qubit dsDNA High  
Sensitivity Assay kit. Fragment size distribution was evaluated  
by running the sample on the FemtoPulse system.

RNA was extracted from mid-body tissue of ilMamBras2 and 
lMamBras4 in the Tree of Life Laboratory at the WSI using 
TRIzol, according to the manufacturer’s instructions. RNA was 
then eluted in 50 μl RNAse-free water and its concentration 

Figure 4. Genome assembly of Mamestra brassicae, ilMamBras1.1: BlobToolKit cumulative sequence plot. The grey line shows 
cumulative length for all scaffolds. Coloured lines show cumulative lengths of scaffolds assigned to each phylum using the buscogenes 
taxrule. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/Mamestra%20brassicae/dataset/
CAJHZQ01.1/cumulative.
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Table 2. Chromosomal pseudomolecules in the genome 
assembly of Mamestra brassicae, ilMamBras1.

INSDC accession Chromosome Length (Mb) GC%

LR990988.1 1 23.41 38.5

LR990989.1 2 22.88 38.5

LR990990.1 3 21.53 38.5

LR990991.1 4 21.4 38.0

LR990992.1 5 20.95 37.5

LR990993.1 6 20.72 38.5

LR990994.1 7 20.52 38.5

LR990995.1 8 20.49 38.0

LR990996.1 9 20.45 38.0

LR990997.1 10 20.25 38.0

LR990998.1 11 19.89 38.0

LR990999.1 12 19.68 38.0

LR991000.1 13 19.38 38.0

LR991001.1 14 19.34 38.0

LR991002.1 15 19.12 38.5

Figure 5. Genome assembly of Mamestra brassicae, ilMamBras1.1: Hi-C contact map of the ilMamBras1.1 assembly, visualised 
using HiGlass. Chromosomes are shown in order of size from left to right and top to bottom. An interactive version of this figure may be 
viewed at https://genome-note-higlass.tol.sanger.ac.uk/l/?d=KZHVM3MXSLWhyUNeHYKxfw.

INSDC accession Chromosome Length (Mb) GC%

LR991003.1 16 18.8 38.5

LR991004.1 17 18.76 38.0

LR991005.1 18 18.55 38.0

LR991006.1 19 18.54 38.5

LR991007.1 20 18.21 38.5

LR991008.1 21 17.7 38.5

LR991009.1 22 17.06 38.0

LR991010.1 23 16.32 38.5

LR991011.1 24 15.29 38.0

LR991012.1 25 13.93 38.5

LR991013.1 26 13.5 38.5

LR991014.1 27 11.43 39.5

LR991015.1 28 11.28 39.0

LR991016.1 29 11.04 40.0

LR991017.1 30 9.6 39.5

LR990987.1 Z 35.47 38.0

LR991018.1 MT 0.02 18.5
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Table 3. Software tools: versions and sources.

Software tool Version Source

BlobToolKit 4.0.7 https://github.com/blobtoolkit/blobtoolkit

BUSCO 5.3.2 https://gitlab.com/ezlab/busco

FreeBayes 1.3.1-17-gaa2ace8 https://github.com/freebayes/freebayes

gEVAL N/A https://geval.org.uk/

Hifiasm 0.12 https://github.com/chhylp123/hifiasm

HiGlass 1.11.6 https://github.com/higlass/higlass

Long Ranger ALIGN 2.2.2 https://support.10xgenomics.com/genome-exome/
software/pipelines/latest/advanced/other-pipelines

Merqury MerquryFK https://github.com/thegenemyers/MERQURY.FK

MitoHiFi 1 https://github.com/marcelauliano/MitoHiFi

PretextView 0.2 https://github.com/wtsi-hpag/PretextView

purge_dups 1.2.3 https://github.com/dfguan/purge_dups

SALSA 2.2 https://github.com/salsa-rs/salsa

sanger-tol/genomenote v1.0 https://github.com/sanger-tol/genomenote

sanger-tol/readmapping 1.1.0 https://github.com/sanger-tol/readmapping/tree/1.1.0

assessed using a Nanodrop spectrophotometer and Qubit  
Fluorometer using the Qubit RNA Broad-Range (BR) Assay kit. 
Analysis of the integrity of the RNA was done using Agilent  
RNA 6000 Pico Kit and Eukaryotic Total RNA assay.

Sequencing
Pacific Biosciences HiFi circular consensus and 10X Genom-
ics read cloud DNA sequencing libraries were constructed 
according to the manufacturers’ instructions. Poly(A) RNA-Seq 
libraries were constructed using the NEB Ultra II RNA 
Library Prep kit. DNA and RNA sequencing was performed 
by the Scientific Operations core at the WSI on Pacific  
Biosciences SEQUEL II (HiFi), Illumina HiSeq 4000  
(RNA-Seq) and HiSeq X Ten (10X) instruments. Hi-C data 
were also generated from remaining mid-body tissue of  
ilMamBras1 using the Arima2 kit and sequenced on the HiSeq  
X Ten instrument.

Genome assembly, curation and evaluation
Assembly was carried out with Hifiasm (Cheng et al., 2021) 
and haplotypic duplication was identified and removed 
with purge_dups (Guan et al., 2020). One round of polish-
ing was performed by aligning 10X Genomics read data to the  
assembly with Long Ranger ALIGN, calling variants with 
FreeBayes (Garrison & Marth, 2012). The assembly was then  
scaffolded with Hi-C data (Rao et al., 2014) using SALSA2 
(Ghurye et al., 2019). The assembly was checked for contami-
nation and corrected using the gEVAL system (Chow et al., 
2016) as described previously (Howe et al., 2021). Manual cura-

tion was performed using gEVAL, HiGlass (Kerpedjiev et al., 
2018) and Pretext (Harry, 2022). The mitochondrial genome was  
assembled using MitoHiFi (Uliano-Silva et al., 2023), which  
runs MitoFinder (Allio et al., 2020) or MITOS (Bernt et al.,  
2013) and uses these annotations to select the final mitochondrial 
contig and to ensure the general quality of the sequence.

A Hi-C map for the final assembly was produced using bwa-
mem2 (Vasimuddin et al., 2019) in the Cooler file format 
(Abdennur & Mirny, 2020). To assess the assembly metrics, 
the k-mer completeness and QV consensus quality values were 
calculated in Merqury (Rhie et al., 2020). This work was done 
using Nextflow (Di Tommaso et al., 2017) DSL2 pipelines  
“sanger-tol/readmapping” (Surana et al., 2023a) and “sanger-
tol/genomenote” (Surana et al., 2023b). The genome was 
analysed within the BlobToolKit environment (Challis  
et al., 2020) and BUSCO scores (Manni et al., 2021; Simão  
et al., 2015) were calculated.

Table 3 contains a list of relevant software tool versions and 
sources.

Genome annotation
The Ensembl gene annotation system (Aken et al., 2016) was 
used to generate annotation for the Mamestra brassicae assem-
bly (GCA_905163435.1). Annotation was created primarily 
through alignment of transcriptomic data to the genome, 
with gap filling via protein-to-genome alignments of a select  
set of proteins from UniProt (UniProt Consortium, 2019).
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Wellcome Sanger Institute – Legal and Governance
The materials that have contributed to this genome note have 
been supplied by a Darwin Tree of Life Partner. The sub-
mission of materials by a Darwin Tree of Life Partner is  
subject to the ‘Darwin Tree of Life Project Sampling 
Code of Practice’, which can be found in full on the Darwin  
Tree of Life website here. By agreeing with and signing up 
to the Sampling Code of Practice, the Darwin Tree of Life  
Partner agrees they will meet the legal and ethical requirements 
and standards set out within this document in respect of all  
samples acquired for, and supplied to, the Darwin Tree of Life  
Project. 

Further, the Wellcome Sanger Institute employs a process 
whereby due diligence is carried out proportionate to the nature 
of the materials themselves, and the circumstances under which 
they have been/are to be collected and provided for use. The 
purpose of this is to address and mitigate any potential legal  
and/or ethical implications of receipt and use of the materials 
as part of the research project, and to ensure that in doing so we  
align with best practice wherever possible. The overarching  
areas of consideration are:

•    Ethical review of provenance and sourcing of the material

•    Legality of collection, transfer and use (national and  
international) 

Each transfer of samples is further undertaken according to 
a Research Collaboration Agreement or Material Transfer 

Agreement entered into by the Darwin Tree of Life Partner,  
Genome Research Limited (operating as the Wellcome Sanger 
Institute), and in some circumstances other Darwin Tree of  
Life collaborators.

Data availability
European Nucleotide Archive: Mamestra brassicae (cabbage 
moth). Accession number PRJEB42134; https://identifiers.org/
ena.embl/PRJEB42134. (Wellcome Sanger Institute, 2021) The 
genome sequence is released openly for reuse. The Mamestra 
brassicae genome sequencing initiative is part of the Darwin 
Tree of Life (DToL) project. All raw sequence data and the 
assembly have been deposited in INSDC databases. Raw data  
and assembly accession identifiers are reported in Table 1.
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