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ABSTRACT: The persistence or memory of soil moisture (u) after rainfall has substantial environmental implications.
Much work has been done to study soil moisture drydown for in situ and satellite data separately. In this work, we present
a comparison of drydown characteristics across multiple U.K. soil moisture products, including satellite-merged (i.e.,
TCM), in situ (i.e., COSMOS-UK), hydrological model [i.e., Grid-to-Grid (G2G)], statistical model [i.e., Soil Moisture
U.K. (SMUK)], and land surface model (LSM) [i.e., Climate Hydrology and Ecology research Support System (CHESS)]
data. The drydown decay time scale (t) for all gridded products is computed at an unprecedented resolution of 1–2 km, a
scale relevant to weather and climate models. While their range of t differs (except SMUK and CHESS are similar) due to
differences such as sensing depths, their spatial patterns are correlated to land cover and soil types. We further analyze the
occurrence of drydown events at COSMOS-UK sites. We show that soil moisture drydown regimes exhibit strong seasonal
dependencies, whereby the soil dries out quicker in summer than winter. These seasonal dependencies are important to
consider during model benchmarking and evaluation. We show that fitted t based on COSMOS and LSM are well corre-
lated, with a bias of lower t for COSMOS. Our findings contribute to a growing body of literature to characterize t, with
the aim of developing a method to systematically validate model soil moisture products at a range of scales.

SIGNIFICANCE STATEMENT: While important for many aspects of the environment, the evaluation of modeled
soil moisture has remained incredibly challenging. Sensors work at different space and time scales to the models, the
definitions of soil moisture vary between applications, and the soil moisture itself is subject to the soil properties while
the impact of the soil moisture on evaporation or river flow is more dependent on its variation in time and space than
its absolute value. What we need is a method that allows us to compare the important features of soil moisture rather
than its value. In this study, we choose to study drydown as a way to capture and compare the behavior of different soil
moisture data products.

KEYWORDS: Soil moisture; Model evaluation/performance; Water resources; Data science; Land surface model

1. Introduction

While accounting for 0.001% of Earth’s water by volume
(Oki et al. 2004), soil moisture (u) is a primary environmental
variable controlling many hydrological and ecological processes.
It plays a critical role in crop yield and plant growth (de Wit and
van Diepen 2008), hillslope stability (Talebi et al. 2007), eco-
system function (D’Odorico et al. 2003), and human health
(Bomblies and Eltahir 2009). Perhaps more significantly, how-
ever, it is its overall control of land surface water and energy
balance coupling and land–atmosphere feedback that make

it so critical to understand soil moisture dynamics. Resting
at the interface between land and air, soil moisture affects
evapotranspiration and serves as the link between global wa-
ter and energy cycles (Akbar et al. 2018b; Fatichi et al. 2016)
in a changing climate (Seneviratne et al. 2010) and exerts
control on near-surface air temperature (Schwingshackl et al.
2017), which impacts the development and persistence of
droughts (Turner et al. 2021), floods (Bonan and Stillwell-Soller
1998; Rong et al. 2022; Wasko et al. 2022), heatwaves (Lorenz
et al. 2010), and wildfires (Krueger et al. 2015). It has also been
shown from both process models and observations that soil
moisture (especially water table depth) exerts an effect of the
atmospheric boundary layer (Maxwell et al. 2007; Dirmeyer
et al. 2014). Projections have shown that decreased soil moisture
will lead to future positive trends in potential evapotranspiration
(PE) due to soil moisture feedbacks on the atmosphere (Berg
et al. 2016), which can exacerbate future drought conditions
(Zhou et al. 2019). Finally, an increasing body of evidence
shows soil moisture and its feedback to atmosphere controls soil
carbon uptake (e.g., Humphrey et al. 2021; Kerr and Ochsner
2020; Green et al. 2019).
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Soil moisture values govern evapotranspiration regimes
(Haghighi et al. 2018; Seneviratne et al. 2010). Specifically, ex-
tended drying in the absence of rainfall can cause soil mois-
ture to fall below a threshold value}leading to a transition
from energy- to water-limited evapotranspiration regimes. Un-
der water-limited regimes, evapotranspiration is no longer lim-
ited by the amount of energy available, but is instead limited by
the amount of moisture present. As a result, evapotranspiration
is reduced with decreasing soil moisture, which results in an in-
crease in sensible heating of the lower atmosphere (Berg et al.
2014; Seneviratne et al. 2010), thus providing an important con-
trol on surface meteorological conditions.

There exist many different soil moisture observations and es-
timates. Traditionally, ground-based measurements are used to
monitor soil moisture. For example, time-domain reflectometry
(TDR; e.g., Robinson et al. 2003) and time domain transmiss-
ometry (TDT; e.g., Blonquist et al. 2005) probes are used to
measure moisture content indirectly based on the correlation to
electric and dielectric properties of materials, while neutron
probes are used to measure soil moisture based on neutron scat-
tering. These probes tend to only capture information local to
the probe and require manual measurements at a site}thus,
they are not suitable for long-term monitoring that represents
a larger area and a depth profile. Geophysical surveys, such
as ground penetrating radar (GPR) or electrical resistivity to-
mography (ERT), can also be used to monitor soil moisture
at site scale and at depths of tens of meters (e.g., Tso et al.
2019; Dafflon et al. 2009; Beff et al. 2013). Their main advan-
tage is that they can provide a geophysical image that de-
scribes the spatial pattern of soil moisture and they have
recently been used to image and monitor root water uptake.
Finally, cosmic ray neutron (COSMOS) probes are com-
monly used nowadays for ground-based soil moisture meas-
urements. It can measure soil moisture at a relatively large
footprint (typically top 15–83 cm of soil over the horizontal
radius footprint ranging from 130 to 240 m depending on
air humidity, soil moisture, and vegetation; Köhli et al. 2015)
and it can take measurements continuously and at near–real
time (Zreda et al. 2012). Over the past 10 years, the number
of COSMOS monitoring stations have grown globally (i.e.,
.100 stations and mobile platforms). COSMOS measure-
ments have also been investigated for their information con-
tent on soil hydraulic properties (Brunetti et al. 2019).

While ground-based measurements can only provide soil in-
formation at point locations around the globe, passive and active
microwave satellite missions/sensors (SMAP, SMOS, ASCAT,
AMRS-2, Sentinel-1, and other legacy missions) as well as opti-
cal instruments (e.g., MODIS, Sentinel-2, and others) provides
excellent coverage, originally at coarse resolution (25–50 km)
but making rapid progress toward high-resolution mapping (i.e.,
0.1–1 km) (Peng et al. 2021a), including many efforts of down-
scaling (Abbaszadeh et al. 2019; Long et al. 2019). Recently, a
6-hourly, 30-m soil moisture over the conterminous United
States (CONUS), SMAP-HydroBlocks, has become available
between 2015 and 2019 (Vergopolan et al. 2021, 2022, 2020).
Satellite soil moisture measurements are typically thought
to be capturing soil moisture information up to the top few
centimeters of the land surface (Akbar et al. 2018a). A recent

paper, however, argues L-band (1.4 GHz) measurements
can sense at least 3–5 times deeper than commonly thought
(Feldman et al. 2023).

There are also satellite products that combine data from mul-
tiple satellites. The European Space Agency (ESA) CCI SM
product (Dorigo et al. 2017) combines various single-sensor ac-
tive and passive microwave soil moisture products into three
harmonized products: a merged ACTIVE, a merged PASSIVE,
and a COMBINED active and passive microwave product, with
the current version providing data from 1978 to present. For a
complete review of ground, proximal, and satellite remote sens-
ing of soil moisture, see Babaeian et al. (2019).

The third way to estimate soil moisture is the use of models,
which has the advantage of being continuous in time and
space. Process models that represent the laws of physics can
be used in this regard. Land surface models (LSMs; e.g.,
JULES, Noah-MP, ORCHIDEE) (e.g., Blyth et al. 2021)
capture the dynamics of water mass and energy balance by
representing various land surface processes, including plant
interactions with land and atmosphere. LSMs usually take a
whole-system approach to model the land surface and they
output a large number of variables, such as total evapotranspi-
ration and components, runoff, surface temperature, soil tem-
perature, snow mass, latent and sensible heat, net and gross
primary productivities, in addition to soil moisture. Hydrolog-
ical models of different formulations (Meng and Quiring
2008) are also useful to produce continuous estimates of soil
moisture. They calculate the mass balance in the different
components of the water cycle and prescribe hydraulic param-
eters to simulate their behavior. For example, it has been
used recently to study extremes and wetting and drying dates
under future climate conditions (Kay et al. 2022). In contrast
to process models, data-driven models, including statistical
and machine learning models, cast soil moisture as a response
variable and seeks to describe it as a function of a number of
predictor variables (e.g., Ghosh et al. 2014). Commonly used
predictor variables include precipitation, temperature land
use, and other proxies of site conditions. These models do not
require specification of physically based model parameters,
boundary conditions, or domain discretization. Rather, relation-
ships are derived between the response and predictor variables.

There exist many global soil moisture data products. For ex-
ample, “SoMo.ml” (O and Orth 2021) is trained using a long
short-term memory (LTSM) machine learning model based on
in situ data collected from more than 1000 stations and provides
multilayer soil moisture data (0–10, 10–30, and 30–50 cm) at
0.258 spatial and daily temporal resolution over the period
2000–19. Topography, GLDAS (Rodell et al. 2004) static varia-
bles, and ERA5 daily meteorological forcing data were used to
train the model. Wang et al. (2021) developed seven global,
gap-free, long-term (1970–2016), multilayer (0–10, 10–30, 30–50,
and 50–100 cm) u products at monthly 0.58 resolution by synthe-
sizing a wide range of u datasets using three statistical methods
(unweighted averaging, optimal linear combination, and emer-
gent constraint). Finally, a key challenge has been the use of
high-quality in situ data to improve low resolution/accuracy of
satellite data (e.g., Tomer et al. 2016). A novel LTSM deep
learning model (Liu et al. 2022) has been developed to combine
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the multiscale data to predict 9-km daily soil moisture (5-cm
depth) over CONUS.

All of these products available are being used to inform im-
portant aspects of the environment such as weather forecast-
ing, drought, agriculture, and landslide risk. However, the
array of products and the different scales horizontally, verti-
cally, and in time that they represent means that evaluating
models can be very challenging. One thing that they all have
in common is that they all respond in the same way to the at-
mosphere: they wet up when it rains and dry out when rain
stops. This key aspect of the land surface is critical to all of
those applications, namely, how quickly the land dries after a
rainfall event. While there has been a prolonged interest in
studying soil moisture memory persistence, particularly its re-
lation to root zone, the availability of global and national
datasets from satellite, sensor networks, and gridded models
have led to intensive characterization of soil moisture dry-
down in recent years, especially the characteristic drydown
decay time scale (t; days) or the e-folding time of the process.
Shellito et al. (2016) was the first to report SMAP soil mois-
ture drying more rapidly than observed in situ following rain-
fall events. Martı́nez-de la Torre et al. (2019b) studied the
drydown processes of global hydrological models (Water-
GAP, SWBM) and LSMs (JULES, HTESSEL, ORCHIDEE,
SURFEX) and flux tower evapotranspiration data and show
that LSMs are in agreement with general patterns. They show
much higher t than satellites because ET from models and
flux tower data has access to deeper soils. McColl et al. (2017)
and Sehgal et al. (2021a) both provides a global analysis of
satellite soil moisture drydown, with the former showing t is
lower in regions with sandier soils, and in regions that are
more arid. Akbar et al. (2018a) classifies the CONUS into ET
regimes based on satellite u drying rates, while Dong et al.
(2022) repeat the same with flux tower, surface (5 cm) and
vertically integrated (0–50 cm) in situ observations. Specifi-
cally, two regimes are defined: water-limited (soil moisture is
a limiting factor for ET) and energy-limited (ET is insensitive
to soil moisture for adequately wet conditions, and is primarily
determined by atmospheric evaporative demands). Sehgal et al.
(2021a) characterize the global soil moisture drydown pattern
from SMAP satellite data at 36 km resolution by plotting the
distribution of the canonical form of the surface soil moisture
loss function. They show strong seasonal variability of drydown
parameters, especially in the grasslands, croplands, and savan-
nah landscapes. High values of falling rate loss in stage-II ET
(i.e., equivalent to low t) is observed for the arid and semiarid
regions, especially for the seasons when the atmospheric mois-
ture demand is high. Soil texture exerts influence on the dry-
down parameters when the soil moisture is low. Sehgal et al.
(2021b) further develops indices such as relative rate of dry-
down and flash drought stress index from satellite data for
global flash drought monitoring. Soil moisture drydown can
also be used to improve the parameterization of land surface
models. For example, Raoult et al. (2021) have evaluated and
optimized in the ORCHIDEE LSM using data assimilation.
They found that the decay parameter t does not appear cor-
related to soil type, consistent with Martı́nez-de la Torre et al.
(2019b) but not with McColl et al. (2017). Ruscica et al. (2020)

considered drydowns from a couple of satellite products and
the ORCHIDEE LSM for a large region in southeastern South
America and highlighted the importance of sampling frequency
and observational errors in t estimates.

What remains lacking is a comprehensive comparison of the
various soil moisture products and their drydown characteristics.
Many studies have compared soil moisture estimates from satel-
lite, modeled, and in situ soil moisture data products (Beck et al.
2021; Deng et al. 2020). However, to our knowledge, there has
not been a comparison of drydown characteristics from these
different types of data products. We focus on drydown as it is
important for most applications such as evaporation modeling,
feedbacks into the atmosphere, runoff generation and agricul-
ture. It is also possible to measure and model it at a range of
scales and therefore a range of observations can be used to
benchmark the models. This method avoids the pitfalls of com-
paring actual soil moisture, which is subject to soil properties
and which is less important for the end result of modeling the
role of soil moisture in the environment.

Using both rainfall- and soil moisture–based drydown iden-
tification techniques, we compare the drydown events and t

values at COSMOS-UK sites for different products available
for the United Kingdom, as well as present median t maps at
1–2 km resolution for the different gridded products. Specifi-
cally, we seek to answer the following research questions:
(i) how consistent or different are the t maps of different
gridded products, (ii) what are the key factors controlling
their spatial and temporal patterns of t, and (iii) if the lack of
rainfall is used to select common drydown events at sites, how
correlated are the t values obtained from the different prod-
ucts? We describe the datasets and methods in section 2, pre-
sent results in section 3, and provide discussions and
conclusions for this study in sections 4 and 5.

2. Datasets and methods

We compare the performance of multiple soil moisture
data products in the United Kingdom from the period
2016–18. We consider daily data and all gridded data have
a spatial resolution of 1 or 2 km. When comparing gridded
datasets to data at COSMOS-UK stations, the grid cell
which a COSMOS-UK station is located within is matched
to that station.

a. Data products

1) POINT DATA AND DATA PRODUCTS

(i) COSMOS-UK

The Cosmic-ray Soil Moisture Observing System (COSMOS)
measures soil moisture (u) based on the theory that the neutrons
derived from cosmic rays are attenuated by water present in soil.
Volumetric soil moisture is derived from corrected neutron
counts based on site-specific field calibration (H. M. Cooper et al.
2021; Evans et al. 2016; Franz et al. 2013). COSMOS-UK (https://
cosmos.ceh.ac.uk) (H. M. Cooper et al. 2021; Evans et al.
2016) is a long-term network of moisture monitoring sites in
the United Kingdom equipped with cosmic-ray neutron probes
(Zreda et al. 2012) and is part of the COSMOS-EUROPE
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network (Bogena et al. 2022). The network’s 51 sites cover a
wide range of land cover, rainfall, elevations, and soil type.
COSMOS-UK dataset has been frequently used for soil
moisture assessment and data assimilation (e.g., E. Cooper
et al. 2021), as well as comparison with other soil moisture
data products (e.g., Peng et al. 2021b). Figure 1 and Table 1
show a map and summary of the COSMOS-UK network,
respectively.

(ii) TDT probes

At many of the COSMOS-UK sites, at least two TDT soil
moisture sensors are installed at various depths to provide ab-
solute volumetric water content and soil temperature for the
validation of COSMOS data. TDT is similar to TDR, but it
measures the transmission, rather than reflection, of a pulse
along a looped, or closed circuit, rod. TDT measures the time
taken for an electromagnetic wave to propagate (travel) along
a given length of a transmission line in the soil, which allows
an estimate of the dielectric constant of the medium. In this
paper, TDT1 and TDT2 are buried at 0.1-m depth and are lo-
cated 1 m apart from each other.

2) GRIDDED DATA PRODUCTS

Four daily gridded U.K. soil moisture datasets is consid-
ered. A summary of the products is given in Table 2.

(i) Grid-to-Grid

The Grid-to-Grid (G2G) model is a fully distributed grid-based
hydrological (runoff production and routing) model which uses
spatial datasets to represent spatial heterogeneity in the landscape
(Bell et al. 2009). Surface and subsurface runoff from each 1-km
grid box provide the lateral inflows to the routing scheme. Al-
though G2G was originally developed to estimate river flows at a
national scale, here, the focus is its soil water storage component.

The G2G model requires gridded time series of precipita-
tion, potential evapotranspiration (PE), and temperature (T)
as input driving data. In the G2G model output considered in
this work, they are:

• Daily 1-km grids of precipitation [CEH Gridded Estimates of
Areal Rainfall (CEH-GEAR)] (Keller et al. 2015; Tanguy et al.
2021), divided equally over each model time step within a day.

• Monthly 40-km grids of short grass PE [Meteorological Of-
fice Rainfall and Evaporation Calculation System (MOR-
ECS)] (Hough and Jones 1997), retrieving the 1-km grid
and extended where necessary by duplicating from the
nearest 1-km box with data, then divided equally over each
model time step within a month.

• Daily 1-km grids of min and max T (HadUK-Grid) (Met
Office et al. 2022), interpolated through the day using a
sine curve (Bell et al. 2016).

FIG. 1. Map of COSMOS-UK sites and their HOST soil type.
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In G2G, total water storage in the soil column (water volume
per unit area) is conceptualized as “available” and “residual” wa-
ter storages, where the residual water is held under tension forces
and is not available for drainage but can contribute to evaporation.
Specifically, the available (WS), maximum available (WSmax), and
residual (WSr) water storages in the soil column are given by

WS 5 L(u 2 ur)
WSmax 5 L(usat 2 ur)
WSr 5 Lur, (1)

where u, us, and ur are the total, saturation, and residual water
contents (water volume per unit volume of soil, 0 # u # 1) and
L is soil depth. Thus, u 5 (WS1 WSr)/L. The soil field capacity
ufc is assumed to be dependent on the saturation water content
us via us 5 1.25ufc. A derived quantity called the Hydrology of
Soil Types (HOST) class (Boorman et al. 1995) has been used

to infer estimates of soil hydraulic properties across the United
Kingdom; values of ufc, ur, and L have been statistically associ-
ated with each of the 29 HOST classes using soil properties ex-
tracted from the SEISMIC database (Hallett et al. 1995). Note
that G2G considers the entire soil column present and different
HOST classes are associated with different depths to groundwa-
ter (i.e., soil depths, see Fig. S2 in the online supplemental
material for map). G2G has also been widely used for flood risk
and high and low river flows (Bell et al. 2016; Kay et al. 2021a;
Lane and Kay 2021). The G2G is generally used to estimate nat-
ural river flows, but recent work has shown that including data-
sets of observed abstractions and discharges can improve G2G
simulation of gauged river flows (Rameshwaran et al. 2022).

(ii) Soil moisture U.K.

Soil moisture U.K. (SMUK; Levy and COSMOS-UK Team
2023) is a parsimonious statistical model built to represent the

TABLE 1. List of COSMOS-UK sites used in the current study. RDMER is no longer operational since 20 Sep 2018 but this does not
affect our analysis.

Station name Station ID Elevation (m) Land cover Start date

Alice Holt ALIC1 80 Deciduous broadleaf forest 6 Mar 15
Balruddery BALRD 130 Farmland 16 May 14
Bickley Hall BICKL 78 Improved grassland 28 Jan 15
Bunny Park BUNNY 39 Arable 27 Jan 15
Cardington CARDT 29 Grassland 24 Jun 15
Chimney Meadows CHIMN 65 Grassland 2 Oct 13
Chobham Common CHOBH 47 Heath 24 Feb 15
Cockle Park COCLP 87 Grassland and arable 21 Nov 14
Crichton CRICH 42 Grassland 2 Dec 14
Easter Bush EASTB 208 Grassland 14 Aug 14
Elmsett ELMST 76 Arable 11 Aug 16
Euston EUSTN 18 Improved grassland 31 Mar 16
Gisburn Forest GISBN 246 Coniferous woodland 15 Aug 14
Glensaugh GLENS 399 Grass and heather moorland 14 May 14
Hadlow HADLW 33 Improved grassland 27 Oct 16
Hartwood Home HARTW 225 Grassland/woodland 20 May 14
Harwood Forest HARWD 300 Coniferous woodland 20 May 15
Henfaes Farm HENFS 287 Semi-natural grassland 17 Dec 15
Hollin Hill HOLLN 82 Grassland 25 Mar 14
The Lizard LIZRD 85 Grassland/heath 17 Oct 14
Loddington LODTN 186 Arable 26 Apr 16
Lullington Heath LULLN 119 Grassland/heath 16 Dec 14
Moor House MOORH 565 Cotton grass/heather 4 Dec 14
Morley MORLY 55 Arable 14 May 14
North Wyke NWYKE 181 Grassland/pasture 16 Oct 14
Plynlimon PLYNL 542 Semi-natural grassland 5 Nov 14
Porton Down PORTN 146 Grassland 18 Dec 14
Redmere RDMER 3 Shallow arable 11 Feb 15
Redhill REDHL 91 Improved grassland 18 Feb 16
Riseholme RISEH 53 Improved grassland 4 May 16
Rothamsted ROTHD 131 Crops and grassland 25 Jul 14
Sheepdrove SHEEP 170 Grassland 24 Oct 13
Sourhope SOURH 487 Coarse grassland 9 Dec 14
Spen Farm SPENF 57 Arable and horticulture 23 Nov 16
Stoughton STGHT 130 Arable 18 Aug 15
Stiperstones STIPS 432 Heathland 6 Nov 14
Tadham Moor TADHM 7 Grassland 14 Oct 14
Waddesdon WADDN 98 Grassland 4 Nov 13
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spatiotemporal variation of U.K. soil moisture. After evalua-
tion of several options, the final form of the fitted function is

uts 5 umin 1 b1hPits 1 b2Tts 1 b3ISW,ts 1 b4Cs, (2)

where Tts is the air temperature at time t and location s; ISW,ts

is the scatterometer synthetic aperture radar (SCAT-SAR)
satellite-based soil water index (Bauer-Marschallinger et al.
2018); Cs is the organic carbon at location s from the Country-
side Survey (CS; Henrys et al. 2012); and b1, b2, b3, and b4 are
regression coefficients. Exponential moving average (EMA)
hPi of the rainfall time series P instead of P itself is used to
handle the nonlinear dependence of soil moisture to the his-
tory of rainfall in the preceding days (i.e., noninstantaneous
rainfall). The EMA rainfall at time t is calculated as

hPit 5 hPit 3 k 1 hPit21 3 (1 2 k), (3)

where k 5 2/(n 1 1), n is the number of time points in the
moving averaged window, and the angled brackets denote
the EMA filter. In the SMUK data considered in this work,
the 2-km rainfall dataset used is taken from the Met Office
NIMROD system (Met Office 2003), which uses processed
radar and satellite data, together with surface reports and nu-
merical weather prediction (NWP) fields. Similarly, air tempera-
ture input data are taken from Met Office U.K. Atmospheric
High Resolution Model data (NWP-UKV) (Met Office 2016).

A Hamiltonian Markov chain Monte Carlo procedure is
used to calibrate the parameters in Eq. (2). Starting with
uninformative priors, the model parameters are estimated
using data from CS sites. Using the posterior distribution
of this step as priors, posterior parameter distributions
are estimated using soil moisture data from COSMOS-UK.
Finally, the fitted model is applied to a 2-km grid across
the United Kingdom to estimate posterior distribution of u
for each day.

b. CHESS

The Joint U.K. Land Environment Simulator (JULES) is a
community land surface model (LSM) designed to be used as
a standalone LSM driven by observed forcing data, or cou-
pled to an atmospheric global circulation model (Best et al.
2011). Water and energy balance at the land surface are con-
sidered and soil moisture is controlled by the interplay of infil-
tration, soil type and hydraulic characteristics, and root zone
dynamics. The soil hydrology component of JULES is based
on a finite difference approximation to the Richards’ equation
(Zha et al. 2019; Richards 1931). The JULES model used a
fixed vegetation map based on observations in Land Cover
Map 2000 (Fuller et al. 2002) to prescribe the land cover frac-
tions of the 8 different categories: broad leaf trees, needle leaf
trees, grass, crops, shrub, water, bare soil, and urban.

Soil moisture is a key LSM variable and various efforts has
been made to improve the representation of soil moisture
in JULES (E. Cooper et al. 2021; Pinnington et al. 2021;
Martı́nez-de la Torre et al. 2019a). The JULES soil moisture
data product considered in this work is the water, carbon and
energy fluxes simulation for Great Britain using the JULES
Land Surface Model and the Climate Hydrology and Ecology
research Support System meteorology dataset (CHESS-land)
(Martinez-de la Torre et al. 2018; Blyth et al. 2019), which
uses a standardized, gridded daily meteorological forcing
dataset at 1-km resolution (CHESS-met) (Robinson et al.
2020a, 2017) as input.

JULES gives soil moisture estimates at various depths; in
standard configuration these correspond to four layers, with
depths [0–10 cm], [10–35 cm], [35–100 cm], and [100–300 cm].
The JULES layers are often referred to by their thicknesses,
which are 10, 25, 65, and 200 cm, respectively. We refer
to these four layers as CHESS10, CHESS25, CHESS65, and
CHESS200 hereinafter. The COSMOS metadata provides
the D86 values, which represent the empirically determined

TABLE 2. Summary of different gridded soil moisture data products considered in this study. All products have a daily resolution.

Product Period considered
Sensing depths and spatial

resolution
Forcing data, dependencies,

notes

SMUK 23 Mar 2016 to 31 Dec 2018 (daily) Comparable to that of COSMOS Statistical model
2-km resolution Forcing data: Met Office

NIMROD and NWP-UKV
Currently conditioned on

COSMOS observations
G2G 1 Jan 2017 to 31 Dec 2018 (daily) Depth of the soil column (a few

centimeters to several meters)
Gridded hydrological model

1-km resolution Forcing data: CEH-GEAR,
MORECS, HadUKGrid

CHESS 1 Jan 2016 to 31 Dec 2017 (daily) Fixed layers of depths [0–10 cm],
[10–35 cm], [35–100 cm], and
[100–300 cm]

CHESS-land output from the
JULES land surface model

(can be converted to COSMOS
sensing depths)

Forcing data: CHESS-met,
Land Cover Map 2000

1-km resolution
TCM 1 Jan 2016 to 31 Dec 2017 (daily) Few centimeters This is a merge of two

satellite products (ASCAT
and SMAP) and CHESS

1-km resolution
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effective depths where 86% of the interactions between cos-
mic rays and water molecules occur (Köhli et al. 2015). For
each day, we calculate a depth-adjusted JULES soil moisture
estimate, uCHESSadj

, depending on the D86 value provided for
that day, such that

where D86 # 10 cm, uCHESSadj
5 uCHESS10

,

where 10 cm , D86 # 35 cm,

uCHESSadj
5

10
D86

3 uCHESS10

( )
1

D86 2 10
D86

3 uCHESS25

( )
,

where 35 cm , D86 # 100 cm,

uCHESSadj
5

10
D86

3 uCHESS10

( )
1

25
D86

3 uCHESS25

( )

1
D86 2 35

D86
3 uCHESS65

( )
, (4)

where u10, u25, and u65 are the JULES predicted soil moisture
values from the [0–10 cm], [10–35 cm], and [35–100 cm] layers,
respectively, and the D86 value is given in cm. In this way,
thickness-weighted contributions to the soil moisture are taken
from every JULES layer which would be wholly or partly con-
tained within the D86. We will focus on individual CHESS
layers, particularly the top 10 cm (CHESS10). For site-based
comparison with COSMOS data, we will focus on the CHESS
outputs adjusted to COSMOS depths (D86) (i.e., uCHESSadj

).

We also use PE data from CHESS-PE (Robinson et al.
2020b) for calculating excess soil moisture (ESM). Similar to
the definition of excess rainfall (i.e., rainfall available for di-
rect runoff, which is the total amount of rainfall minus all ab-
stractions including interception, depression storage, and
infiltration), ESM is defined as soil moisture available that ex-
ceeds PE, which is equivalent to

ESM 5 (uDz 2 PEDt), (5)

where ESM is in millimeters and Dz is the thickness of the
soil column considered in millimeters. PE is in millimeters per
day and is multiplied by the duration Dt of 1 day so that ESM
evaluated at the daily time scale. Negative ESM is possible
when PEDt . uDz.

TRIPLE COLLOCATION MERGED (TCM)

TCM is a merged data product created by merging three
gridded soil moisture products}two from satellite (ASCAT
and SMAP) and one from LSM (CHESS-land)}using triple
collocation (Peng et al. 2021b; Tanguy et al. 2022). The Ad-
vanced Scatterometer (ASCAT), on board the EUMETSAT’s
MetOp-A, MetOp-B, and MetOp-C satellites provides backscat-
ter measurements (active microwave observations) that are used
to derive surface soil moisture, represented by degree of satura-
tion (Wagner et al. 2013). The Soil Moisture Active Passive
(SMAP) satellite (Entekhabi et al. 2010) is a NASA mission to
monitor global land surface soil moisture and freeze/thaw state.
Different levels of soil moisture products have been developed
and published. For deriving the TCM product, the SMAP L3E

product (enhanced level 3, https://nsidc.org/data/SPL3SMP_E/
versions/3) at 9-km resolution based on passive radiometer
measurements was used. Triple collocation error estimation
(Gruber et al. 2017; Chen et al. 2018) in combination with
least squares merging scheme is used to merge the three data-
sets by treating them as independent to each other, which in
turn allows weighted averaging of the products in a way that
takes into account the error characteristics of the individual
datasets (Peng et al. 2021b). The original data output is at
12.5-km resolution in order to match with the resolution of
ASCAT. A 1-km resolution version has been produced by
downscaling the three individual products to 1 km before
merging.

c. Evaluation of time series similarity at COSMOS sites

Three statistical metrics that have been widely adopted in the
soil moisture community (e.g., Gruber et al. 2020), namely, Pear-
son correlation coefficient (R), unbiased root-mean-square error
(ubRMSE), and the Lin’s concordance correlation coefficient
(Lin 1989) are used to quantify the differences between two soil
moisture products. These metrics are defined as follows:

R 5
cov(uProduct1, uProduct2)�����������������

var(uProduct1)
√ �����������������

var(uProduct2)
√ , (6)

ubRMSE 5

��������������������������������������������������������������
[(uProduct1 2 uProduct1 )2 (uProduct2 2 uProduct2 )]

2
√

:

(7)

The overbar here denotes the mean, while var(?) and cov(?)
denote the variance and covariance, respectively. The Lin’s
concordance correlation coefficient (LCC) is defined as

LCC 5
2R(uProduct1, uProduct2)

�����������������
var(uProduct1)

√ �����������������
var(uProduct2)

√
var(uProduct1) 1 var(uProduct2) 1 (uProduct1 2 uProduct2 )2

:

(8)

d. Evaluation of drydown

FITTING DRYDOWN CURVES

Following previous work (Rondinelli et al. 2015; McColl
et al. 2017; Shellito et al. 2016; Kurc and Small 2004), we fit a
drydown curve in the form of

u 5 aexp 2
t
t

( )
1 uwp, (9)

where u is the volumetric moisture content (m3 m23), t is the
elapsed time in days, a is a fitting constant (which represents
the absolute change in u in the fitted drydown sequence), t is
the characteristic drydown in days, and uwp is the empirical
wilting point or asymptotic minimum u at the end of the dry-
down sequence. An illustration of the curve fitting routine is
provided in Fig. 2. It is also noteworthy that 1/t is equivalent
to the slope of 2dudecreasing versus u in stage-II drydown for
evapotranspiration (ET, using t as a proxy for ET loss) or
drainage loss (e.g., Akbar et al. 2018b; McColl et al. 2017).
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In this study, a drydown event is primarily defined as having 5
or more consecutive days of decreasing soil moisture. An advan-
tage of this approach is that it does not depend on other time se-
ries (e.g., rainfall). Consistent with McColl et al. (2017), the
drydown is then only kept if the coefficient of determination (R2)
of the exponential fit is at least 0.7. We have also removed dry-
down events with t . 100 days. This upper bound was imple-
mented since drying events with t exceeding this value would
represent very slow drying or no drying at all which could be due
to artificial water sourced from irrigation, too weak solar radia-
tion in winter for soil evaporation, or no storage of soil moisture
in regions of shallow groundwater table and slow drainage. These
criteria are used when identifying drydowns in both the modeled
and observed time series. No further filtering of drydowns is un-
dertaken. We repeat this for the time series for each grid cell of
each data products.

Alternatively, we can also define drydown events on the basis
of rainless days (e.g., Raoult et al. 2021). A rainless day is defined
as daily rainfall less than 1 mm and a drydown event has a mini-
mum duration of 5 days. We note that in some studies, an initial
increment is required to ensure enough water is in the soil and
the drydown is driven by evapotranspiration (Shellito et al. 2016;
Ruscica et al. 2020). This threshold is not used here because
(i) some events with smaller initial increase will be discarded, and
(ii) the second of two back-to-back drydown events will be dis-
carded. Other authors (e.g., Raoult et al. 2021) have also opted
not to include such criteria. They found that such criteria were
more likely to exclude drydowns and that five dry days were suffi-
cient to ensure an exponentially decaying drying of the soils.

3. Results

a. Comparison of soil moisture dynamics at
COSMOS sites

All the data products considered have different assump-
tions, driving data (if applicable), and effective depths. This

causes the soil moisture time series, albeit all tracking season-
ality well, to vary greatly in values and the degree of fluctua-
tions (see example at Alice Holt in Fig. 3). In particular, G2G
and TCM have much bigger soil moisture ranges than the
others and they both show a ;25% decrease in soil moisture
from March to May 2017 at Alice Holt. This is further illus-
trated in Fig. 4, where the median Pearson’s R between data
product pairs (across sites) are all above 0.65 (ignoring
CHESS200, which is for deep soil moisture) but the Lin’s con-
cordance correlation coefficient (LCC) are very low. Higher
LCC are seen between CHESS layers, CHESS and TCM, and
between COSMOS and SMUK. In particular, CHESS10,
CHESS25, and CHESSadj reproduce among themselves almost
perfectly, indicating very limited interaction with deeper
layers. Higher LCC reflects shared data sources, e.g., part of
the calibration of SMUK used in this study is based on COSMOS
observations. A high LCC of 0.77 between soil moisture
probes at two depths, as well as a high LCC of 0.58 and 0.61
between COSMOS and the probes are observed, indicating
an effect of observational scales (i.e., gridded data versus sen-
sors at sites). The ubRMSE metric can show how the values
between products, on average, differ at each point in time
and space. CHESS10 and SMUK show the lowest ubRMSE
against other data products.

Figure 3 highlights the drydown events defined by rain
gauge data (i.e., rainless days). G2G and CHESS shows clean
decay in u in most of the rainless events, while the statistical
model SMUK and satellite-merged product TCM show that
for a majority of rainless events. COSMOS, however, shows
stronger fluctuations and nondecreasing u for a number of the
rainless events. To handle this issue, an exponential moving
average filter is applied to the COSMOS-UK daily data to ob-
tain smoother soil moisture time series. Figure 3 also high-
lights the following behavior of drydown events detected
based on decreasing soil moisture: (i) their timings and dura-
tions differ greatly between products, and (ii) smoothing can
greatly increase the number of events detected.

FIG. 2. Illustrative example of fitting t for a COSMOS-UK site (Alice Holt, COSMOS measurements) based on Eq. (9). The R2 values
are reported as a measure of goodness-of-fit. Note that we fix the empirical wilting point to be the minimum value in the time series. Note
that the numbers in red correspond to R2, t, and uwp; see labels at the right of the plot.
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While it is expected there are disagreements between rain
gauges and gridded rainfall products, their observations on
the absence or presence of rain tend to be consistent. COS-
MOS and TDT probes are the only products that are direct
observation and do not take forcing data (which includes rain-
fall) into account. The above shows the advantage of identify-
ing drydown events from individual soil moisture time series
itself. Nevertheless, the definition based on rainfall can be
useful when comparing t from more than one product since
all the products will have the same drydown events.

b. Comparison of drydown behavior of gridded products

Figure 5 shows the 1- or 2-km median t of u (i.e., t) map
over the United Kingdom for the different gridded products
considered. The number of drydown events detected per cell
corresponding to Fig. 5 is shown in the Fig. S1. Note only a
few events are detected in the Scottish Highlands for TCM
year-round and for SMUK and TCM in winter. In this section,
CHESS10 is the only CHESS product being considered. For
the summer months (Fig. 5a), CHESS and SMUK show simi-
lar t values ranging between 8 and 13 days for most of the
United Kingdom. However, they seem to highlight different
areas with higher t values (.15 days): SMUK shows higher t
along the Welsh coast and along the Scottish Highlands, while
for CHESS it is southeastern Scotland and southeastern
England. CHESS also shows very low t values for northern
Scotland, which is not observed in the other products. TCM
is returning the lowest t values, where in most places it is

10 days or lower with even lower values along much of the
English coast. This is potentially an effect of the low soil pene-
tration depth of satellites (two out of three data sources in
TCM are satellites) and hence fast drydowns in the top soil
layer. Higher t is observed in small parts of Scotland. The t

map of G2G shows the highest level of spatial variation and
much higher t values. Its t pattern has some resemblance of
the HOST 1 km soil type dataset (https://www.ceh.ac.uk/data/
hydrology-soil-types-1km-grid), which is one of G2G’s input
datasets, especially the depth to groundwater associated with
the soil types (see Fig. S2). Note that G2G is not modeling
surface soil moisture, but rather the soil moisture in the entire
soil column (i.e., similar to all layers of CHESS combined).
Note that in Fig. 3, G2G shows somewhat linear decay, which
could explain the large t values observed in this paper. It does
not appear to have a soil moisture limitation on ET, as soil
moisture decays linearly until the change suddenly becomes
zero. While the G2G model includes an evaporation term, its
soil moisture response could also be controlled by lateral
drainage and percolation to groundwater.

Figure 5 also shows the median t map during winter (Fig. 5b)
and for all seasons (Fig. 5c). On average, the range of winter t
values are roughly twice of that in summer. Later in this paper,
we show that this is because the main mechanism for drying in
winter is drainage, while in the summer the soils are also dried
by evaporation. The spatial pattern of median t maps also show
differences across seasons. For much of England, median t val-
ues exceeding 30 days are observed in winter, while for G2G,

FIG. 3. Soil moisture time series from the various data products at Alice Holt (ALIC1). Drydown events based on COSMOS-UK rain
gauge data at the site are highlighted in red dashed lines (the timings are identical for all products), while drydown events based on de-
creasing soil moisture are shaded in gray.
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extremely high t values are observed in many parts of the na-
tion. Stronger spatial difference is observed in winter than sum-
mer by TCM, where t for much of England becomes higher,
while t remains very low (i.e.,,5 days) for much of Scotland.

Figure 6 shows the probability density function (PDF) esti-
mated based on kernel density estimation from each of the t

maps in Fig. 5. The spread of t for each product is similar, ex-
cept G2G has a very large spread. In the summer, SMUK and
CHESS have similar PDFs with almost identical mean and
median around 11 days, although SMUK has slightly higher
spread. This indicates if there are attempts to merge the two
products based on t, bias correction may not be necessary.
TCM gives the lowest estimates among the products with a
mean t of 7.86 days, which is not surprising as satellite prod-
ucts are sensing at a shallower depth compared to the other
products. The t values for 75% of the pixels are less than
13.4, 33.2, 12.6, and 9.0 days for SMUK, G2G, CHESS, and
TCM, respectively. For winter months, t values generally

increase, with the standard deviation of t values for SMUK,
CHESS, and TCM also increase by 2–3 times. The mean (and
75th percentile) t values of the pixels are 30.9 (37.1), 56.2
(73.3), 30.2 (37.3), and 16.5 (22.0) days for SMUK, G2G,
CHESS, and TCM, respectively. Finally, the all-year distribu-
tions of median t values resemble to the summer patterns
more than the winter ones. Note that similar number of dry-
down events are found in SMUK and CHESS in summer and
winter months. G2G shows up to 50% less drydown events
than the others. This may be due to the fact that in many
places, especially in the SE region, the soils represented in
G2G are deeper and so are less sensitive to changes in rain-
fall. There are almost 30% more drydown events in summer
than winter, while for TCM, there are 70% more drydown
events in summer than winter (see Fig. S1). The PDFs of t for
SMUK and CHESS almost perfectly overlap, while TCM and
CHESS are also well correlated but the TCM estimate of t is
typically half that of CHESS as it includes the satellite

FIG. 4. Median (a) Pearson correlation and (b) Lin’s concordance correlation coefficient (LCC) and (c) unbiased root-mean-square
error across COSMOS sites. It is apparent that while many of the soil moisture are well correlated with each other, they reproduce each
other poorly. Higher LCC reflects shared data sources, e.g., SMUK is conditioned on COSMOS measurements, as well as different layers
of CHESS. TDT1 and TDT2 are soil moisture probes at 10- and 50-cm depth, respectively. CHESSadj is obtained by combining multiple
CHESS layers according to the time-varying COSMOS sensing depths.
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FIG. 5. Map of estimated median drydown time scale t for the different 1- or 2-km gridded soil moisture products over
Great Britain during (a) summer months (JJA), (b) winter months (DJF), and (c) the entire year: SMUK, G2G, CHESS
(surface, i.e., top 10 cm), and TCM. The drydown events are determine by the decreasing soil moisture at each pixel. Note
the color bar scales for G2G are different from the others. Note that in (b) areas in white indicate t . 100 days and are
thus excluded.
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products that use a much shallower soil depth (1 cm). The mean
(and 75th percentile) t values of the pixels are 17.9 (20.3),
47.7 (65.9), 17.8 (20.2), and 10.0 (11.8) days for SMUK,
G2G, CHESS, and TCM, respectively.

With much ongoing peat restoration work to achieve net
zero carbon emissions in the United Kingdom, it is of interest
to understand the drydown properties of high carbon soils.
We expect a higher value of t for high soil carbon areas as
these peaty soils appears to retain water better compared to
mineral soils. While those areas (e.g., Scottish Highlands) usu-
ally has higher absolute soil moisture values than the rest of
the United Kingdom, their t values tend to be considerably
lower than the rest of the United Kingdom (with the excep-
tion of SMUK). This is further demonstrated by the negative
Spearman’s rank correlations between a gridded soil carbon
map and t maps in Table 3.

For both SMUK and CHESS, while t is uniformly low for
most of the United Kingdom in summer (#10 days), t is
higher in winter. This is expected as the drydown is likely to
be much quicker in summer with the added drying effect of
evaporation. In the winter, there also appears to be an influ-
ence of the urban areas in these two products which gives a
faster drydown (lower t) in the cities of London and Birming-
ham. For CHESS, urban areas are represented as having a

near-impermeable surface, so very little water enters the soils.
This is in agreement with Jongen et al. (2022) in their observa-
tions of ET recessions in urban areas. Figure 7 summarizes
the effect of land cover on t. For G2G, as expected, t is high
for all land cover types and a large range is observed. For ara-
ble land use, t tend to be lower than others for SMUK and
CHESS, while higher for G2G and TCM. The comparison of
t between woodlands and grasslands is important as it may in-
dicate whether or not woodland restoration will alter the
land’s response to changing soil moisture. For CHESS, higher
t is observed in broadleaf woodland than grasslands, followed
by coniferous woodland. Martı́nez-de la Torre et al. (2019b)
found that decay time scales are longer for trees than for
grasslands. Meanwhile, for SMUK, higher t is observed in

FIG. 6. Probability density function (PDF) for the estimated 1- or 2-km median drydown time scale t values for the different soil mois-
ture products, and scatterplots of the estimated t for CHESS against other products for (a) summer, (b) winter, and (c) all seasons. The
PDF for CHESS and SMUK in (c) are nearly coincident.

TABLE 3. Spearman’s rank correlation coefficient and Pearson’s
correlation between gridded values of t and topsoil carbon
estimates.

Product Spearman’s Pearson’s

SMUK 0.1566 0.0483
G2G 20.2542 20.2904
CHESS 20.2127 20.2510
TCM 20.1913 0.0056
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improved and seminatural grassland than broadleaf and conif-
erous woodlands.

c. Comparison of drydown behavior at COSMOS-UK sites

When comparing drydown at COSMOS-UK site level, we
focus on individual drydown events at individual sites. This
can be achieved by plotting Gantt charts of the identified dry-
down events and color-code the bars with their t values
(Figs. 8a,b), where each horizontal bar represents a drydown
event. In this section, CHESS data are adjusted to COSMOS
depths (i.e., CHESSadj). For brevity, we have only included the
results for CHESS and COSMOS here, while the Gantt charts
for the other data products are provided in Fig. S3. Note that
the drydown events identified in CHESSadj, G2G, TDT1, and
TDT2, are considerably longer than those in SMUK, TCM
(and its constitutive satellite products), and COSMOS. In
all datasets, t is strongly influenced by seasonality}low in
summer while being very high (.40 days) in winter. The
CHESS data also shows strong temporal coherence of t values
across sites, while the duration of summer drydown events
tend to decrease with increasing latitudes. Figure 8a also shows
interesting features such as the onset of a drydown events that
affects all sites at the same time in June 2017, which indicates
the termination of a rainfall event that affected the entire
United Kingdom in CHESS’s forcing data. Figure 9 shows the
excess soil moisture at the COSMOS-UK sites and it shows the
similar strong seasonality effects in Fig. 8a, suggesting a switch
from a more energy-limited to a more water-limited regime
from winter to summer. In winter drainage is more likely to be
the only process for soil moisture decay, while in summer there
are considerable contributions from both drainage and evapo-
ration. The latitude of the site appears to have negligible effects
on regime transition. Note the onset times are different for
2016 and 2017, but they are similar across sites in a particular
year. Works on the changes in the timing of soil drying in a
year under changing climate can help derive the implications of
such change in regimes (Kay et al. 2022).

While the use of rainless days to define drydown events
would require an additional data source, it is nonetheless use-
ful as it defines the same events for different products, thus
allowing a comparison of t among them (e.g., Raoult et al.
2021). Figure S5 shows a Gantt chart of drydown events de-
termined by the absence of rain and the two plots are colored
by t values estimated with adjusted CHESS and COSMOS-
UK soil moisture during those events, respectively. Since the

events are identical, the bar locations in Fig. S5 are identical.
Comparison with Fig. 8 shows the use of a rainfall-based ap-
proach identify fewer drydown events than the CHESS soil
moisture–based approach. The lower t values in the summer
and autumn are also observed here. The t values obtained from
COSMOS-UK are generally greater than that from CHESS (in
many cases more than 10 days), although this can be attributed
to nondecreasing COSMOS-UK t on rainless days. For both
Fig. S5 and Fig. 8a, lower t (i.e., ,20 days) values are observed
at sites well into October in 2016 but not in 2017, reflecting the
difference in meteorological behavior between years. This is in
agreement with excess soil moisture patterns (Fig. 9), indicating
a strong effect of evaporative demands.

Figure 10 shows a scatterplot between t values estimated by
COSMOS-UK and CHESS (adjusted to COSMOS depths).
The points are colored by the latitude of the COSMOS-UK site
and the size of the points are proportional to the duration of the
drydown event. The t values estimated by the two products are
well correlated, and similar to Raoult et al. (2021), we observe a
bias for in situ observations (i.e., COSMOS-UK) to have a
greater t than LSM (i.e., CHESS). Note that this plot only
shows a small proportion of the identified drydown events, since
we have only included events where drydown fits have R2 $ 0.7
for both products. There is no noticeable latitude effect on t

and while sometimes t pairs of the same site are close together,
it is not necessarily the case. Longer drydown events tend to
have a higher t value. Figure S6 also shows that t values tend to
be higher when the start of the drydown events deviates from
midyear, while Fig. S7 shows that the bias and spread in the 1:1
plot is mostly contributed by the most dominant land cover type
and soil type at COSMOS-UK sites: improved grassland and
mineral soil. Table 4 shows a similar analysis to Fig. 10 for all
data product pairs. COSMOS versus TCM has the slope and
Pearson’s correlation closest to 1.0, while TDT probes tend to
return smaller t values than other products.

4. Discussions

With the rapid increase in the availability of soil moisture
data products, many recent studies have compared soil mois-
ture values from remote sensing, model, and ground observa-
tions data, e.g., with the soil water index (SWI) filter (Beck
et al. 2021) or in the annual scale (Deng et al. 2020). In this
work, we provide a first-of-its-kind comparison of drydown
behavior of 1–2-km and point soil moisture across multiple

FIG. 7. Boxplot of t values in Fig. 5c grouped by Land Cover Map 2015 dominant class (Rowland et al. 2017).

T S O E T A L . 2311DECEMBER 2023

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 01/26/24 12:13 PM UTC



types of products at a national scale. The 1–2-km gridded
products are at a scale relevant to weather and climate models
as well as land management. Comparing and understanding
the drydown behavior of the different products will enable us

to use the right soil moisture product for the right application,
drive improvements in the representation of soil moisture
drydown in models and help us create a flexible tool for evalu-
ating soil moisture models.

FIG. 8. Gantt chart of soil moisture drydown events at COSMOS-UK sites (ordered by increasing latitudes) based
on (a) depth-adjusted CHESSadj and (b) COSMOS-UK soil moisture observations. A gray hatched box denotes peri-
ods with missing data.
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Analyzing almost 10 years of u drydown globally, Raoult
et al. (2022) showed that merging algorithms can lead to fewer
drydown events detected, although drydown time scales are
mostly unchanged. They also showed that detection based on
external precipitation time series, rather than soil moisture

time series, lead to the detection of far fewer events and lon-
ger drydown time scales. Our analysis also shows that differ-
ent methods create different number of drydown events
detected. However, we have not observed fewer drydown
events in the TCM product despite it being a merged product.
While it has been shown vertically integrated (from the sur-
face to 60 cm) soil moisture time series and its shallow (5 cm)
counterpart has large mutual information and the former can
be effectively duplicated by the low-pass transformation of
the former (Qiu et al. 2014), we show that the representative
depths of the different products (which can be spatially and
temporally varying for some) lead to significantly different

FIG. 9. As in Fig. 8a, but colored by daily average excess soil moisture loss, considering the top 10 cm of the
soil column.
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FIG. 10. Bubble plot showing the CHESS modeled (adjusted to
COSMOS depths) vs observed COSMOS t values at COSMOS-
UK sites. The length (in days) of each drydown period (i.e., num-
ber of days with no rain) over which the exponential is fitted is rep-
resented by the size of the dot. Note that only pairs for R2 $ 0.7
for both data products are included. The color of the bubbles rep-
resents latitude.

TABLE 4. Slope and Pearson’s correlation (R) of t for pairs of
data products. Drydown events are defined by lack of rainfall so
they are identical for all products. Note that SMUK is not
included because only a few pairs are available.

DF1 DF2
Number
of pairs Slope R

COSMOS (smoothed) CHESSadj 330 0.7134 0.5606
COSMOS (smoothed) TCM 119 0.8992 0.6860
COSMOS (smoothed) TDT1 245 0.2917 0.4770
COSMOS (smoothed) TDT2 259 0.2654 0.4288
CHESSadj TCM 165 0.6926 0.6484
CHESSadj TDT1 341 0.2069 0.3518
CHESSadj TDT2 344 0.2143 0.3637
TCM TDT1 89 0.1122 0.2596
TCM TDT2 99 0.0863 0.2418
TDT1 TDT2 304 0.6933 0.6693
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drydown estimates. For instance, G2G soil moisture repre-
sents the depth-averaged soil moisture over a range of soil
column depths across the United Kingdom, ranging from a
few centimeters to several meters (Kay et al. 2022), while
CHESS uses the same soil depth for the whole of the United
Kingdom. Meanwhile, COSMOS observations and ASCAT
sense greater depths when soils are dry (Zreda et al. 2008;
Wagner et al. 2013) because water is a strong absorber of
both low-frequency microwaves and cosmic-ray neutrons. Re-
cently, COSMOS-UK data have been corrected to depths
comparable to satellite sensing depths (1 cm) to aid their com-
parisons using Hydrus-1D modeling (Beale et al. 2021). This
study shows that, since the drying time is so sensitive to soil
moisture depth, a similar strategy to normalize soil moisture
products to the same depth may be useful to yield a standard-
ized “surface” soil moisture.

In their global satellite-based study, McColl et al. (2017) found
that t increases with soil sand content (consistent with soil suc-
tion) and decreases with aridity (i.e., higher water demand),
while attributing unexplained variance to not-well-characterized
vegetation. Our work similarly shows a decrease in t in the
summer due to higher water demand. Focusing on CONUS with
better vegetation characterization, Shellito et al. (2018) reports
that drying of surface soil moisture observed by SMAP satellite
is faster than that simulated by the NOAH LSM, which has very
similar soil layers as JULES. SMAP drying is fastest when sur-
face soil moisture levels are high, potential evaporation is high,
and when vegetation cover is low. Soil texture plays a minor role
in SMAP drying rates. Our results confirm that the drying rates
of satellite soil moisture (i.e., TCM, where two of the three data
sources are satellites) is faster than LSM (i.e., CHESS) due to
differences in sensing depths. We also show that the drydown is
a strongly affected by potential evaporation. Any benchmarking
or evaluation of models should therefore be carried out within
times or places where the potential evaporation is similar.

Although the work has shown a way forward in bringing to-
gether different datasets, there remain some issues that need
to be addressed before it is adopted as a standard data-model
benchmark. For instance, some of the gridded datasets are
not very long, and so are of reduced value. This may explain
why we do not have a strong conclusion about the role of soil
type and land cover type on the drying times. It is also true
that the United Kingdom does not have long or consistent dry
periods to explore and establish this method. We also do not
have the soil properties at the soil moisture sensing sites
which would enable us to confirm the relationship between
drying times and soil type. It is recommended that the meth-
ods would be applied again in a region with stronger and lon-
ger drying periods to establish the importance of soil and
vegetation on this landscape property.

It is worth noting there is a rich body of literature on the reces-
sions in streamflow and ET. Streamflow recession analysis seeks
to make inference to watershed properties directly from stream-
flow records (Troch et al. 2015), which is very similar to the goal
of u drydown analysis. The formulation by Kirchner (2009) allow
a wider class of storage–discharge relationships, which may be
transferrable to the modeling of u versus du/dt relationships. Re-
cently, Kim et al. (2023) shows machine learned individual flow

recession curves converge to a common attractor, which may
present a novel way to analyze u drydown as well. The study of
t in u has been closely associated with the study of t in ET. The
two stages of drying in ET was proposed by Brutsaert and Chen
(1995), which is later also used in soil moisture analysis.
Lohmann and Wood (2003) found the ET time scale of 16 land
surface schemes varied greatly. Teuling et al. (2006) reported ob-
served time scales of ET response to u and argued longer t for
ET represents weaker ET sensitivity (e.g., seasonal drought/
woody vegetation). Koster and Suarez (2001) studied the mem-
ory of soil moisture in climate models and found that it is con-
trolled by the relative strengths of four terms: 1) seasonality in
the statistics of the atmospheric forcing, 2) the variation of evap-
oration with soil moisture, 3) the variation of runoff with soil
moisture, and 4) correlation between the atmospheric forcing
and antecedent soil moisture, as perhaps induced by land–
atmosphere feedback. Boese et al. (2019) used ET drydown
events to assess if and how decreasing soil water availability
modifies water use efficiency at ecosystem scale. Carbon-flux
coupling under water-limiting conditions could contribute to the
land use effects on soil moisture drydown we observe in this
work. In summary, we advocate for a more comprehensive ap-
proach to study t in different components of the water cycle.

5. Conclusions

The critical role that soil moisture drydown plays in water avail-
ability and the land surface response and feedbacks with the at-
mosphere have long been established. However, it has
remained difficult to find soil moisture observations at the right
scale to evaluate models of this important property. Attempts
to blend high-resolution satellite products at 1–2-km scale and
point observations at sites struggle with issues around the high
level of heterogeneity of the soil properties, and the strong dif-
ference in depth being “seen” by the different sensors (typically
satellite sensors see only the top of the surface, point sensors
see down to tens of centimeters and models can be looking at
the top 1 m of soil). In this analysis we used a simple metric to
describe soil drydown that can be calculated for all soil moisture
products, including sensors at COSMOS-UK sites, models and
new satellite–model blended products. We show that soil mois-
ture drydown is highly dependent on the soil depth over which
the product is averaged. This indicates that normalizing the soil
moisture to a fixed depth would massively improve our ability
to test models against data. The drydown also exhibits strong
seasonal dependencies controlled by PE, which we show to be
governed by excess soil moisture (i.e., ESM 5 uDz 2 PEDt).
Therefore benchmarking should also be done within seasons,
not for the whole year.

Our findings allow an improved understanding on the char-
acteristics and patterns of t obtained from different U.K. soil
moisture products at different scales, provide a basis to im-
prove the representation of soil moisture drydown in modeled
products, and enable us to derive a new way to benchmark
modeled soil moisture.
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