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A B S T R A C T   

PM2.5 (fine particulate matter ≤2.5 μm in diameter) is a key pollutant that can produce acute asthma exacer-
bations and longer-term deterioration of respiratory health. Individual exposure to PM2.5 is unique and varies 
across microenvironments. Low-cost sensors (LCS) can collect data at a spatiotemporal resolution previously 
unattainable, allowing the study of exposures across microenvironments. The aim of this study is to investigate 
the acute effects of personal exposure to PM2.5 on self-reported asthma-related health. 

Twenty-eight non-smoking adults with asthma living in Scotland collected PM2.5 personal exposure data using 
LCS. Measurements were made at a 2-min time resolution for a period of 7 days as participants conducted their 
typical daily routines. Concurrently, participants were asked to keep a detailed time-activity diary, logging their 
activities and microenvironments, along with hourly information on their respiratory health and medication use. 
Health outcomes were modelled as a function of hourly PM2.5 concentration (plus 1- and 2-h lag) using gener-
alized mixed-effects models adjusted for temperature and relative humidity. 

Personal exposures to PM2.5 varied across microenvironments, with the largest average microenvironmental 
exposure observed in private residences (11.5 ± 48.6 μg/m3) and lowest in the work microenvironment (2.9 ±
11.3 μg/m3). The most frequently reported asthma symptoms, wheezing, chest tightness and cough, were re-
ported on 3.4%, 1.6% and 1.6% of participant-hours, respectively. The odds of reporting asthma symptoms 
increased per interquartile range (IQR) in PM2.5 exposure (odds ratio (OR) 1.29, 95% CI 1.07–1.54) for same- 
hour exposure. Despite this, no association was observed between reliever inhaler use (non-routine, non- 
exercise related) and PM2.5 exposure (OR 1.02, 95% CI 0.71–1.48). 

Current air quality monitoring practices are inadequate to detect acute asthma symptom prevalence resulting 
from PM2.5 exposure; to detect these requires high-resolution air quality data and health information collected in 
situ. Personal exposure monitoring could have significant implications for asthma self-management and clinical 
practice.   

1. Introduction 

Exposure to air pollution is the leading environmental health threat, 
responsible for illnesses such as stroke, chronic obstructive pulmonary 
disease (COPD) and lung cancer (WHO, 2013), resulting in 7 million 
deaths globally each year (WHO, 2020). Though 99% of the global 
population breathe polluted air, the burden of morbidity and mortality 

are not equally shared, with some groups (e.g., those with pre-existing 
disease such as asthma) most at risk (Royal College of Physicians, 2016). 

Asthma is the most prevalent chronic respiratory disease (Chan et al., 
2019), and over 368,000 people in Scotland receive treatment for 
asthma (Scottish Government, 2020a). The physiological and epidemi-
ological links between exposure to air pollutants such as fine particulate 
matter (PM2.5) and acute asthma exacerbations, the longer-term 
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deterioration of asthma, and the onset of asthma are well established (e. 
g., Holst et al., 2020; Kampa and Castanas, 2008; Landrigan et al., 2018), 
with air pollution exposure linked with oxidative stress, airway 
inflammation, hyperresponsiveness and, overtime, airway remodelling 
(Guarnieri and Balmes, 2014). Most of the epidemiological evidence 
that exists is based upon observational population-level health data, 
such as accident and emergency/emergency room visits, hospital-
isations and medication administration (e.g., Hales et al., 2021; Hoff-
mann et al., 2022; Priyankara et al., 2021; Yadav et al., 2021). While 
these approaches provide a useful perspective of health impact, the as-
sociations are spatiotemporally aggregated (Su et al., 2017) and can be 
influenced by underlying factors such as socioeconomic status and ac-
cess to healthcare (Williams et al., 2019) and, therefore, may undermine 
epidemiological assessments linking health effects specifically with air 
pollution. 

Recognising the issues associated with using aggregated health data, 
several studies have explored the links between air pollution exposure 
and individual-level asthma symptom prevalence (e.g., de Camargo 
Matos et al., 2022; Phaswana et al., 2022) or medication (predominantly 
bronchodilator inhaler) use (e.g., Su et al., 2017; Williams et al., 2019). 
However, these studies have been based on exposure assessments 
modelled from air quality data collected via ambient fixed-site moni-
toring (often at some distance from the participants’ home addresses). 
Vitally, such exposure assessment approaches fail to examine links with 
indoor or household exposures related toan individual’s unique behav-
iours, such as cleaning and cooking (AQEG, 2022). Moreover, using 
modelled or surrogate exposure data can introduce bias into the per-
sonal exposure assessment (Butland et al., 2019). 

Difficulties in accurately investigating personal exposure to air 

pollution have, at least in part, been eased by the development of low- 
cost air quality monitors (Chambers et al., 2018). Low-cost monitors, 
owing to their small size, portability, low power requirements and high 
temporal resolution (Loh et al., 2017; Snyder et al., 2013) can allow the 
assessment of exposure across microenvironments (e.g., Steinle et al., 
2015). Such exposure data, paired with individual-level health data, can 
be used to assess linkages between microenvironmental air pollution 
exposures and health measures (e.g., Hao et al., 2022; Rabinovitch et al., 
2016; Turner et al., 2021). However, such studies have, to date, mainly 
examined associations between exposures and asthma symptoms/me-
dication use in prescribed microenvironments, been based on exposure 
metrics aggregated over relatively long timeframes, and/or based upon 
clinical measures (e.g., PEF, FEV1) which are not necessarily responsive 
to acute environmental change nor reflect patient wellbeing (Juniper 
et al., 1996). The aim of this study is to investigate the acute associations 
between personal exposure to PM2.5 and self-reported asthma-related 
health. 

2. Materials and methods 

2.1. Study design and participants 

Thirty-seven non-smoking adults with asthma were recruited from 
across Scotland between February 2021 and July 2021. Eligibility 
criteria included that participants must be aged 18 or older, be a non- 
smoker, have been diagnosed with asthma by a healthcare profes-
sional and live in Scotland. This study was nested within a larger project 
involving semi-structured interviews, co-design of behavioural inter-
vention and a follow-up monitoring campaign, with the same group of 
participants recruited to take part in all elements. A participant advisory 
group consisting of five individuals meeting the same eligibility criteria 
was consulted to refine the project design and pilot the methodology. 
This informed the design of crucial study elements such as diary tem-
plates (format and resolution) and customised backpack designs 
(described in more detail below). Data collection for the main study took 
place between September 2021 and September 2022. This study was 
reviewed and approved by the University of Stirling’s General Univer-
sity Ethics Panel [GUEP 2021 2506 1892]. 

2.2. Personal exposure monitoring 

Each participant monitored their personal exposure to fine particu-
late matter (particulate matter with an aerodynamic diameter ≤2.5 μm 
(PM2.5)) using a PurpleAir PA–II–SD air quality sensor (PurpleAir, 
Draper, UT, USA; hereafter referred to as PurpleAir) attached to a cus-
tomised backpack (Fig. 1). Data collection took place over one week per 
person to capture typical weekly variations in ambient PM2.5 and to 
capture participants’ weekly routines. The PurpleAir measures particles 
using Plantower PMS 5003 air quality sensors, in addition to relative 
humidity, temperature and barometric pressure (Bosch, Reutlingen, 
Germany). Laser counters take readings every 5 s, with averages logged 
to an SD card every 120 s. Prior to data collection, all 16 PurpleAirs used 
in this study were collocated for one-week for interunit comparability. 
Since colocation could not take place with a reference-grade monitor, it 
was accepted that the median value of all 16 sensors was the ‘true’ value. 
Each sensor was individually plotted against the ‘true’ value and sub-
sequent equations were used to adjust sensor outputs. Statistical 

Fig. 1. PurpleAir attached to customised backpack and powered by battery 
pack (inside). The PurpleAir was secured in place with Velcro to minimise 
agitating fibre particles and to keep the sensor as close as feasibly possible to 
‘breathing zone’ height. When stationary for long periods, the participant was 
permitted to remove the PurpleAir from the backpack and keep it close-by. 

Table 1 
Personal exposure metrics. Calculations are based on calendar hour (i.e., between 18:00–19:00).  

Personal exposure metric Description 

Hour mean Mean value for each hour 
Hour max Maximum value for each hour 
Within-hour range Maximum value minus minimum value calculated for each hour 
Within-hour increase Maximum value minus minimum value calculated only where minimum timestamp precedes maximum timestamp  
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analyses were conducted on participant-hour natural log transformed 
PM2.5 exposure data to counter skewness. Exposure variables examined 
included mean, maximum, within-hour range and within-hour increase 
(defined as the within-hour range calculated only where minimum 
timestamp precedes maximum timestamp) (Table 1). Hourly average 
PM2.5 ambient air quality data were obtained from a fixed-site moni-
toring station closest to the participant’s residential address for the 
sampling week. Data were obtained from the Air Quality in Scotland 
website (https://www.scottishairquality.scot). 

Alongside personal exposure monitoring, participants were asked to 
complete a time-activity diary (see Supplementary Material) to support 
the pairing of PM2.5 mass concentrations with activities and microen-
vironments. Time-activity diary templates were set at 1-h time intervals, 
with activity being a free-text response since it would not be possible to 
capture the entire range of possible activities. Microenvironment details 
were captured by check box, based on categories from previous studies 
(e.g., Steinle et al., 2015). These encompassed broad, general categories 
such as ‘transport’ and ‘public building,’ as well as more precise envi-
ronments within the home (e.g., ‘kitchen,’ ‘bedroom,’ ‘living room’). An 
‘other’ option was provided for cases where required. 

2.3. Asthma-related health 

Participants were asked to keep a record of their asthma-related 
health for the duration of the monitoring week via a time-activity 
diary. Self-reported asthma symptoms were recorded hourly. This was 
designed as a free-text response to allow participants to describe their 
asthma symptoms in their own terms. These were reviewed by the 
researcher and subsequently grouped into broader terms (e.g., short of 
breath, out of breath, and struggling to catch my breath were grouped as 
breathless). Inhaler and other asthma medication use was recorded at 
hourly intervals with check box options (nil, preventer, reliever, other) 
and, where applicable, a space for time administered. To distinguish 
between routine or prescribed use of medication and when medication 
was used for the more immediate relief of asthma symptoms, partici-
pants were asked, “If you used your inhaler or asthma medication, 
why?” Again, this was an open-text response to realise the entire range 
of possible reasons. 

2.4. Baseline survey/covariates 

Participants were asked to complete a survey once during the base-
line monitoring campaign. The survey was designed to capture contex-
tual information as in previous work (e.g., Steinle et al., 2015), including 
personal information (i.e., age, gender), information about their 
neighbourhood, their home environment and building characteristics, 
other householders and their typical behaviours within the home. These 
data were included in the model selection process as potential con-
founders/candidate variables in adjusted models. 

2.5. Statistical analyses 

Symptom prevalence (coded as a binary variable) and non-routine or 
exercise-related inhaler use were modelled as a function of different 
metrics of PM2.5 personal exposure (see section 2.2) using mixed-effects 
logistic models with random intercepts for ID to account for person-level 
clustering within the data and repeated-measures design. Similarly, to 
test the association between symptom prevalence and environmental 
factors (temperature and relative humidity) distinctly from PM2.5, these 
were modelled as a function of same-hour, 1-h, and 2-h lag average 
PM2.5. Hourly aggregated PM2.5 exposure data were also tested at 1-h 
and 2-h post-exposure to measure the potential continued impact of 
exposure on participants’ self-reported health (Bancalari et al., 1999; 
O’Byrne, 2009). Odds Ratios (OR), a statistic which quantifies the 
strength of associations, are presented per interquartile range (IQR) 
increase in PM2.5 concentration. The same analyses were repeated 

substituting personal exposure data for data collected via fixed-site 
monitoring station. The correlation between both measures was tested 
using Spearman’s correlation. 

Model selection followed a stepwise selection approach, whereby 
variables were added and removed at different stages to achieve the 

Table 2 
Demographic and descriptive characteristics (n = 28). Urban/rural classifica-
tions are based on Scottish Government definitions (Scottish Government, 
2020b). *n = 27 due to nonresponse. Scottish Index of Multiple Deprivation 
(SIMD).  

Participant characteristic Statistic 

Age (years, mean (range)) 47.5 (24–74)* 
Gender (n (%)) 
Female 19 (67.9) 
Male 9 (32.1) 
Other respiratory condition (n (%)) 
No 26 (92.9) 
Yes 1 (3.6) 
Missing 1 (3.6) 
Pregnant (n (%)) 
No 28 (100) 
Yes 0 (0) 
SIMD Decile (n (%)) 
1 0 (0) 
2 0 (0) 
3 1 (3.6) 
4 2 (7.1) 
5 5 (17.9) 
6 4 (14.3) 
7 4 (14.3) 
8 2 (7.1) 
9 3 (10.7) 
10 7 (25.0) 
Type of dwelling (n (%)) 
Apartment 10 (35.7) 
Semi-detached house 4 (14.3) 
Detached house 5 (17.9) 
Detached bungalow 3 (10.7) 
Detached cottage 2 (7.1) 
Terraced house 3 (10.7) 
Missing 1 (3.6) 
Number of residents (n, mean, (range)) 2.5 (1–5) 
Live with pets (n (%)) 
No 12 (42.9) 
Yes 15 (53.6) 
Missing 1 (3.6) 
Live with smoker (n (%)) 
No 27 (96.4) 
Yes 0 (0) 
Missing 1 (3.6) 
Have a solid fuel burner (n (%)) 
No 20 (71.4) 
Yes 6 (21.4) 
Missing 2 (7.1) 
Type of hob (n (%)) 
Gas 9 (32.1) 
Other (electric, induction) 18 (64.3) 
Missing 1 (3.6) 
In employment (n (%)) 
No 6 (21.4) 
Yes 22 (78.6) 
Urban-rural Classification (n (%)) 
Large urban area 8 (28.6) 
Other urban area 9 (32.1) 
Accessible small town 1 (3.6) 
Remote small town 2 (7.1) 
Very remote small town 1 (3.6) 
Accessible rural 5 (17.9) 
Remote rural 0 (0) 
Very remote rural 2 (7.1) 
Distance of home address from fixed-site monitor (km) 
Max 125.0 
Mean 20.6 
Median 4.0 
Min 0.1  
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best-fitting model (Chowdhury and Turin, 2020). To assess model fit, the 
Akaike information criterion (AIC), second-order Akaike information 
criterion (AICc) and Bayesian information criterion (BIC) were consid-
ered. Final models included variables that were significant predictors 
and/or had a theoretical basis for their inclusion (Steyerberg and Ver-
gouwe, 2014). All analyses were conducted using RStudio version 4.2.2 
(R Core Team, 2022) using the packages lme4 (Bates et al., 2015), sjPlot 
(Lüdecke, 2018) and ggplot2 (Wickham, 2016). 

3. Results 

3.1. Participant descriptive characteristics 

Twenty-eight participants were included in the final analyses, with 
nine participants excluded owing to sensor malfunction (n = 2), 
equipment non-return (n = 1), incomplete/illegible diary data (n = 5) 
and respiratory illness during the monitoring campaign (n = 1). De-
mographic and descriptive characteristics are presented in Table 2. After 
data cleaning (averaging periods only where >75% data were avail-
able), 143 participant days and 4032 participant hours remained. 

PM2.5 personal exposures varied highly both within and between 

participants, with seven-day averages ranging from 1.0 ± 2.5 μg/m3 to 
26.2 ± 93.1 μg/m3 (Fig. 2). This variability was also reflected in 
microenvironmental exposure statistics with the greatest average 
microenvironmental exposure in the private residential microenviron-
ment (11.5 ± 48.6 μg/m3) and lowest in work buildings (2.9 ± 11.3 μg/ 
m3) (Fig. 3). Participants spent over 90% of participant-hours in indoor 
microenvironments, of which 80% of this time was spent in the home 
microenvironment (2904h). The least time was spent in the outdoor 
microenvironment (including ‘garden’ and active travel) (145h, 3.6% 
participant hours). Microenvironmental data were unavailable for 3.5% 
of the total monitoring period. Fixed-site monitor concentration average 
was 5.0 μg/m3 (0.2–42.8μ/m3) during the participant measurement 
weeks. 

Incidences of reliever inhaler use were low (n = 67) and varied be-
tween participants, with 12 participants recording no uses and one 
participant recording 15 uses over the monitoring week. Participants 
reported one or more symptoms on 451h during sampling (11% of 
participant-hours). This too was very variable between participants, 
with five participants experiencing/reporting no symptoms over the 
week and one participant reporting 151h with experience of symptoms. 

Fig. 2. Natural log transformed PM2.5 personal exposure collected via PurpleAirs over the monitoring week by participant. Whiskers extend to the minimum and 
maximum values. The lower end of the box represents Q1 (lower quartile) and the upper end of the box Q3 (upper quartile). The median value is denoted by the black 
line inside the box. Black dots represent outliers. 
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3.2. Personal exposures and asthma-related health 

The most frequently reported single asthma symptoms, wheeze, 
chest tightness and cough, were reported on 3.4%, 1.6% and 1.6% of 
participant-hours, respectively. Symptom prevalence-exposure models 
included temperature and humidity as covariates with other variables 
dropped due to insignificance. Symptom prevalence odds ratios for 
hourly PM2.5 exposure metrics are summarised in Table 3. Associations 
between PM2.5 personal exposure and asthma symptom prevalence 

showed similar temporal trends for mean, maximum and range exposure 
metrics, with same-hour personal exposure associated with the greatest 
OR for symptom prevalence (Table 3; Fig. 4). With a 1-h lag effect for the 
same exposure metrics, OR for symptom prevalence decreased but 
remained positively and significantly associated (Table 3). However, 
with a 2-h lag effect, no significant (albeit consistently positive) asso-
ciations were observed. Discordantly, symptom prevalence was not 
found to be significantly associated with same-hour increase personal 
exposure but was found to be positively and significantly associated with 

Fig. 3. Natural log transformed PM2.5 personal exposure by the microenvironment. Whiskers extend to the minimum and maximum values. The lower end of the box 
represents Q1 (lower quartile) and the upper end of the box Q3 (upper quartile). The median value is denoted by the black line inside the box. Black dots represent 
outliers. Yellow boxes denote indoor environments, and blue boxes denote outdoor environments. Outdoor includes active travel (AT). Mean values: Garden = 5.0 
μg/m3; Home = 9.0 μg/m3; Outdoors = 8.6 μg/m3; Private residence = 11.5 μg/m3; Public building = 8.2 μg/m3; Travel = 5.1 μg/m3; Work building = 2.9 μg/m3. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 3 
Odds Ratio and 95% CI for the associations between personal exposure to PM2.5 and symptom prevalence. Statistically significant estimates (p < 0.05) are highlighted 
in bold. Personal exposure adjusted model includes temperature and humidity and fixed-site adjusted model includes residential distance from monitoring station.   

Odds Ratio (95% CI) per IQR increase in PM2.5 personal exposure 

Adjusted Unadjusted 

Same-hour 1h lag 2h lag Same-hour 1h lag 2h lag 

Hour mean 1.29 (1.07–1.54) 1.24 (1.04–1.49) 1.09 (0.90–1.31) 1.24 (1.04–1.48) 1.27 (1.06–1.51) 1.12 (0.93–1.35) 
Hour max 1.32 (1.12–1.55) 1.28 (1.09–1.51) 1.12 (0.95–1.32) 1.30 (1.12–1.52) 1.31 (1.12–1.54) 1.15 (0.98–1.36) 
Within hour range 1.12 (1.04–1.20) 1.12 (1.04–1.20) 1.07 (0.99–1.14) 1.12 (1.05–1.19) 1.13 (1.06–1.20) 1.08 (1.01–1.16) 
Within hour increase 1.06 (0.96–1.17) 1.14 (1.04–1.26) 1.13 (1.02–1.24) 1.05 (0.95–1.15) 1.14 (1.04–1.26) 1.13 (1.02–1.24) 
Fixed-site PM2.5 concentration 1.10 (0.89–1.34) 1.05 (0.86–1.29) 0.97 (0.79–1.20) 1.10 (0.89–1.34) 1.05 (0.86–1.29) 0.97 (0.79–1.20)  
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a 1-h and 2-h lag effect. Testing the association between symptom 
prevalence and temperature and relative humidity revealed significant 
negative associations, with a one-unit increase in average temperature 
associated with a decrease of 0.03 in the log-odds of experiencing 
symptoms (p < 0.05) and a one-unit increase in average humidity 
associated with a decrease of 0.03 in the log-odds of experiencing 
symptoms (p < 0.05). Both symptom prevalence with a 1-h and 2-h lag 
was not significantly associated with average temperature and relative 
humidity. 

Inhaler use exposure models also contained temperature and hu-
midity as potential covariates within the model. Across PM2.5 personal 
exposure metrics for same hour, positive but not statistically significant 
associations with reliever inhaler use were observed (Table 4; Fig. 5). 
For hour mean, maximum and range metrics with a 1-h and 2-h lag 

effect, a negative but, again, not statistically significant association was 
observed (Table 4; Fig. 5). 

3.3. Fixed-site monitoring data and asthma-related health 

Models using fixed-site air quality data included distance from the 
closest fixed-site station as a control variable. Despite hourly averaged 
fixed-site and personal exposure PM2.5 data being moderately correlated 
(Spearman r = 0.44, p < 0.05), there were no significant associations 
between asthma symptom prevalence and fixed-site ambient levels of 
PM2.5 (Table 3; Fig. 4). Neither a 1-h nor 2-h lag effect was found to be 
associated. Additionally, no significant associations were observed for 
reliever inhaler use and fixed-site ambient PM2.5 (Table 4; Fig. 5). 

Fig. 4. Odds Ratio and 95% CI for the associations between personal exposure to PM2.5 and symptom prevalence for same-hour (0h), 1h and 2h lag.  

Table 4 
Odds Ratio and 95% CI for the associations between personal exposure to PM2.5 and reliever inhaler use. Statistically significant estimates (p < 0.05) are highlighted in 
bold. Personal exposure adjusted model includes temperature and humidity and fixed-site adjusted model includes residential distance from monitoring station.   

Odds Ratio (95% CI) per IQR increase in PM2.5 personal exposure 

Adjusted Unadjusted 

Same-hour 1h lag 2h lag Same-hour 1h lag 2h lag 

Hour mean 1.02 (0.71–1.48) 0.81 (0.53–1.24) 0.76 (0.49–1.17) 1.03 (0.72–1.49) 0.83 (0.55–1.25) 0.78 (0.51–1.19) 
Hour max 1.11 (0.81–1.53) 0.85 (0.58–1.23) 0.78 (0.53–1.15) 1.12 (0.82–1.52) 0.86 (0.60–1.23) 0.80 (0.55–1.16) 
Within hour range 1.11 (0.98–1.27) 0.92 (0.76–1.12) 0.92 (0.76–1.11) 1.11 (0.97–1.26) 0.92 (0.76–1.11) 0.92 (0.76–1.11) 
Within hour increase 1.00 (0.81–1.23) 1.08 (0.88–1.33) 1.00 (0.81–1.24) 1.00 (0.82–1.23) 1.08 (0.88–1.32) 1.00 (0.82–1.24) 
Fixed-site PM2.5 concentration 0.92 (0.61–1.38) 0.85 (0.56–1.29) 0.88 (0.58–1.34) 0.92 (0.61–1.39) 0.85 (0.56–1.29) 0.88 (0.58–1.34)  
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4. Discussion 

Using directly measured hourly PM2.5 personal exposure data paired 
with individual-level health data, this study has investigated the acute 
associations between personal exposure to PM2.5 and self-reported 
asthma-related health. 

The association between increased PM2.5 exposure and increased 
asthma symptom prevalence has been relatively well demonstrated 
within the literature; however, these studies tend to examine temporally 
aggregated air quality data ranging from daily (e.g., Ścibor et al., 2022) 
to biweekly (e.g., Mirabelli et al., 2018) to annual exposure data (e.g., 
Doiron et al., 2017). Adding to this previous work, findings from this 
study have revealed significant positive associations between same-hour 
and 1-h lag personal exposure to PM2.5 and symptom prevalence. Results 
show that same-hour personal exposure to PM2.5 was most strongly 
associated with symptom prevalence, decreasing with each hour lag. By 
the 2-h lag, the association remained positive but was no longer statis-
tically significant, suggesting that short-term exposures play an impor-
tant role in acute asthma symptom prevalence. Previous immunological 
work on allergen-induced asthma has shown that the release of in-
flammatory mediators resulting in bronchoconstriction occurs within 
15 min of exposure and lasts between one and three h (Bancalari et al., 
1999; O’Byrne, 2009). We have shown that personal exposure moni-
toring using high-frequency sampling, paired with hourly-monitored 
health outcome data, can support detection of acute asthma symptom 
prevalence associated with personal exposure to PM2.5. Such an 
approach, from an asthma-management perspective, could be a funda-
mental step in identifying activities and/or microenvironments associ-
ated with increased exposure thus has potential to inform decision 
making and drive behaviour changes. 

This study has demonstrated that high temporal resolution fixed-site 
monitoring data are unable to detect acute environmental changes 
inherent to personal exposures and its impacts on asthma-related health. 
Personal exposures have often been estimated based upon fixed-site 
monitoring or modelled data (e.g., Su et al., 2017; Williams et al., 
2019). To compare the health effect estimates using both approaches, 

hourly averaged PM2.5 data retrieved from the closest fixed-site moni-
toring station to the participants’ home addresses were used as a sur-
rogate for directly monitored personal exposure data collected via 
PurpleAir. Using this surrogate approach, no significant associations 
were found for same-hour, 1-h or 2-h lag. This contrasts with much of 
the literature which has found significant associations using fixed-site 
data (e.g., de Camargo Matos et al., 2022; Phaswana et al., 2022). 
This may be due to the acute (one week per participant) nature of this 
study since correlations between fixed-site monitoring data and personal 
exposure data have been shown to increase with time (Hutcheon et al., 
2010; Strand et al., 2007). However, regardless of timeframe, fixed-site 
data cannot (and are not designed to) detect the inherent heterogeneity 
in personal exposures that arise from individual behaviours, particularly 
within indoor environments (i.e., cooking behaviours, second-hand to-
bacco smoke exposure, home heating behaviours) (McCarron et al., 
2022). 

Fixed-site monitoring, by design, monitors ambient air quality pre-
dominantly influenced by outdoor sources, such as vehicle and indus-
trial emissions. A subsidiary finding from this study arising from time- 
activity monitoring is the proportion of time participants, adults with 
a diagnosis of asthma, spent across different microenvironments, 
spending only 3.6% of their time in outdoor spaces and, as many other 
studies have found, more than 90% of their time indoors (e.g., Mazaheri 
et al., 2018). Results from this study reveal that greatest exposure to 
PM2.5 occurs in residential buildings (i.e., when visiting friend-
s/relatives or in participants’ own homes (which could also explain the 
null finding from the fixed-site data)). As such, using fixed-site data as a 
proxy for personal exposure may lead to exposure misclassification (De 
Hartog et al., 2010). Evangelopoulos et al. (2021) discuss that, in most 
cases, using ambient concentrations as a proxy for personal exposure 
will overestimate exposure since not all ambient pollution will ingress 
indoors where people spend most of their time. Though true, this 
downplays the importance of indoor exposure, considering that indoor 
microenvironments contribute substantially to personal exposures due 
to prolonged duration and closer proximity to sources. Moreover, Habre 
et al. (2014) found that indoor sources account for almost three-quarters 

Fig. 5. Odds Ratio and 95% CI for the associations between personal exposure to PM2.5 and reliever inhaler use for same-hour (0h), 1h and 2h lag.  
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of PM2.5 mass within the home. This highlights the spatial inadequacies 
of using fixed-site data as a proxy for personal exposure and upon which 
to assess epidemiological impacts. Furthermore, current health-based 
guidance concerning exposure to air pollution is based upon data 
monitored and modelled using fixed-site data and primarily focuses on 
outdoor avoidance behaviours to reduce exposure to outdoor air 
pollution. While the avoidance of triggers is critical for asthma control 
(Papaioannou et al., 2015), such advice ignores the significant contri-
butions of highly variable indoors sources, as demonstrated in this study 
and, owing to the small proportion of time individuals spend in outdoor 
microenvironments, is unlikely to have a significant impact. Papaioan-
nou et al. (2015) suggest that personalised management is key to 
achieving asthma control. Research is needed to test the feasibility of 
personal exposure feedback as an asthma-management strategy. 

As this and other studies have demonstrated, exposure to PM2.5 can 
trigger the precipitation of asthma symptoms. Despite personal exposure 
to PM2.5 being positively associated with symptom prevalence, the same 
results were not found for inhaler use. It was hypothesised that since 
reliever inhalers are the “first line of defence against asthma exacerba-
tion” (Williams et al., 2019, pg. 5250), an association may exist between 
inhaler use and PM2.5 exposure. Conversely, results from this study 
suggest that there are no significant associations between hourly per-
sonal exposure and inhaler use for any metric of personal exposure and 
for any (analysed) lag effect. Our results conflict with similar works in 
this field (e.g., Ścibor et al., 2022; Su et al., 2022; Williams et al., 2019) 
with suggestions for this disparity previously discussed. The null result is 
potentially fuelled by a relatively small sample size and a high number 
of inhalers use non-events within the sample, meaning our analysis may 
be underpowered to detect significant associations. 43% of participants 
did not report any use of their reliever inhaler during the study, which, 
in itself, is insightful. Non-adherence is a measured phenomenon, with 
Price et al. (2013) reporting that between 40 and 60% of people with 
asthma are non-adherent to their medication and note that there are 
several multifaceted reasons for this. The invisible nature of air pollu-
tion, along with phenomena such as the home or neighbourhood ‘halo 
effect’ (Bickerstaff and Walker, 2001; Hofflinger, 2019), may influence 
how individuals appraise the threat (Rogers, 1983) that air pollution 
poses to their asthma-related health thus making them less likely to use 
their inhaler than when triggers are more perceivable (i.e., pet dander, 
cold weather). This indicates that a refocus of air pollution within 
clinical practice may be required, ensuring patients are aware of air 
pollution as an asthma trigger and subsequently promoting appropriate 
use of reliever inhalers to alleviate all asthma symptoms, not only those 
with obvious, visible triggers. 

The monitoring methodology is both a strength and a limitation of 
this study. While the use of low-cost sensors allows for the collection of 
air quality data across microenvironments giving a more accurate 
indication of personal exposure, reliability rests on the correct use of the 
device (i.e., close to breathing zone height, always in the same envi-
ronment as the participant). Though participants were trained on using 
the sensor (via a printed guidebook and online videos), there is no way 
to assess compliance during data collection. A few participants had 
missing air quality data for short periods of their monitoring campaign 
as a result of batteries running out of charge or power cables dis-
connecting. Simple alterations to the monitoring equipment, such as 
fixed cables, could overcome this simple issue and result in a more 
complete dataset. Additionally, time-activity diaries were used to collect 
data central to analysis within this study. While these were developed 
alongside a participant advisory group and considered to be the most 
‘accessible’ format for recording information, issues with time-activity 
diaries have been discussed extensively in the literature. Inaccuracies, 
missing data, recall error, incompliance and the burdensome nature of 
data collection may hinder the reliability of data collected (Broderick 
et al., 2003; Jordan et al., 2006; Sternfeld et al., 2012). Future research 
should examine the agreement between diaries and ancillary environ-
mental data collected via low-cost sensors to assess accuracy. 

Additionally, the generalisability of the results from this study are 
limited. Though care was taken to recruit a broadly representative 
sample, since this study relied on voluntary participation, it will suffer 
from selection bias, with people more concerned or impacted by air 
pollution more likely to volunteer, and those with greater capacity (i.e., 
time, energy) more able to participate. We struggled to recruit people 
from Scottish Index of Multiple Deprivation (SIMD) deciles one and two, 
representing the most deprived areas, where there is likely different 
environmental susceptibility to air pollution (e.g., housing, access to 
healthcare, smoking behaviours, occupational exposures, modes of 
travel) (Royal College of Physicians, 2016). On a broader scale, ambient 
air quality in Scotland (which plays a role in personal exposure) is 
generally very good in comparison to other countries, and the under-
lying factors that influence household exposures are very different 
globally. 

In conclusion, we have found compelling evidence which suggests 
that high-resolution data (both spatially and temporally) is required to 
detect the impact of PM2.5 exposure on acute asthma-related health 
impacts. We have demonstrated that current monitoring practices are 
inadequate to assess these acute impacts, and we suggest that personal 
exposure data can be better used both in asthma self-management and 
clinical practice as an effective asthma-management strategy. 
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Ścibor, M., et al., 2022. Associations between daily ambient air pollution and pulmonary 
function, asthma symptom occurrence, and quick-relief inhaler use among asthma 
patients. Int. J. Environ. Res. Publ. Health 19 (8). https://doi.org/10.3390/ 
ijerph19084852. 

Scottish Government, 2020. The Scottish Health Survey 2018 edition; amended in 
February 2020: volume 1 : main report. https://www.gov.scot/publications/scottish 
-health-survey-2018-volume-1-main-report/documents/. (Accessed 15 December 
2020). 

Snyder, E.G., et al., 2013. The changing paradigm of air pollution monitoring. Environ. 
Sci. Technol. 47 (20), 11369–11377. https://doi.org/10.1021/es4022602. 

Steinle, S., et al., 2015. Personal exposure monitoring of PM2.5 in indoor and outdoor 
microenvironments. Sci. Total Environ. 508, 383–394. https://doi.org/10.1016/j. 
scitotenv.2014.12.003. 

Sternfeld, B., et al., 2012. ‘Evaluation of a cell phone–based physical activity diary’. Med. 
Sci. Sports Exerc. 44 (3). https://journals.lww.com/acsm-msse/Fulltext/2012/0 
3000/Evaluation_of_a_Cell_Phone_Based_Physical_Activity.17.aspx. 

Steyerberg, E.W., Vergouwe, Y., 2014. Towards better clinical prediction models: seven 
steps for development and an ABCD for validation. Eur. Heart J. 35 (29), 1925–1931. 
https://doi.org/10.1093/eurheartj/ehu207. 

Strand, M., et al., 2007. A study of health effect estimates using competing methods to 
model personal exposures to ambient PM2.5. J. Expo. Sci. Environ. Epidemiol. 17 
(6), 549–558. https://doi.org/10.1038/sj.jes.7500568. 

Su, J.G., et al., 2017. Feasibility of deploying inhaler sensors to identify the impacts of 
environmental triggers and built environment factors on asthma short-acting 
bronchodilator use. Environ. Health Perspect. 125 (2), 254–261. https://doi.org/ 
10.1289/EHP266. 

Su, J.G., et al., 2022. Identifying impacts of air pollution on subacute asthma symptoms 
using digital medication sensors. Int. J. Epidemiol. 51 (1), 213–224. https://doi.org/ 
10.1093/ije/dyab187. 

Turner, A., et al., 2021. Personal exposure to average weekly ultrafine particles, lung 
function, and respiratory symptoms in asthmatic and non-asthmatic adolescents. 
Environ. Int. 156 https://doi.org/10.1016/j.envint.2021.106740. 

WHO, 2013. Review of evidence on health aspects of air pollution – REVIHAAP Project. 
https://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Fin 
al-technical-report-final-version.pdf. (Accessed 16 June 2021). 

WHO, 2020. World Health Statistics 2020. Monitoring Health for the SDGs. World Health 
Organisation, Geneva. https://apps.who.int/iris/bitstream/handle/10665/332070/ 
9789240005105-eng.pdf. (Accessed 2 February 2021).  

Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis, 2016, second ed. 
Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319- 
24277-4. Imprint: Springer (Use R!).  

Williams, A.M., et al., 2019. Short-term impact of PM2.5 on contemporaneous asthma 
medication use: behavior and the value of pollution reductions. Proc. Natl. Acad. Sci. 
USA 116 (12), 5246–5253. https://doi.org/10.1073/pnas.1805647115. 

Yadav, R., et al., 2021. Effects of ambient air pollution on emergency room visits of 
children for acute respiratory symptoms in Delhi, India. Environ. Sci. Pollut. Control 
Ser. 28 (33), 45853–45866. https://doi.org/10.1007/s11356-021-13600-7. 

A. McCarron et al.                                                                                                                                                                                                                              

https://uk-air.defra.gov.uk/assets/documents/reports/cat09/2211011000_15062022_Indoor_Air_Quality_Report_Final.pdf
https://uk-air.defra.gov.uk/assets/documents/reports/cat09/2211011000_15062022_Indoor_Air_Quality_Report_Final.pdf
https://uk-air.defra.gov.uk/assets/documents/reports/cat09/2211011000_15062022_Indoor_Air_Quality_Report_Final.pdf
https://doi.org/10.1034/j.1398-9995.1999.00199.x
https://doi.org/10.1034/j.1398-9995.1999.00199.x
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1016/S0959-3780(00)00063-7
https://doi.org/10.1207/S15324796ABM2602_06
https://doi.org/10.1207/S15324796ABM2602_06
https://doi.org/10.1186/s12940-018-0432-8
https://doi.org/10.1111/cea.13130
https://doi.org/10.1186/s12890-019-0998-0
https://doi.org/10.1136/fmch-2019-000262
https://doi.org/10.1136/fmch-2019-000262
https://doi.org/10.1007/s11356-022-21066-4
https://doi.org/10.1136/oem.2008.040857
https://doi.org/10.1289/EHP1353
https://doi.org/10.1289/EHP1353
https://doi.org/10.1183/13993003.03432-2020
https://doi.org/10.1183/13993003.03432-2020
https://doi.org/10.1016/S0140-6736(14)60617-6
https://doi.org/10.1038/jes.2013.74
https://doi.org/10.1038/jes.2013.74
https://doi.org/10.1016/j.scitotenv.2021.149660
https://doi.org/10.1016/j.scitotenv.2021.149660
https://doi.org/10.3390/ijerph19063578
https://doi.org/10.1007/s10745-019-00100-z
https://doi.org/10.1186/s12931-022-01983-1
https://doi.org/10.1136/bmj.m2791
https://doi.org/10.1136/bmj.c2289
https://doi.org/10.1136/bmj.c2289
https://doi.org/10.1016/j.jclinepi.2005.12.008
https://doi.org/10.1007/BF00435967
https://doi.org/10.1016/j.envpol.2007.06.012
https://doi.org/10.1016/S0140-6736(17)32345-0
https://doi.org/10.3390/ijerph14040434
https://doi.org/10.5281/ZENODO.1308157
https://doi.org/10.1016/j.envint.2018.08.033
https://doi.org/10.1038/s41370-022-00449-2
https://doi.org/10.1016/j.amepre.2018.01.037
https://doi.org/10.1016/j.amepre.2018.01.037
https://doi.org/10.4168/aair.2009.1.1.3
https://doi.org/10.4168/aair.2009.1.1.3
https://doi.org/10.1183/16000617.00001615
https://doi.org/10.1097/EE9.0000000000000228
https://doi.org/10.1016/j.rmed.2012.09.017
https://doi.org/10.1016/j.rmed.2012.09.017
https://doi.org/10.3390/ijerph18189617
https://www.R-project.org/
https://doi.org/10.1186/s12940-016-0181-5
http://refhub.elsevier.com/S0277-9536(23)00650-0/sref38
http://refhub.elsevier.com/S0277-9536(23)00650-0/sref38
http://refhub.elsevier.com/S0277-9536(23)00650-0/sref38
http://refhub.elsevier.com/S0277-9536(23)00650-0/sref39
http://refhub.elsevier.com/S0277-9536(23)00650-0/sref39
http://refhub.elsevier.com/S0277-9536(23)00650-0/sref39
https://doi.org/10.3390/ijerph19084852
https://doi.org/10.3390/ijerph19084852
https://www.gov.scot/publications/scottish-health-survey-2018-volume-1-main-report/documents/
https://www.gov.scot/publications/scottish-health-survey-2018-volume-1-main-report/documents/
https://doi.org/10.1021/es4022602
https://doi.org/10.1016/j.scitotenv.2014.12.003
https://doi.org/10.1016/j.scitotenv.2014.12.003
https://journals.lww.com/acsm-msse/Fulltext/2012/03000/Evaluation_of_a_Cell_Phone_Based_Physical_Activity.17.aspx
https://journals.lww.com/acsm-msse/Fulltext/2012/03000/Evaluation_of_a_Cell_Phone_Based_Physical_Activity.17.aspx
https://doi.org/10.1093/eurheartj/ehu207
https://doi.org/10.1038/sj.jes.7500568
https://doi.org/10.1289/EHP266
https://doi.org/10.1289/EHP266
https://doi.org/10.1093/ije/dyab187
https://doi.org/10.1093/ije/dyab187
https://doi.org/10.1016/j.envint.2021.106740
https://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf
https://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf
https://apps.who.int/iris/bitstream/handle/10665/332070/9789240005105-eng.pdf
https://apps.who.int/iris/bitstream/handle/10665/332070/9789240005105-eng.pdf
https://doi.org/10.1007/978-3-319-24277-4
https://doi.org/10.1007/978-3-319-24277-4
https://doi.org/10.1073/pnas.1805647115
https://doi.org/10.1007/s11356-021-13600-7

	Personal exposure to fine particulate matter (PM2.5) and self-reported asthma-related health
	1 Introduction
	2 Materials and methods
	2.1 Study design and participants
	2.2 Personal exposure monitoring
	2.3 Asthma-related health
	2.4 Baseline survey/covariates
	2.5 Statistical analyses

	3 Results
	3.1 Participant descriptive characteristics
	3.2 Personal exposures and asthma-related health
	3.3 Fixed-site monitoring data and asthma-related health

	4 Discussion
	Ethical approval
	Funding
	CRediT author statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


