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Abstract: Recently, methods based on deep learning have been applied to target detection using
synthetic aperture radar (SAR) images. However, due to the SAR imaging mechanism and low
signal-clutter-noise-ratio (SCNR), it is still a challenging task to perform aircraft detection using
SAR imagery. To address this issue, a novel aircraft detection method is proposed for low SCNR
SAR images that is based on coherent scattering enhancement and a fusion attention mechanism.
Considering the scattering characteristics discrepancy between human-made targets and natural
background, a coherent scattering enhancement technique is introduced to heighten the aircraft scatter
information and suppress the clutter and speckle noise. This is beneficial for the later ability of the
deep neural network to extract accurate and discriminative semantic information about the aircraft.
Further, an improved Faster R-CNN is developed with a novel pyramid network constructed by
fusing local and contextual attention. The local attention adaptively highlights the significant objects
by enhancing their distinguishable features, and the contextual attention facilitates the network to
extract distinct contextual information of the image. Fusing the local and contextual attention can
guarantee that the aircraft is detected as completely as possible. Extensive experiments are performed
on TerraSAR-X SAR datasets for benchmark comparison. The experimental results demonstrate that
the proposed aircraft detection approach could achieve up to 91.7% of average precision in low SCNR,
showing effectiveness and superiority over a number of benchmarks.

Keywords: synthetic aperture radar (SAR); aircraft detection; deep learning; scattering enhancement;
attention mechanism

1. Introduction

As an active microwave imaging sensor, synthetic aperture radar (SAR) has the char-
acteristics of large-scale Earth observation, penetrating clouds and fogs, and all-day and
all-weather data acquisition. SAR images have been widely applied in many fields, such as
environmental protection, ocean monitoring, and military domains [1,2]. Target detection
is a typical application of SAR images, attracting a number of research in academia and
industry [3]. Amongst them, aircraft detection is a major task that plays an important role
in airport management as well as battlefield reconnaissance.

Before the emergence of deep learning, there were three main categories in traditional
SAR-based target detection algorithms, including target structure and geometric features,
texture features, and statistical analysis. For a specific target, its structural characteristics
or geometry can provide important information prior to target detection. For an aircraft,
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its structure is usually a “Y” or “T” shape. Gao et al. [4] proposed a target interpretation
method based on aircraft geometric features for high-resolution SAR images. The Hough
transform was used to extract the skeleton composed of the wings and the fuselage, and
the other parts of aircraft were identified based on the collinearity of aircraft structure and
symmetry. Guo et al. [5] used edge detection algorithms based on the Canny operator to
extract the candidate slices of the aircraft target. Textures are another set of key features
commonly extracted from SAR images to describe visual properties using directional gradi-
ent distribution and visual saliency [6]. Tan et al. [7] developed a gradient texture saliency
mapping method based on the local gradient distribution of directions to perform aircraft
detection. Li et al. [8] proposed a target detection algorithm to address the challenge in
selecting a suitable SAR clutter statistical model based on double-domain sparse reconstruc-
tion saliency. He et al. [9] proposed a multi-component model based on mixed statistical
distribution, integrating both the target structure information and statistical distribution.
However, these traditional feature extraction methods have a limited ability to excavate
high-level semantic information of SAR images.

Recently, with the rapid development of deep learning, the convolutional neural net-
work (CNN) has shown strong capabilities for feature representation. Unlike traditional
feature engineering, deep semantic features are learned from CNNs with superior discrimi-
native and generalized ability. There are a number of popular CNN architectures, such as
AlexNet [10], GoogleNet [11], and ResNet [12]. Target detection, as one of the important
tasks in computer vision, has benefited remarkably from those deep networks. Many
studies have shown excellent object detection results using optical images from different
deep networks, including Cascade R-CNN, Faster R-CNN, YOLO series.

SAR images are different from optical ones, however. CNNs have also demonstrated
superior performance on SAR-based target detection through feature learning and feature
representation. For example, Li et al. [13] proposed an improved Faster R-CNN for ship
detection in SAR images. Jiao et al. [14] used densely connected feature maps from different
network layers to solve the issue of multi-scale and multi-scene SAR-based ship detec-
tion. Cui et al. [15] connected the attention module with the pyramid to acquire abundant
features. Li et al. [16] excavated complementary features in spatial and frequency domains
to boost detection accuracy. To detect densely arranged targets, Yang et al. [17] employed
rotated bounding box to detect ships using SAR images.

Although existing deep learning-based detectors have achieved promising results,
there are still open challenges for using SAR images to detect aircraft. First, SAR images
are inevitably contaminated by speckle noise as the active sensing system receives varying
degrees of microwave signals. Second, land clutter in complicated scenes generally has
similar scattering intensity as targets, causing interference with target detection. These
compound effects result in a low signal-clutter-noise-ratio (SCNR) circumstance for SAR-
based aircraft detection. Deep learning-based detectors which use such low SCNR SAR
aircraft images as input would naturally fail to learn discriminative features, leading to
false or missing alarms. Third, an aircraft usually appears as a set of discrete scattering
centers in SAR image, which is different from how it appears in optical images. Further,
the commonly used feature pyramid network (FPN) in deep learning ignores the target’s
contextual information, resulting in deterioration of detection performance. FPN also
utilizes upsampling to concatenate information from different layers, which leads to serious
loss of high-level semantic information during the upsampling process. Figure 1 illustrates
aircraft in the optical images and SAR images with low SCNR. All the above factors have
influenced on the performance of current deep learning-based aircraft detection algorithms,
which is an extremely challenging task.
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Figure 1. Aircraft in optical images and SAR images with low SCNR. (a,b) Google Earth images.
(c,d) SAR images from TerraSAR-X corresponding to (a,b), respectively.

To address the problems outlined above, we propose a novel aircraft detection frame-
work using low SCNR SAR imagery that is based on coherent scattering enhancement (CSE)
in single-look complex (SLC) data and a modified Faster R-CNN with Fusion Local and
Contextual Attention Pyramid Network (FLCAPN). There are large scattering characteris-
tics discrepancies between the human-made targets and natural background; targets have
strong coherence within a large angular mismatch range, while the background requires
sub-pixel registration to form strong coherence. Based on these principles, we designed the
CSE preprocessing to enhance aircraft information in low SCNR SAR images before feeding
them into the detector. The FLCAPN is embedded in the basic Faster R-CNN to reduce the
false alarms and to enhance the localization capability. Within FLCAPN, the local attention
module realizes adaptive local attention to target features, thereby reducing the negative
impact from clutter and speckle noise. Features are then fused with the upper layer features
and sent to the contextual attention module to capture contextual information from a full
feature map. In doing so, the fusion attention mechanism in FLCAPN can provide more
distinguishable semantic features, achieving accurate target location.

The main contributions of this paper are summarized as three folds:

(1) For aircraft detection in low SCNR SAR images, the CSE is introduced and integrated
to construct the Faster R-CNN-based detector. The CSE preprocessing can apparently
enhance the scattering information of the aircraft and reduce the background clutter
and speckle noise.

(2) We propose a novel FLCAPN attention pyramid that aggregates the features with local
information and contextual information. In FLCAPN, the local attention can learn
target local features adaptively, and the contextual attention facilitates the network
in extracting significant context information from the whole image, reducing false
alarms in an efficient and effective way.

(3) We construct a low SCNR SAR image dataset for aircraft detection and conduct
extensive experiments via benchmark comparison. The results demonstrate the effec-
tiveness and superiority of the proposed approach.

The rest of the paper is organized as follows. Section 2 reviews the literature that is
related to this paper; Section 3 introduces the proposed aircraft detection method in detail,
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Section 4 shows the experimental results and analyses; Section 5 discusses the effectiveness
of our method. Finally, Section 6 draws conclusions accordingly.

2. Related Work
2.1. CNN-Based Object Detection Methods

The existing deep learning object detection algorithms are primarily within two cate-
gories, including two-stage detectors and one-stage detectors. The two-stage detectors first
propose regions of interest in the input image and feed these regions into the network for
classification and regression. Commonly used networks include Faster R-CNN [18], Cas-
cade R-CNN [19], etc. Faster R-CNN is further optimized on the basis of Fast R-CNN [20],
where the region proposal network (RPN) is proposed to replace the region proposal
module of the traditional selective search method. The RPN surpasses traditional selective
search in both recall and speed. In addition, the RPN shares the same backbone with
the detection network Fast RCNN, while greatly reduces the inference speed. Cascade
R-CNN uses a multi-stage perceptron cascade, which has the advantage of alleviating
the overfitting during training and the mismatch between proposals and ground truth
during inference.

The one-stage detectors have attracted significant attention due to their faster cal-
culation speed compared with two-stage approaches. The typical one-stage networks
include Single Shot MultiBox Detector (SSD) [21], RetinaNet [22], and You Only Look Once
(YOLO)v8 [23]. SSD uses feature maps from different stages to detect objects of different
sizes. In RetinaNet, the Focal Loss is proposed for the first time, achieving the analogous
accuracy of two-stage detectors. These detectors mentioned above are all based on anchors.
Recently, a large number of anchor-free detectors have been proposed, which abandon
numerous anchors and detect object by key-points or dense predictions. CornerNet [24] is
one of these types of detectors, and it detects the target by predicting a pair of the object’s
corners. FCOS [25] predicts the distance from the center point of the object to the four sides
pixel by pixel to perform object detection.

2.2. Feature Pyramid Networks in Object Detection

The backbone network generates multi-scale feature maps when extracting target
features. If only a single feature map is used for detection, it cannot characterize objects
across multiple scales. Therefore, the Feature Pyramid Network (FPN) [26] is proposed
to handle multi-scale detection information in detection; it fuses low-level features with
more spatial information and high-level features with rich semantic information through
horizontal connections and top-down operation. Unlike FPN, PANet [27] adds another
bottom-up path to form bidirectional connections between pyramids, showing superior
performance. Compared with PANet, BiFPN in EfficientDet [28] uses repeated stacking
of multiple weighted feature fusion blocks to obtain increased detection accuracy. In
DetectoRS [29], Recursive Feature Pyramid (RFP) integrates the feedback from FPN and
connects to the backbone network so that the features obtained by the retraining of the
backbone network are suitable for detection or segmentation tasks. Recently, the neural
architecture search technique has been adopted to achieve the optimal FPN structure, such
as NAS-FPN [30] and Auto-FPN [31].

2.3. CNN-Based Object Detection in SAR Images

Deep learning-based target detection of SAR images has been developed rapidly
based on CNN detectors. Further, current state-of-the-art SAR target detection methods
focus mainly on attention mechanism. For example, Lin et al. [32] used squeeze-and-
excitation attention mechanism-based Faster R-CNN. Cui et al. [33] proposed a CenterNet-
based ship detection method for large-scene SAR images and designed a spatial shuffle-
group enhancement (SSE) attention module to extract stronger semantic features while
suppressing noise and inland interference. Fu et al. [34] designed an anchor-free feature



Remote Sens. 2023, 15, 4480 5 of 20

balancing network that used an attention feature balancing pyramid and feature refinement
to balance features at different levels.

As for aircraft detection, Zhao et al. [35] developed atrous convolution to expand the
receptive field range and used attention modules to enhance the extraction of aircraft infor-
mation. Guo et al. [36] presented a hybrid approach by combining an attention pyramid
network and scattering information enhancement. A convolutional block attention module
(CBAM) [37] was used to help the network focus on the aircraft target feature and avoid
clutter interference. Kang et al. [38] developed a scattering point relationship module to
complete the analysis and correlation of scattering points, such that the integrity of the
aircraft detection was ensured. The contextual feature attention was presented to capture
the global spatial and semantic information with a large receptive field, increasing the
localization accuracy. Zhao et al. [39] proposed the attentional feature refinement and align-
ment network by fusing the attention feature module and using deformable convolution
and refined predicting box. In [40], Wang et al. constructed semantic condition constraints
as well as a global coordinate attention mechanism, to improve aircraft localization and
recognition accuracy. A geospatial transformer framework was designed to detect aircraft
in large-scale SAR images that mainly consisted of a multiscale geospatial contextual atten-
tion network [41]. To address significant intraclass differences and inconspicuous interclass
variations, a global instance contrast network (GICN is proposed to improve interclass
divergences and intraclass compactness [42].

However, the above studies are based on SAR amplitude images, and the phase
information that is available in SAR SLC data has not been extracted. Specifically, SAR
image target detection in low SCNR environments are rarely considered or investigated.

3. Methodology

The framework of the proposed SAR image aircraft detection is shown in Figure 2,
which mainly consists of four parts. The first part is the preprocessing, where SAR images
are input via CSE to provide high SCNR images for the subsequent network. The second
part is the backbone network, which is used for semantic feature extraction. As the third
part, the FLCAPN is developed by fusing the local and contextual attention mechanism,
aiming to export the refined and discriminative features for the successive detector. To
implement the final regression and classification, the last part of the detector is designed as
a basic Faster R-CNN. Each part is described in detail below.
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3.1. CSE Preprocessing

As shown in Figure 1c,d, strong background clutter and severe speckle noise result
in low SCNR SAR images, which weakens the feature information of the aircraft target.
This makes it extremely difficult for the network to extract accurate aircraft target semantic
features. Natural background requires accurate registration to generate coherence, whereas
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artificial targets show strong coherence over a wide range of angular mismatches. Consid-
ering the discrepancy between the scattering characteristics of machine-made targets and
natural background, we introduce the sub-aperture CSE approach to boost target scattering
information and suppress interference in low SCNR SAR images [43–45]. The reason for
this operation lies in how CSE could promote SAR image quality to facilitate the network
in learning to accurately target semantic features.

Figure 3 shows the sub-aperture coherent process, which includes the following steps:
(1) First, apply the Fourier transform on the SAR SLC data in the azimuth direction. (2) Es-
timate the weights, and de-weight the generated spectrum. (3) Decompose the spectrum to
create the two sub-aperture images. (4) Calculate coherence of the two sub-aperture images
to obtain the azimuth coherent image. (5) Then, apply a similar procedure to SAR data
in the range direction, obtaining the range coherent image. (6) Finally, the final coherent
image is created by performing the incoherent calculation on the two coherent images.
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Figure 3. The overview of sub-aperture coherent process.

Given the target situated at the r0 range of the SAR image, we apply the Fourier
transform on the SAR SLC data in the azimuth direction, and the obtained frequency
spectrum is as follows.

S( f ) = exp(j · φ0)ΠB( f ) exp(−j · 2π · f · x0) (1)

where x0 = 2r0/c, φ0 is a constant, B is the bandwidth when −B/2 ≤ f ≤ B/2, ΠB( f ) = 1,
and ΠB( f ) = 0 elsewhere.

SAR data spectra are typically convolved with a weight function to reduce the influ-
ence of the side lobe amplitude of point target impulse responses. Before generating the
sub-aperture images in the azimuth direction, it is necessary to eliminate the influence of
weighting via deconvolution, which is performed in two steps: (1) Estimate the weighting
function in the Doppler domain by averaging the Doppler spectrum amplitude. (2) Calcu-
late the inverse normalization function of the estimated weight function, and then apply it
to the spectrum.

For simplicity, the relative motion between the target and SAR is ignored, i.e., we
consider the Doppler frequency as zero. Each spectrum in azimuth direction is further
separated into two halves, S1, S2, with a spectral width of B/2.

S1( f ) = exp(j · φ0) ·ΠB/2( f +
B
4
) exp(−j · 2π · f · x0)

S2( f ) = exp(j · φ0) ·ΠB/2( f − B
4
) exp(−j · 2π · f · x0)

(2)

where S1, S2 are two sub-aperture images, and their equivalents in the spatial domain are
written as follows.

s1(t) = exp(jφ0) · sin c(
π · B(x− x0)

2
) · exp(

−j · π · B · (x− x0)

2
)

s2(t) = exp(jφ0) · sin c(
π · B(x− x0)

2
) · exp(

j · π · B · (x− x0)

2
)

(3)
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where s1, s2 are SAR SLC data in spatial domain. Afterwards, the Internal Hermitian
Product (IHP) is adopted to calculate the coherence between the two sub-images, and the
formula is as follows.

ξhem =
〈

s1 · s∗2
〉

(4)

where 〈·〉 represents the spatial neighborhood average. In contrast to other approaches that
only compute the phase similarity of sub-aperture images, the IHP effectively captures
both the amplitude and phase information. A similar procedure can be used to obtain the
sub-aperture coherent image in range direction.

Figure 4 offers a diagram of each step in the procedure of azimuthal coherence pro-
cessing. As seen in Figure 4h, the aircraft targets in the SAR image after the incoherent
processing are significantly clearer and the scattering centers are more prominent, while
the clutter and speckle noise are severely suppressed. Obviously, the image processed by
CSE is more favorable for extracting the aircraft target features by deep neural networks.
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Figure 4. Diagram of all steps in the azimuthal coherence processing. (a) The amplitude of SAR
SLC data. (b) Azimuth spectrum. (c) Estimated weight. (d) De-weighted spectrum. (e) Azimuth-
right spectrum after segmentation. (f) Azimuth-left spectrum after segmentation. (g) The azimuthal
coherence image. (h) The adjusted scattering enhancement image. (Note: In (e,f,g), many strong
scattering points of the aircraft target are not visible because the image contrast has not been adjusted).

3.2. Fusion Local and Contextual Attention Pyramid Network

Many object detection networks use FPN to exploit multi-scale semantic information.
Specifically, the FPN obtains a feature map that contains multi-scale semantic information
by fusing the low-level features directly with high-level semantic information. However,
due to the interference of speckle noise and clutter in the SAR image, the detection of
aircraft produces numerous false alarms with inaccurate detected location. Inspired by
the work in [46,47], FLCAPN was developed to organically improve the learning ability,
detection accuracy, fusing local attention (LA), and contextual attention (CA) mechanism.
LA is designed by following the basic structure of the bottleneck attention module in [46],
except for adopting the channel shuffle operation. It can adaptively pay more attention
to the characteristics of the aircraft rather than the clutter. Motivated by the crisscross
attention for strong ability to learn contextual information [47], we adapted it to present CA
to compensate for the lack of information surrounding the target, which is by convolution
and LA. Note that the CA does not consist of a recurrent operation, which is different from
the original crisscross attention. CA aims to adaptively capture contextual information on
the horizontal and vertical path, improving detected box location accuracy. In summary, by
integrating the complementary LA and CA, the proposed FLCAPN is able to learn local
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target features and contextual information effectively. The overall structure of FLCAPN is
shown in Figure 5, where Ci(i = 2, 3, 4) represents the features extracted from the backbone
network and Pi represents the pyramid features finally output to the detector. This process
is calculated as follows.

C′i = Conv1×1(FA(Ci)) i = 2, 3, 4, 5 (5)

Pi =


CA(Upsample(Pi+1) + C′i) i = 2, 3, 4
CA(C′i) i = 5
Maxpool(Pi−1) i = 6

(6)

where Conv1×1 represents 1 × 1 convolution. In addition, P6 is obtained by max-pooling
downsampling from P5, where the convolution kernel size is 1 and the stride is 2. The
low-level features contain richer texture information, so more background clutter and
speckle noise are also preserved, leading to false detections. In contrast, the high-level
features contain more semantic information from the target, resulting in inaccurate target
positioning. Therefore, the low-level features first go through the LA; then, the network
focuses more on the target itself, thereby reducing the interference of background clutter
and noise. Element-wise addition with high-level features allows the network to obtain
rich semantic information. In order to make up for the neglect of the background position
information around the target caused by LA, CA is leveraged to strengthen the differ-
ence information between the learning target and the surrounding background, which is
beneficial for obtaining more accurate detection boxes.
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(1) Local attention: Considering the SAR imaging principle, the target image can be
seen as a series of scattering centers that are difficult to detect due to the influence
of speckle noise and clutter. LA is excavated to reduce the negative impact of noise
and clutter so that the network can adaptively focus on aircraft targets. The overall
architecture of the LA module is illustrated in Figure 6.
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Consider a feature map X ∈ RnC×W×H , where nC, W, and H represents the number
of channels, width, and height, respectively. Firstly, divide X into n groups in the channel
dimension to obtain sub-features Xk ∈ RC×W×H (k = 1, 2, . . . , n). Then, the sub-features
are each sent to the attention module to acquire the corresponding coefficients. Finally, all
sub-features are fused to determine the final feature.

Specifically, each sub-feature is divided into two branches, Xk1, Xk2 ∈ RC/2×W×H .
One obtains the connection between the channels, and the other obtains the connection
between the feature spaces. Compressing Xk1 to s ∈ RC/2×1×1 with global average pooling,
the process is calculated as:

s = G(Xk1) =
1

H ×W

W

∑
i=1

H

∑
j=1

Xk1(i, j) (7)

where G(·) is global average pooling. The information is then aggregated using the sigmoid
activation function to generate the final channel feature map:

X′k1 = σ(Fc(s))Xk1 = σ(w1s + b1)Xk1 (8)

where w1 ∈ RC/2×1×1 and b1 ∈ RC/2×1×1 are parameters to scale s.
Furthermore, another branch focus on the association of features in space, i.e., on

where. First, we use Group Norm (GN) for Xk2 to determine spatial information, then use
fully connected layer to enhance the feature representation of Xk2, and retrieve the final
spatial attention:

X′k2 = σ(w2GN(Xk2) + b1)Xk2 (9)

where w2 ∈ RC/2×1×1 and b2 ∈ RC/2×1×1. Then, the information of these two branches is
aggregated by channel fusion:

X′k = Concat(Xk1, Xk2) (10)

where X′k ∈ RC×W×H (k = 1, 2, . . . , n). Afterwards, all sub-features are obtained. The LA
design follows the principle of a human visual system, which has ‘what’ (channel) and
‘where’ (spatial) pathways, and both pathways contribute to processing visual information.
In order to effectively fuse the information from the two attention channels and make
full use of the information from all channels, similar to shuffleNetv2, the channel shuffle
operation is used to fuse information across groups in the channel dimension. Finally,
a feature map with the same size as the input is obtained.

(2) Contextual attention: In order to make the network capture the information around
the target, the CA is designed to obtain the difference between the target and the
surrounding background. It is implemented by adding upper-level features and local
features obtained through LA. The process is shown in Figure 7.
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Given a local feature map P′ ∈ RC×W×H , firstly, perform three 1 × 1 convolution to
generate three feature maps, Q, K, V ∈ R(CQ/CK/CV)×W×H , where CQ = CK < CV = C.
Then, aiming to achieve contextual attention at position u in the spatial dimension of Q,
we can acquire vector Qu ∈ RCQ , and vector Kiu ∈ RCK (i = 1, 2 . . . W + H − 1), which are
in the same row and column of the corresponding position u in the feature map K. Now,
multiply the vectors of Qu by the transpose of Kiu to form a new vector with dimension
W + H − 1. The operation is calculated as follows:

di,u = QuKT
iu (11)

where di,u ∈ RW+H−1. Perform this operation on each position in Q to obtain a new
feature map D with size R(W+H−1)×W×H . Then, SoftMax is conducted on the feature
map D to acquire the normalized feature map A. Finally, we can also acquire vector set
Vi,u ∈ RCV (i = 1, 2 . . . W + H − 1), which is in the same row and column with position
u. The contextual information of position u is calculated as:

Pu =
W+H−1

∑
i=0

Ai,uVi,u + P′u (12)

where Pu, P′u is the feature in P, P′ ∈ RC×W×H at position u and Ai,u is a scalar value at
channel i and position u in the feature map A. Perform this operation on each position to
determine the contextual feature map P.

By using this CA structure, contextual information in horizontal and vertical direc-
tions can be collected to enhance pixel-wise representative capability with light-weight
computation. In particular, the affinity and aggregation operations bring CA a wide contex-
tual view and selectively aggregate contexts according to the spatial attention map. After
CA, the contextual information of the image is obtained on the basis of fusing the upper
layer features and LA features, which helps to distinguish aircraft targets in surrounding
backgrounds and locate aircraft targets more accurately.

3.3. Loss Function

Similar to basic Faster R-CNN, the proposed network is optimized using a multi-task
loss function.

L({pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, pi

∗) + λ
1

Nreg
∑

i
pi
∗Lreg(ti, ti

∗) (13)

where pi represents the probability that the i-th Anchor is predicted to be the true label; pi
∗

is 1 when the anchor is a positive sample and is 0 when the anchor is a negative sample;
ti represents the bounding box regression parameter used to predict the i-th Anchor; ti

∗

represents the true box label corresponding to the i-th Anchor; Lcls is the classification loss
function, using cross entropy loss; Ncls is the number of anchor boxes for the classification;
Lreg is the regression loss using Smooth L1 loss; Nreg is the size of feature map; λ is the
balance factor. Classification loss is defined as:

Lcls(pi, pi
∗) = − log[pi

∗ log(pi) + (1− pi
∗) log(1− pi)] (14)

Regression loss is defined as:

Lreg(ti, ti
∗) = smoothL1

(
ti − ti

∗
)

(15)

where Smooth L1 loss is defined as:

smoothL1(x) =
{

0.5x2 i f |x| < 1
|x| − 0.5 otherwise

(16)
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4. Experiments and Analysis
4.1. Dataset and Setting

There are no publicly available datasets for SAR aircraft target detection in low SCNR
environment. Here, we built a dataset for this study to evaluate the proposed approach
(Table 1). The raw SAR data of this dataset were acquired from two large scenes using the
Terra SAR-X satellite. The spatial resolution of the TerraSAR-X data from the two scenes is
1 m × 1 m, and the Google Earth optical images corresponding to the scenes are shown in
Figure 8. These two TerraSAR-X images contain a large number of aircraft targets located
on airport runways or aprons and numerous scrapped aircraft located in the surrounding
sandy environment. It should be noted that the SAR images in Figure 8 are a thumb map
processed by the satellite company which has been finely filtered for speckled noise and
clearly presented. However, this is not the actual detection data, which are SLC data
seriously polluted by speckled noise, as shown in Figure 9. By using a manual labeling
and cropping operation, 312 image patches were obtained from the two large-scene SAR
images, each of which was 256 × 256. First, the 312 images were divided into a training set,
a validation set, and a testing set. Since deep neural networks training requires sufficient
samples, these image patches in the three sets were augmented by rotation and mirror
symmetry individually, obtaining 1872 images in total. The augmentation operation was
conducted separately in different datasets, so there were no duplicate samples appearing
in different datasets.

Table 1. Information of dataset.

Dataset Scene 1 Scene 2

Resolution 1 m 1 m
Polarization HH HH

Size 11,132 × 6251 11,166 × 6082
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We implemented the experiment using Pytorch 1.7 and Cuda 11.0 and an NVIDIA
GeForce RTX 3070 GPU. The backbone of the proposed method is the ResNet-50 initialized
with ImageNet pretraining weights, and the dataset was randomly divided into a training
set and a testing set according to the ratio of 8:2. The model was trained using the Stochastic
Gradient Descent (SGD) algorithm with the learning rate set to 0.005, weight decay set to
0.0005, and momentum set to 0.9.
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4.2. Evaluation Metric

Six average precision indicators from Microsoft COCO were adopted to evaluate
the performance of the aircraft detection task, including AP, AP50, AP75, APs, APm, and
APl. Moreover, AP evaluates average precision scores by ten Intersection of Union (IoU)
thresholds between predictions and ground truths (0.50:0.05:0.95). AP50 and AP75 evaluate
average precision scores at 0.5 and 0.75 IoU, respectively. APs, APm and APl refer to the
average precision scores of the small, medium, and large aircraft detection methods under
ten IoU thresholds, the same as AP. Additionally, precision (p) refers to the proportion of all
positive samples that are correctly identified as positive samples. Recall (r) is the proportion
of predicted samples that are correctly identified as positive samples. The calculation of the
two evaluation indicators are as follows.

p =
TP

TP + FP
(17)

r =
TP

TP + FN
(18)

where TP (true positives) is the number of aircraft detected correctly, FP (false positives) is
the number of targets misclassified as aircraft, and FN (false negatives) is the number of
aircraft misclassified as other targets.

AP, defined as the area under the precision-recall curve, is the most common metric
for object detection, which is computed as:

AP =
∫ 1

0
p(r)dr (19)

AP50 was chosen as the main evaluation metric, and it was mainly discussed in the
following experiments.
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4.3. Effect of CSE

Figure 10 shows the comparison of SAR images before and after CSE. It is obvious
that the images processed with CSE are clearer than the corresponding original images.
As can be observed, the land clutter around the aircraft is significantly suppressed, the
target scattering centers are more prominent, and the aircraft outlines are clearer. These
results illustrate that CSE can effectively improve the quality of low SCNR SAR images, and
greatly suppress incoherent background clutter and speckle noise. Therefore, the processed
CSE highlights the contour and scattering center features of the aircraft target, making it
conducive to the discriminative semantic features extraction of the deep neural network.
Furthermore, the superiority of CSE is also validated in the ablation experiments depicted
in “E. Ablation Studies”.
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4.4. Effect of FLCAPN

Grad-CAM [48] was used to visualize the network feature maps to effectively demon-
strate the role of FLCAPN. As shown in Figure 11, the first column is the input test SAR
image, the second column is the heatmap of FPN, and the third column is the heatmap of
FLCAPN. All heatmaps were extracted from the features before being fed into the detector.
It can be clearly observed that, compared with FPN, FLCAPN can extract the semantic
information of aircraft targets more precisely and effectively, while ignoring the influence
of clutter.

Figure 12 shows the superiority of our attention mechanism, where correctly detected
aircraft, missed aircraft, and false alarms were highlighted by green boxes, yellow ellipses,
and red circles, respectively. In the detection images by FPN of Figure 12a, we can see
that the top row image misses two aircraft targets due to strong background clutter, and
the bottom row image has a false alarm for land clutter. In contrast, Figure 12b shows the
aircraft targets correctly detected by FLCAPN, although an aircraft target was still missed
in the top row image.

Table 2 lists the detection results of FPN with LA, CA, and FLCAPN with the aim of
comparing the three attention mechanisms. LA and CA increase AP50 by 0.6% and 0.5%,
respectively, and the fusion attention mechanism increases by 1.0%, achieving better results.
The role of LA is to make the network pay more attention to the important parts of the
image to reduce the interference of background clutter and speckle noise. However, LA
causes the network to lose the connection between the target and background, ignoring
the contextual information of the targets. At this point, CA could learn the contextual
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representation by aggregated contextual information in horizontal and vertical directions.
Therefore, the fusion attention pyramid obtains the best detection ability.
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Table 2. Effectiveness of CA and LA. Best results are in bold.

Methods AP AP50 AP75 APs APm APl

FPN 0.503 0.891 0.519 0.426 0.567 0.723
FPN + LA 0.505 0.897 0.524 0.436 0.575 0.707
FPN + CA 0.507 0.896 0.525 0.425 0.556 0.721
FLCAPN 0.514 0.901 0.531 0.406 0.585 0.711

4.5. Ablation Studies

In this section, we conducted a series of ablation experiments to test the effectiveness
of each proposed module. The results of the ablation experiments are shown in Table 3.
Comparing the results in the second and third row of Table 3, it can be observed that
only the CSE preprocessing is used without FLCAPN, leading to the increment of 1.6%
mAP. This result shows that CSE preprocessing can effectively improve network detection
performance because the low SCNR SAR images in the experiments had been seriously
contaminated by strong land clutter and speckle noise. The CSE can noticeably suppress
clutter and noise, enhancing the target scattering information and thereby improving the
quality of input data. It can also be found that only FLCAPN could boost mAP by 1.0%.
It is apparent that each module in the proposed approach is beneficial to improving the
detection performance, and that the combined adoption of the two modules increased mAP
by 2.6% in total.

Table 3. Ablation studies of CSE And FLCAPN. Best results are in bold.

CSE FLCAPN AP AP50(mAP) AP75 APs APm APl

- - 0.503 0.891 0.519 0.426 0.567 0.723
X - 0.519 0.907 0.528 0.406 0.570 0.677
- X 0.514 0.901 0.531 0.406 0.585 0.711
X X 0.534 0.917 0.561 0.418 0.590 0.714

4.6. Comparison with Other CNN-Based Methods

We further conducted benchmark comparison with other CNN-based object detection
networks, including the Faster R-CNN, RetinaNet, SSD-300, Swin Transformer [49], and
YOLOv8, as shown in Table 4. It can be observed that, compared with other methods,
the proposed approach achieved AP50 accuracy of 91.7%, which was the best detection
performance. As for the AP75, the proposed approach achieved an increase of 4.2% more
than Faster R-CNN. From the improvement of AP75, it is proven that the proposed detection
framework is more accurate. This is because the background clutter and speckle noise
are overwhelmingly suppressed by CSE, and the learning of important parts and the
connection between the target and the background are strengthened by the fusion attention
mechanism. The AP50 and PR curves for different methods are illustrated in Figure 13,
which can further demonstrate the effectiveness of our method.

Table 4. Comparison with other methods. Best results are in bold.

Method AP AP50 AP75 APs APm APl

Faster R-CNN 0.503 0.835 0.519 0.426 0.567 0.723
RetinaNet 0.480 0.723 0.449 0.388 0.517 0.717
YOLOv8 0.388 0.874 0.320 0.301 0.450 0.460
SSD-300 0.465 0.764 0.453 0.367 0.503 0.643

Swin Transformer 0.378 0.768 0.315 0.332 0.417 0.367
Ours 0.534 0.917 0.561 0.418 0.590 0.714
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As shown in Figure 14, for scene (I), where large-scale aircraft are arranged close
together in low SCNR SAR images, other methods have a few missed aircraft targets
compared with our approach because of the disturbance caused by strong clutter. However,
the proposed approach could avoid missed detections thanks to the adoption of CSE and
FLCAPN. Scene (II) occurs under the complicated background of an apron building. Both
Faster R-CNN and RetinaNet falsely detected the buildings as aircraft targets. SSD and
YOLOv8 missed an aircraft on the edge of the scene. Our method correctly detected all
aircraft without false or missed alarms. For scenes (III) and (IV), the small aircraft are
densely arranged. In scene (III), RetinaNet, SSD, Swin Transformer, and YOLOv8 all have
missed detections. In scene (IV), Faster R-CNN, SSD, Swin Transformer, and YOLOv8 have
missed and false alarms. Additionally, RetinaNet has a case of inaccurate detection box
position. As for the approach proposed in this paper, it performed significantly better than
other networks, demonstrating superior adaptative ability to various scenarios.

4.7. Parameter Quantity and FPS

We also conduct experiments on the detection time and model parameter quantity
(PQ) and compare the results with other methods. The experimental results are shown in
Table 5. The frames per second (FPS) are used to evaluate the detection time performance.
As can be seen from Table 5, the FPS of all methods are higher than those cases that use
optical images as input since the SAR data fed into all networks are grayscale images. It
is obvious that YOLOv8 has the highest FPS among all methods as its PQ is the lowest.
The proposed approach uses fused attention mechanisms, so its PQ is the highest, leading
to a relatively lower FPS. However, compared with the Swin Transformer, although our
method has more parameters than the former, the calculation speed for our method is
still faster. In fact, our method pays more attention to the detection accuracy and is less
concerned about detection efficiency. Determining how to promote detection efficiency in
the proposed approach will be our next research task.

Table 5. The parameter quantity (PQ) and FPS comparison with other methods.

Method Faster R-CNN RetinaNet YOLOv8 SSD-300 Swin Transformer Ours

PQ 41.348 M 36.33 M 3.2 M 23.746 M 44.75 M 46.272 M
FPS 396 452 1010 243 137 310
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Figure 14. The detection results of different network models. The green boxes and yellow and red
ellipses represent detected results, missed alarms, and false alarms, respectively. (a) Faster R-CNN,
(b) RetinaNet, (c) SSD-300, (d) YOLOv8, (e) Swin_Transformer, and (f) Our approach. In addition,
each column rep resents a single scene, and the four scenes are represented by (I), (II), (III), and (IV).

5. Discussion

Existing SAR aircraft detection research pays little attention to the case of low SCNR
environments. This paper concentrates on aircraft detection under low SCNR. In low SCNR
SAR images, it is difficult for the network to effectively learn target features due to the
interference of strong clutter and speckle noise, resulting in a large number of false or
missed alarms. In this paper, CSE processing was used to transform the low SCNR SAR
image into a clean SAR image that is conducive to teaching the network about aircraft
target features. Different from the general methods that only use SAR amplitude images,
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CSE makes full use of the amplitude and phase information in SAR SLC data. The principle
of the CSE is based on the scattering mechanism discrepancy between artificial targets
and land clutter or speckle noise. In this way, sub-aperture coherent processing in CSE is
leveraged to effectively suppress land clutter and speckle noise, thereby improving the
target scattering response. Therefore, CSE could facilitate the representation of the network,
enhancing the aircraft target detection capability under low SCNR.

FLCAPN is proposed to enhance the ability to extract aircraft target features by fusing
LA and CA, whereby the network can adaptively focus on the features of the aircraft target
and capture it as discrete scattering points in the SAR image. Specifically, LA is used to
refine features intelligently through channels and spatial branches. For each position, the CA
aggregates contextual information in its horizontal and vertical directions to compensate for
the lack of global information caused by LA and convolution operations. Overall, FLCAPN
highlights features of the target, guarantees the aircraft detection integrity, and improves
the accuracy of the detection box.

Although this paper studies the aircraft target detection, the proposed method can
be extended to ships or any other target detection tasks using low SCNR SAR images. In
addition, the CSE can also be used for SAR target recognition pretreatment. These topics
will be research directions for our follow-up work.

6. Conclusions

In this paper, an aircraft detection method was designed for low SCNR SAR images in
the complicated scenes. The proposed method is based on Faster R-CNN framework, inte-
grating CSE preprocessing and FLCAPN. By introducing the CSE, the input low SCNR SAR
image is transformed to a clean SAR image. Thus, the aircraft target scattering information
is effectively enhanced, and the land clutter and speckle noise are well inhibited, thereby
avoiding a large number of false alarms. FLCAPN was developed to aggregate the seman-
tic information of different layers by organically fusing local information and contextual
information. In FLCAPN, LA is presented to dramatically focus on the meaningful target
features rather than clutter. CA enables the network to learn contextual information, which
helps it learn the correlation between the scattering points of an aircraft target and the
difference between the target and the surrounding background. The experimental results
demonstrate that our method is generally beneficial to aircraft detection in low SCNR SAR
images. In addition, both CSE and FLCAPN can be extended to other SAR target detection
or recognition tasks.

Author Contributions: Software and Validation, D.H.; Conceptualization and Methodology, X.Z.
and D.H.; Experiments, D.H. and Y.L.; Writing—original draft, X.Z. and D.H.; Writing—review and
editing, X.Z. and J.L.; Visualization, S.L.; Supervision, C.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No.
61301224) and the Natural Science Foundation of Chongqing (Grant No. cstc2021jcyj-msxmX0174).
Ce Zhang was supported in part by the Natural Environment Research Council (Grant No. 491
NE/T004002/1).

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank S. Ren for providing the Faster R-CNN codes
at: https://github.com/ShaoqingRen/faster_rcnn: Faster R-CNN (accessed on 15 September 2021).

Conflicts of Interest: The authors declare that they have no conflict of interest to disclose.

References
1. Wang, R.; Wang, Z.; Xia, K.; Zou, H.; Li, J. Target recognition in single-channel SAR images based on the complex-valued

convolutional neural network with data augmentation. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 796–804. [CrossRef]
2. Ai, J.; Pei, Z.; Yao, B.; Wang, Z.; Xing, M. AIS data aided rayleigh cfar ship detection algorithm of multiple target environment in

sar images. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 1266–1282. [CrossRef]

https://github.com/ShaoqingRen/faster_rcnn
https://doi.org/10.1109/TAES.2022.3190804
https://doi.org/10.1109/TAES.2021.3111849


Remote Sens. 2023, 15, 4480 19 of 20

3. Ge, B.; An, D.; Chen, L.; Wang, W.; Feng, D.; Zhou, Z. Ground moving target detection and trajectory reconstruction methods for
multichannel airborne circular SAR. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 2900–2915. [CrossRef]

4. Gao, J.; Gao, X.; Sun, X. Geometrical features-based method for aircraft target interpretation in high-resolution SAR images.
Foreign Electron. Meas. Technol. 2022, 34, 21–28. [CrossRef]

5. Guo, Q.; Wang, H.; Xu, F. Aircraft target detection from spaceborne synthetic aperture radar image. Aerosp. Shanghai 2018, 35, 57–64.
6. Guo, Q.; Wang, H.; Xu, F. Research progress on aircraft detection and recognition in SAR imagery. J. Radars 2020, 9, 497–513.

[CrossRef]
7. Tan, Y.; Li, Q.; Li, Y.; Tian, J. Aircraft detection in high-resolution SAR images based on a gradient textural saliency map. Sensors

2015, 15, 23071–23094. [CrossRef]
8. Li, L.; Du, L.; Wang, Z. Target detection based on dual-domain sparse reconstruction saliency in SAR images. IEEE J. Sel. Topics

Appl. Earth Observ. Remote Sens. 2018, 11, 4230–4243. [CrossRef]
9. He, C.; Tu, M.; Liu, X.; Xiong, D.; Liao, M. Mixture statistical distribution based multiple component model for target detection in

high resolution SAR imagery. ISPRS Int. J. Geo-Inf. 2017, 6, 336. [CrossRef]
10. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
11. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [CrossRef]
12. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.; Liu, W.; et al. Going

deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston,
MA, USA, 7–12 June 2015; pp. 1–9. [CrossRef]

13. Li, J.; Qu, C.; Shao, J. Ship detection in SAR images based on an improved faster r-cnn. In Proceedings of the SAR Big Data Era
Models Methods Applications (BIGSARDATA), Beijing, China, 13–14 November 2017; pp. 1–6. [CrossRef]

14. Jiao, J.; Zhang, Y.; Sun, H.; Yang, X.; Gao, X.; Hong, W.; Fu, K.; Sun, X. A densely connected end-to-end neural network for
multiscale and multiscene SAR ship detection. IEEE Access 2018, 6, 20881–20892. [CrossRef]

15. Cui, Z.; Li, Q.; Cao, Z.; Liu, N. Dense attention pyramid networks for multi-scale ship detection in SAR images. IEEE Trans.
Geosci. Remote Sens. 2019, 57, 8983–8997. [CrossRef]

16. Li, D.; Liang, Q.; Liu, H.; Liu, Q.; Liu, H.; Liao, G. A novel multidimensional domain deep learning network for SAR ship
detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [CrossRef]

17. Yang, R. A novel cnn-based detector for ship detection based on rotatable bounding box in SAR images. IEEE J. Sel. Top. Appl.
Earth Observ. Remote Sens. 2021, 14, 1938–1958. [CrossRef]

18. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]

19. Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 6154–6162.

20. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13
December 2015; pp. 1440–1448. [CrossRef]

21. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 10–16 October 2016; pp. 21–37. [CrossRef]

22. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007. [CrossRef]

23. Ultralytics YOLOv8. Available online: https://github.com/ultralytics/ultralytics (accessed on 17 August 2023).
24. Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer

Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 765–781. [CrossRef]
25. Tian, Z.; Shen, C.; Chen, H.; He, T. Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9626–9635.
26. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 936–944.
[CrossRef]

27. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 8759–8768. [CrossRef]

28. Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Seattle, DC, USA, 14–19 June 2020; pp. 10778–10787. [CrossRef]

29. Qiao, S.; Chen, L.C.; Yuille, A. Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolu-
tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Online, 19–25 June 2021;
pp. 10208–10219. [CrossRef]

30. Ghiasi, G.; Lin, T.-Y.; Le, Q.V. Nas-fpn: Learning scalable feature pyramid architecture for object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 7029–7038.
[CrossRef]

https://doi.org/10.1109/TAES.2022.3141332
https://doi.org/10.19652/j.cnki.femt.2015.08.004
https://doi.org/10.12000/JR20020
https://doi.org/10.3390/s150923071
https://doi.org/10.1109/JSTARS.2018.2874128
https://doi.org/10.3390/ijgi6110336
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/BIGSARDATA.2017.8124934
https://doi.org/10.1109/ACCESS.2018.2825376
https://doi.org/10.1109/TGRS.2019.2923988
https://doi.org/10.1109/TGRS.2021.3062038
https://doi.org/10.1109/JSTARS.2021.3049851
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/ICCV.2017.324
https://github.com/ultralytics/ultralytics
https://doi.org/10.1007/s11263-019-01204-1
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/CVPR.2018.00913
https://doi.org/10.1109/CVPR42600.2020.01079
https://doi.org/10.1109/CVPR46437.2021.01008
https://doi.org/10.1109/CVPR.2019.00720


Remote Sens. 2023, 15, 4480 20 of 20

31. Xu, H.; Yao, L.; Li, Z.; Liang, X.; Zhang, W. Auto-fpn: Automatic network architecture adaptation for object detection beyond
classification. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27
October–2 November 2019; pp. 6648–6657. [CrossRef]

32. Lin, Z.; Ji, K.; Leng, X.; Kuang, G. Squeeze and excitation rank faster r-cnn for ship detection in SAR images. IEEE Geosci. Remote
Sens. Lett. 2019, 16, 751–755. [CrossRef]

33. Cui, Z.; Wang, X.; Liu, N.; Cao, Z.; Yang, J. Ship detection in large-scale SAR images via spatial shuffle-group enhance attention.
IEEE Trans. Geosci. Remote Sens. 2021, 59, 379–391. [CrossRef]

34. Fu, J.; Sun, X.; Wang, Z.; Fu, K. An anchor-free method based on feature balancing and refinement network for multiscale ship
detection in SAR images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1331–1344. [CrossRef]

35. Zhao, Y.; Zhao, L.; Li, C.; Kuang, G. Pyramid attention dilated network for aircraft detection in SAR images. IEEE Geosci. Remote
Sens. Lett. 2021, 18, 662–666. [CrossRef]

36. Guo, Q.; Wang, H.; Xu, F. Scattering enhanced attention pyramid network for aircraft detection in SAR images. IEEE Trans. Geosci.
Remote Sens. 2021, 59, 7570–7587. [CrossRef]

37. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [CrossRef]

38. Kang, Y. Sfr-net: Scattering feature relation network for aircraft detection in complex SAR images. IEEE Trans. Geosci. Remote Sens.
2022, 60, 1–17. [CrossRef]

39. Zhao, Y.; Zhao, L.; Liu, Z.; Hu, D.; Kuang, G.; Liu, L. Attentional feature refinement and alignment network for aircraft detection
in SAR imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [CrossRef]

40. Chen, L.; Luo, R.; Xing, J.; Li, Z.; Yuan, Z.; Cai, X. Geospatial transformer is what you need for aircraft detection in SAR Imagery.
IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [CrossRef]

41. Wang, Z.; Xu, N.; Guo, J.; Zhang, C.; Wang, B. SCFNet: Semantic Condition Constraint Guided Feature Aware Network for
Aircraft Detection in SAR Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–20. [CrossRef]

42. Zhao, D.; Chen, Z.; Gao, Y.; Shi, Z. Classification Matters More: Global Instance Contrast for Fine-Grained SAR Aircraft Detection.
IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [CrossRef]

43. Souyris, J.-C.; Henry, C.; Adragna, F. On the use of complex SAR image spectral analysis for target detection: Assessment of
polarimetry. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2725–2734. [CrossRef]

44. Suess, M.; Grafmueller, B.; Zahn, R. Target detection and analysis based on spectral analysis of a SAR image:a simulation approach.
In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Toulouse, France, 21–25 July
2003; pp. 2005–2007. [CrossRef]

45. Ferro-Famil, L.; Reigber, A.; Pottier, E.; Boerner, W.-M. Scene characterization using subaperture polarimetric SAR data. IEEE
Trans. Geosci. Remote Sens. 2003, 41, 2264–2276. [CrossRef]

46. Park, J.; Woo, S.; Lee, J.-Y.; Kweon, I.S. Bam: Bottleneck attention module. arXiv 2018, arXiv:1807.06514. [CrossRef]
47. Huang, Z.; Wang, X.; Wei, Y.; Huang, L.; Shi, H.; Liu, W.; Huang, T.S. CCNet: Criss-Cross Attention for Semantic Segmenta-

tion. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2
November 2019. [CrossRef]

48. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via
gradientbased localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29
October 2017; pp. 618–626. [CrossRef]

49. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11–17
October 2021; pp. 9992–10002. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ICCV.2019.00675
https://doi.org/10.1109/LGRS.2018.2882551
https://doi.org/10.1109/TGRS.2020.2997200
https://doi.org/10.1109/TGRS.2020.3005151
https://doi.org/10.1109/LGRS.2020.2981255
https://doi.org/10.1109/TGRS.2020.3027762
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1109/TGRS.2021.3130899
https://doi.org/10.1109/TGRS.2021.3139994
https://doi.org/10.1109/TGRS.2022.3162235
https://doi.org/10.1109/TGRS.2022.3224599
https://doi.org/10.1109/TGRS.2023.3250507
https://doi.org/10.1109/TGRS.2003.817809
https://doi.org/10.1109/IGARSS.2003.1294321
https://doi.org/10.1109/TGRS.2003.817188
https://doi.org/10.48550/arXiv.1807.06514
https://doi.org/10.1109/TPAMI.2020.3007032
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/ICCV48922.2021.00986

	Introduction 
	Related Work 
	CNN-Based Object Detection Methods 
	Feature Pyramid Networks in Object Detection 
	CNN-Based Object Detection in SAR Images 

	Methodology 
	CSE Preprocessing 
	Fusion Local and Contextual Attention Pyramid Network 
	Loss Function 

	Experiments and Analysis 
	Dataset and Setting 
	Evaluation Metric 
	Effect of CSE 
	Effect of FLCAPN 
	Ablation Studies 
	Comparison with Other CNN-Based Methods 
	Parameter Quantity and FPS 

	Discussion 
	Conclusions 
	References

