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A B S T R A C T   

Background: Living in areas with high air pollution concentrations is associated with all-cause and cause-specific 
mortality. Exposure in sensitive developmental periods might be long-lasting but studies with very long follow- 
up are rare, and mediating pathways between early life exposure and life-course mortality are not fully 
understood. 
Methods: Data were drawn from the Scottish Longitudinal Study Birth Cohort of 1936, a representative record- 
linkage study comprising 5% of the Scottish population born in 1936. Participants had valid age 11 cognitive 
ability test scores along with linked mortality data until age 86. Fine particle (PM2.5) concentrations estimated 
with the EMEP4UK atmospheric chemistry transport model were linked to participants’ residential address 
derived from the National Identity Register in 1939 (age 3). Confounder-adjusted Cox regression estimated as
sociations between PM2.5 and mortality; regression-based causal mediation analysis explored mediation through 
childhood cognitive ability. 
Results: The final sample consisted of 2734 individuals with 1608 deaths registered during the 1,833,517 person- 
months at risk follow-up time. Higher early life PM2.5 exposure increased the risk of all-cause mortality (HR =
1.03, 95% CI: 1.01–1.04 per 10 μg m− 3 increment), associations were stronger for mortality between age 65 and 
86. PM2.5 increased the risk of cancer-related mortality (HR = 1.05, 95% CI: 1.02–1.08), especially for lung 
cancer among females (HR = 1.11, 95% CI: 1.02–1.21), but not for cardiovascular and respiratory diseases. 
Higher PM2.5 in early life (≥50 μg m− 3) was associated with lower childhood cognitive ability, which, in turn, 
increased the risk of all-cause mortality and mediated 25% of the total associations. 
Conclusions: In our life-course study with 75-year of continuous mortality records, we found that exposure to air 
pollution in early life was associated with higher mortality in late adulthood, and that childhood cognitive ability 
partly mediated this relationship. Findings suggest that past air pollution concentrations will likely impact health 
and longevity for decades to come.   

1. Introduction 

Ambient air pollution poses one of the greatest environmental 
threats to human health. Fine particulate matter with the aerodynamic 
diameter of less than 2.5 μm (PM2.5) is the fifth largest mortality risk 
factor, with an estimated 4.2 million attributable death and 103 million 
disability adjusted life years in 2015 (Cohen et al., 2017). Consistent and 
of high certainty evidence links PM2.5 exposure to increased risk of 

all-cause and cause-specific (e.g., cardiovascular, lung cancer, respira
tory) mortality in the general population (Chen and Hoek, 2020; Pope 
et al., 2020; Liu et al., 2019; Orellano et al., 2020). Large number of 
studies focussed on the short (from 1 h to 7 days) (Orellano et al., 2020), 
medium (<10 years) and long-term impacts (<25 years) (Chen and 
Hoek, 2020) of poor air quality, however, the number of investigations 
drops when it comes to very-long term (≥25 years) associations (Filleul 
et al., 2005; Rosenlund et al., 2006; Hansell et al., 2016; Dehbi et al., 
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2017; Yang et al., 2021; Yap et al., 2012). 
Exposure to high levels of air pollution may be particularly detri

mental and long-lasting when it intersects with sensitive periods of 
human development; still, few studies followed up narrow-age cohorts 
(Dehbi et al., 2017) which is crucial to assess the developmental timing 
of exposure. Evidence suggests that the time before birth and the first 
few years of life are critical, providing the foundation of later health and 
lifespan development (Baranyi et al., 2022; Darling et al., 2020). It is 
plausible that air pollution during this early sensitive/critical period has 
very long-term impact on health (and subsequent mortality), likely 
lasting throughout the entire life course (Steinle et al., 2020). Still, due 
to lack of historical air pollution data and cohort studies with life-course 
follow-up, previous investigations were not able to directly test this 
hypothesis. 

Poor air quality during early life may lead to higher risk of mortality 
through multiple interconnected pathways. Modifications in DNA 
methylation patterns (Isaevska et al., 2021), altered lung (Bettiol et al., 
2021) and brain development (Lubczyńska et al., 2021) are more com
mon among young children living in polluted areas; these are key pre
dictors of healthy life-course development and longevity (Calvin et al., 
2011, 2017). For example, a systematic review of prospective cohort 
studies showed that one standard deviation lower cognitive test scores in 
youth increased mortality with 24% decades later (Calvin et al., 2011). 
Experiences during early childhood can have long-lasting effects on 
brain development and behaviour (Mackes et al., 2020). It is plausible, 
therefore, that air pollution in the early years damages the developing 
brain which leads to lower cognitive abilities in childhood and higher 
risk of mortality. 

Using a representative cohort of the Scottish population born in 
1936, we examined whether and how exposure to PM2.5 in early life 
contributed to a) all-cause mortality across almost the entire life course 
(i.e., between age 11 and 86), to b) cause-specific mortality during late 
adulthood, and c) whether associations with all-cause mortality were 
mediated by childhood general cognitive ability. Air pollution exposure 
were linked to addresses at the age of 3, a period important for healthy 
life-course development. 

2. Methods 

2.1. Study population 

Data were taken from the Scottish Longitudinal Study Birth Cohort of 
1936 (SLSBC1936), a retrospective cohort study assembled from 
routinely collected administrative data, representative of the Scottish 
population born in 1936. SLSBC1936 is based on very high-quality data 
linkages between four sources, a) the 1939 National Identity Register, a 
census-like registry of the entire UK population carried out on the 
September 29, 1939 at the start of World War Two; b) the Scottish 
Mental Survey 1947 (SMS1947), a general cognitive ability test under
taken among almost all 11-year old Scottish schoolchildren in June 4, 
1947; c) Scotland’s National Health Services Central Register (NHSCR); 
and d) the Scottish Longitudinal Study, a 5.3% administrative sample of 
the Scottish population selected based on 20 semirandom birthdays and 
followed up since 1991 (Huang et al., 2017). In addition to the core 
SLSBC1936 sample, we also included individuals who would have 
entered the Scottish Longitudinal Study if they did not die or leave the 
country before in 1991; detailed information on matching procedure are 
available elsewhere (Huang et al., 2017). Therefore, our sample 
comprised individuals born in 1936 on one of the 20 Scottish Longitu
dinal Study birth dates, enumerated in the 1939 National Identity 
Register, participated in the SMS1947, and captured by the NHSCR 
system, totalling to a maximum sample size of 3626 individuals. 

2.2. Exposure to PM2.5 pollution 

Annual level of PM2.5 concentrations for the modelling year of 1935 

was estimated using the EMEP4UK version 4.17 derived from the EMEP 
MSC-W version 4.17 (Simpson et al., 2012) atmospheric chemistry 
transport model (Vieno et al., 2010, 2014, 2016). The meteorology year 
used here was 2015. The meteorological driver used was the Weather 
Research and Forecast (WRF) model version 3.9.1.1 (Skamarock et al., 
2008) based on the Global forecast system final re-analysis (GFS-FNL) as 
initial condition and 6-h nudging (National Centers for Environmental 
Prediction/National Weather Service/NOAA/U.S. Department of Com
merce, 2000). Gridded anthropogenic emission of pollutants (nitrogen 
oxides, sulphur oxides [SO2], ammonia [NH3], non-methane volatile 
organic compounds, carbon monoxide, course [PM10] and fine partic
ulate matter [PM2.5]) were estimated for the year 1950 (Tipping et al., 
2017), and a scaled version of these data distributions, based upon ac
tivity data research, were used to make emission estimates in 1935 (Russ 
et al., 2021). Non-NH3 activity data in that era are largely a reflection of 
the use of fossil fuels such as coal and of some oil-derived products while 
agricultural data, the majority source of NH3 emissions, was derived 
from the Vision of Britain database (Great Britain Historical GIS Project, 
2017). The model employs a horizontal resolution of 0.5 × 0.5◦ to a 
greater European domain providing the boundary condition for a nested 
UK domain with a horizontal resolution of 0.037 × 0.037◦ (~3 km × 4 
km). The EMEP4UK model has been evaluated in the UK and interna
tionally showing good agreement between modelled and observed 
concentrations (Lin et al., 2017; Ge et al., 2021); historical concentra
tions of air pollution exposure derived from this model have been used in 
previous epidemiological studies (Baranyi et al., 2022; Russ et al., 
2021). The main source of emission in 1935 was coal and fossil fuel 
combustion, which led to very high spatial correlation between pollut
ants (Baranyi et al., 2022). As correlation coefficients between exposure 
to different pollutants were extremely high in our sample (Pearson’s 
r~1) (Table S1), we decided to present findings for PM2.5; however, 
PM10 and SO2 estimates for the main models were also provided. 
Modelled PM2.5 concentrations ranged between 4.2 μg m− 3 to 116.9 μg 
m− 3 for Scotland (Fig. 1). 

Participants’ residential addresses were transcribed from the 1939 
National Register and were geocoded using the Historical Address 
Geocoding – GIS software (Daras, 2015), which links historical records 
to contemporary addresses. Grid reference was linked to the sample 
using the 1939 street index (records with house numbers, street names, 
enumeration district and the registration district codes) and centroid of 
the 1939 enumeration districts, with very high linkage rate (Huang, 
2023). Geocoded 1939 addresses were intersected with PM2.5 concen
trations modelled for the year 1935. 

2.3. Mortality records 

All-cause mortality was derived from NHSCR data indicating the 
month and year of death between June 1947 (i.e., date of SMS1946) and 
June 2022 (i.e., 901 months). The NHSCR data also includes information 
for those deaths occurring in other parts of the United Kingdom or 
overseas, which are not part of the routine Vital Event Deaths (i.e., civil 
registration deaths). Cause-specific mortality was obtained from the 
routine Vital Events Deaths database, available only for those who 
became part of the Scottish Longitudinal Study after 1991 and died 
within Scotland between April 1991 (i.e., date of 1991 Census) and 
December 2017 (i.e., 321 months) leading to a restricted sample. Cause 
of death was reported according to the International Classification of 
Diseases 9th Revision (ICD-9) or 10th Revision (ICD-10) which we 
classified into natural causes (ICD-9: 001 to 799; ICD-10: A00 to R99), 
cardiovascular (ICD-9: 390 to 459; ICD-10: I00 to I99), respiratory (ICD- 
9: 460 to 519; ICD-10: J00 to J99), and cancer-related deaths (ICD-9140 
to 239; ICD-10: C00 to D48). 

2.4. General cognitive ability in childhood 

On the Wednesday June 4, 1947, 94% of all Scottish children born in 

G. Baranyi et al.                                                                                                                                                                                                                                



Environmental Research 238 (2023) 117021

3

1936 (n = 70805) participated on a cognitive assessment as part of the 
SMS1947. The survey utilised the Moray House No.12 test, a 71 item 
general cognitive ability test, including mental tasks such as same- 
opposites, word classification, analogies, reasoning, cipher decoding 
and spatial items (Calvin et al., 2017; Deary et al., 2004). Tests were 
administered in school classes across the entire country on the same day, 

with the same instructions and within a 45-min test interval (Calvin 
et al., 2017). The test score had a maximum value of 76 and it correlated 
highly with the Stanford-Binet test providing good criterion validity 
(Deary et al., 2004). 

Fig. 1. Mean 1935 PM2.5 concentration (in μg m− 3) in Scotland, and in the Central Belt of Scotland, estimated using the EMEP4UK atmospheric chemistry transport 
model with a horizontal resolution of ~3 × 4 km. Index map in the right bottom corner presents Scotland’s location within the United Kingdom; black lines are 
council areas based on current boundaries. 
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2.5. Covariates 

Potential confounders of the exposure, outcome and mediator rela
tionship were identified from the literature and are presented in a 
conceptual graph (Fig. 2). Sex (male, female) and age (in years) were 
derived from the SMS1947. Mother’s age (in years), mother’s marital 
status (married, not married) and parental occupational social position 
was derived from the 1939 National Identity Register. For the latter, 
occupational titles were first manually coded for each member of the 
household using the Historical International Classification of Occupa
tions coding system (van Leeuwen et al., 2002). Occupational codes 
were assigned a value of occupational social position based on the 
HISCAM scale (Lambert et al., 2013), which is a historic measure of 
occupational social stratification during the 19th and early 20th cen
turies. The continuous HISCAM score is centred around the mean of 50 
with standard deviation of 10 in the underlying population; values may 
range between 1 and 99 with greater numbers indicating higher social 
position (Lambert et al., 2013). To each participant, we assigned the 
father’s social position (or the mother’s if fathers’ not available); 
otherwise, we calculated the average social position of all other 
household members. 

2.6. Statistical analysis 

Cox proportional hazards regressions estimated the associations be
tween PM2.5 and mortality using months of follow-up as the time scale. 
Effect estimates were presented as Hazard Ratios (HR) with 95% con
fidence intervals (CI) for each 10 μg m− 3 incremental increase. Subjects 
were censored at the time of their death, at the time they last left 
Scotland (from NHSCR data), or at the end of the study if no events were 
registered during the follow-up period. Based on the Schoenfeld re
siduals, the proportional hazards assumption was met for all covariates 
but for sex; therefore, we incorporated strata for sex and presented 
stratified findings for males and females. To determine the representa
tiveness of the analytical sample, we compared the sex distribution, 
average age and average Moray House test scores with the population 
values coming from the SMS1947 (Scottish Council for Research in 

Education, 1949). 
The main analysis focussed on early life PM2.5 exposure and all-cause 

mortality. Two confounder models were set a priori: Model 1 controlled 
for age and sex (strata); Model 2 further adjusted for parental occupa
tional position, mother’s age, and mother’s marital status. In addition to 
treating the associations as time-independent, we also tested whether 
the relationship between PM2.5 exposure and all-cause mortality 
changed during follow-up by splitting the follow-up time into four in
tervals: first 527 months (i.e., average age of 11–55 years), from 528 to 
647 months (i.e., average age of 55–65 years), from 648 to 767 months 
(i.e., average age of 65–75 years), and from 768 to 901 months (i.e., 
average age of 75–86 years). Finally, based on Model 2 adjustments we 
explored concentration-response relationship by adding penalized 
splines with 2, 3 and 4 degrees of freedom. The best model was deter
mined based on the Bayesian Information Criterion (BIC) and linearity of 
relationship was examined with χ2 test. 

Associations between PM2.5 in early life and mortality due to natural 
causes, as well as cardiovascular, respiratory and cancer mortality were 
estimated in competing risks analysis. Models were operationalised in 
Cox proportional hazards regression by fitting two endpoints at the same 
time (i.e., outcome of interest versus other deaths) with distinct baseline 
hazards for PM2.5, age, and sex (strata), and shared coefficients for 
parental occupational social position, mother’s age, and mother’s 
marital status. In contrary to calculating cause-specific hazards regres
sion, this approach takes into consideration that competing events are 
mutually exclusive (Therneau et al., 2022). Model 1 and Model 2 ad
justments, as well as sex-stratified findings were presented. 

Total association between PM2.5 exposure and all-cause mortality 
was decomposed into natural direct and natural indirect (through 
childhood general cognitive ability) effects applying regression-based 
causal mediation analysis within the counterfactual framework (Van
derWeele and Vansteelandt, 2009). For the mediator model, we fitted a 
linear regression, for the outcome model a Cox regression; the same 
Model 2 confounders were included in both mediator and outcome 
models. Percentage mediated was expressed as the percentage of total 
association explained by the mediator; 95% CIs for total, natural direct 
and natural indirect effects were estimated based on 10000 bootstrap 

Fig. 2. Conceptual graph presenting associations between exposure, mediator, outcome and confounders, and the main source of data. Associations between 
confounders are not shown for simplicity, solid black lines are associations of interest. Geocoded 1939 addresses were linked to PM2.5 concentrations estimated with 
the EMEP4UK model for the year 1935. 
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replications. To contrast levels of exposure, PM2.5 exposure was dicho
tomised as <50 versus ≥50 μg m− 3, a cut off separating the highest 
~20% from the rest of the sample. We presented findings for the 
non-stratified sample only. 

Six sets of sensitivity analyses were carried out. First, we presented 
main results (i.e., all-cause mortality) for alternative exposure oper
ationalisations (i.e., interquartile range [IQR] increase, threshold [<50, 
≥50 μg m− 3]). Second, proportion of missing data was significant for 
some of the covariates, therefore, we reran main models with multiple 
imputation by chained equation. Number of imputations was deter
mined automatically based on the proportion of incomplete cases 
(Nahhas, 2023). Third, we dropped individuals with extremely high 
PM2.5 values (≥100 μg m− 3) residing in the centre of Glasgow City and 
reran main models. Fourth, instead of fitting two endpoints in Cox 
regression, competing risks were calculated with the Fine-Gray pro
portional subdistribution hazards regression. Fifth, we presented the 
mediation analysis with an alternative cut-off for ‘low’ and ‘high’ air 
pollution levels (<40 versus ≥40 μg m− 3) capturing ~75% versus ~25% 
of the sample. Last, we provided all models after adjusting for urban 
versus rural area of residence, which was determined based on living in 
Aberdeen, Dundee, Edinburgh, or Glasgow (i.e., urban) versus in other 
areas (i.e., rural), by intersecting 1939 addresses with current council 
boundaries. 

Analyses were carried out using the survival (Therneau, 2023), 
regmedint (Yoshida et al., 2022), mice (van Buuren and 
Groothuis-Oudshoorn, 2011) and tidycmprsk (Sjoberg and Fei, 2022) 
packages in R 4.2.2 (R Core Team. R, 2022). 

3. Results 

The final SLSBC1936 sample without missing data included 2734 
individuals (48.4% females) contributing to a total of 1,833,517 person- 
months (152,793.1 person-years) at risk with a median follow-up time of 
771 months (64.3 years). During follow-up, 1608 individuals died, 475 
left the study and 651 were still alive at the end of the study. The average 
exposure to PM2.5 was 31.3 μg m− 3 (SD = 32.6; IQR = 9.3–39.0). 
Comparing the SLSBC1936 analytical sample with the population of 
individuals born in 1936 (i.e., the main SMS1947 sample) suggested no 
difference across sex, age, and childhood cognitive ability (Table 1). 

After adjusting for age and sex (strata), we found 3% higher hazard 
of all-cause mortality per 10 μg m− 3 increment increase in early life 
PM2.5 exposure (HR = 1.03, 95% CI: 1.01–1.04). The association 
remained the same after further adjustments for parental occupation 
social position, mother’s marital status, and mother’s age (HR = 1.03, 
95% CI: 1.01–1.04) (Table 2). Associations were varying across the life 
course: while between age 11 and 65 there was no association, 10 μg 
m− 3 higher early life PM2.5 exposure increased the hazard of all-cause 
mortality between age 65 and 75 years by 4% (95% CI: 1.02–1.07), 
and between age 75 and 86 by 3% (95% CI: 1.00–1.05) (Model 2). 
Stratified analyses suggested that among females the association was 
strongest between age 75–86, while among males it was strongest be
tween age 65–75 (Table 2). Model estimates for PM10 and SO2 are 
presented in Table S2. Furthermore, in the total sample, concentration- 
response relationship was monotonic, linear and best-fitting with two 
degrees of freedom (likelihood ratio test for non-linear component: χ2 =

0.43; p = 0.530; see Bayesian Information Criterion values in Table S3). 
HRs constantly increased with increasing PM2.5 concentrations but first 
crossed the value of HR = 1.0 at the value of ~38 μg m− 3. Although the 
shape of the association visually differed between females and males, 
confidence intervals were wide and overlapping (Fig. 3). 

The association with cause-specific mortality was assessed in a 
restricted sample (n = 1947) as information on cause of death was only 
available between April 1991 and December 2017 for those died in 
Scotland. During this period 956 deaths were registered: 939 due to 
natural causes including 321 cardiovascular, 109 respiratory, and 341 
cancer-related deaths. Competing risks analysis with adjustment for all 

covariates suggested that early life PM2.5 exposure increased the hazard 
of cancer-related mortality by 5% (95% CI: 1.02–1.08) but there was no 
association with cardiovascular (HR = 1.00, 95% CI: 0.97–1.04) or 

Table 1 
Characteristics of participants in the analytical sample and in the respective 
population.  

Characteristics Data source Analytical sample 
(SLSBC1936) (n =
2734) 

Population 
(SMS1947) (n 
= 70805)a 

PM2.5 exposure in 
early life in μg 
m− 3, mean ± SD 

Age 3 
(1939NIR, 
September 28, 
1939) 

31.3 ± 32.6 NA 

Parental 
occupational 
social position, 
mean ± SD 

53.8 ± 9.4 

Mother’s marital 
status, n (%)  

Married 2645 (96.7%) 
Not married 89 (3.3%) 
Mother’s age in 

years, mean ± SD 
32.1 ± 6.4 

Age in years at the 
Moray House test, 
mean ± SD 

Age 11 
(SMS1947, June 
4, 1947) 

11.0 ± 0.3 10.9 ± 0.3b 

Sex, n (%)   
Female 1322 (48.4%) 34996 (49.4%) 
Male 1412 (51.6%) 35809 (50.6%) 
Moray House test 

score, mean ± SD 
36.8 ± 15.5 36.7 ± 16.1 

Source: Scottish Longitudinal Study. Abbreviation: NA = not applicable; SD =
standard deviation; SLSBC1936=Scottish Longitudinal Study Birth Cohort of 
1936; SMS1947=Scottish Mental Survey 1947; 1939NIR = 1939 National 
Identity Register. 

a Reference values are from (Scottish Council for Research in Education, 
1949). 

b Own calculation based on Table IV (page 82 (Scottish Council for Research 
in Education, 1949)). 

Table 2 
Associations between early life PM2.5 exposure and all-cause mortality in the 
Scottish Longitudinal Study Birth Cohort of 1936 a) during the total follow up 
and b) by follow-up intervals.  

Covariates Model 1a HR 
(95% CI) 

Model 2b 

Total HR 
(95% CI) 

Female HR 
(95% CI) 

Male HR 
(95% CI) 

a) During total follow-up 
PM2.5 in early 

life (10 μg 
m− 3 

increase) 

1.03 
(1.01–1.04) 

1.03 
(1.01–1.04) 

1.03 
(1.01–1.05) 

1.02 
(1.00–1.04) 

b) By follow-up intervals 
PM2.5 in early life (10 μg m− 3 increase) 
Age 11–55 

year 
1.01 
(0.97–1.05) 

1.00 
(0.96–1.04) 

1.01 
(0.94–1.08) 

1.00 
(0.95–1.05) 

Age 55–65 
year 

1.01 
(0.97–1.05) 

1.01 
(0.97–1.05) 

1.05 
(0.99–1.12) 

0.99 
(0.94–1.03) 

Age 65–75 
year 

1.05 
(1.02–1.08) 

1.04 
(1.02–1.07) 

1.02 
(0.97–1.06) 

1.06 
(1.03–1.10) 

Age 75–86 
year 

1.03 
(1.00–1.05) 

1.03 
(1.00–1.05) 

1.04 
(1.01–1.07) 

1.02 
(0.98–1.05) 

Source: Scottish Longitudinal Study. The sample size was n = 2734. Cox pro
portional hazard regression were fitted and Hazard Ratios (HR) with 95% con
fidence intervals (CI) are presented. In the total sample, sex as strata was 
included. Bolded values are significant (p < 0.05). All-cause mortality was 
available between June 1947 and June 2022 from Scotland’s National Health 
Services Central Register. Abbreviation: SD = standard deviation. 

a Model 1 was adjusted for age and sex (strata). 
b Model 2 was adjusted for age, (sex (strata)) parental occupational social 

position, mother’s marital status, and mother’s age. 
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respiratory mortality (HR = 1.02, 95% CI: 0.96–1.07) (Table 3). Sex- 
specific analyses showed that the association with cancer-related mor
tality was prominent in the female subsample. As a post-hoc analysis, we 
further explored whether lung cancer (ICD-9: 162; ICD-10: C34) was the 
main driver of cancer-related mortality among females, which was 
confirmed (HR = 1.11, 95% CI: 1.02–1.21). Among males, mortality due 
to natural cases other than cancer, cardiovascular or respiratory was 

significantly associated with early life exposure to PM2.5. Although not 
statistically significant, post-hoc we found increased risk of death (HR =
1.08, 95% CI: 1.00–1.17; p = 0.055) due to neurodegenerative disorders 
(Alzheimer’s disease and related disorders [ICD-9: 046.1, 290.0–290.4, 
294, 331; ICD-10: F00–F03, G30-31], Parkinson’s disease [ICD-9: 332; 
ICD-10: G20-22], amyotrophic lateral sclerosis [ICD-9: 335.2; ICD-10: 
G12.2]). 

The total effect of early life PM2.5 exposure on all-cause mortality 
was decomposed into natural direct and natural indirect effects medi
ated by childhood general cognitive ability. Individuals with ‘high’ early 
life PM2.5 exposure (≥50 μg m− 3) had a 39-month shorter median sur
vival time in comparison to those from relatively ‘low’ concentration 
areas (<50 μg m− 3). Regression-based causal mediation analysis sug
gested that – in the fully adjusted model – being exposed to high con
centrations of PM2.5 was associated with a 22% higher risk of all-cause 
mortality (95% CI: 1.08–1.38) (i.e., total effects). Approximately 25% of 
the total effects was mediated by general cognitive ability (HR = 1.05; 
95% CI: 1.03–1.07) (i.e., natural indirect effects): higher PM2.5 levels 
contributed to lower test scores, and lower test scores were associated 
with higher risk of all-cause mortality. The natural direct effect (i.e., not 
explained by general cognitive ability) of PM2.5 exposure on all-cause 
mortality was HR = 1.17 (95% CI: 1.03–1.32) (Fig. 4; Table S4). 

Sensitivity analyses determined that 1-IQR increase in PM2.5 expo
sure was associated with 8% (95% CI: 1.03–1.13) increased risk of all- 
cause mortality in the fully adjusted model (Table S5); findings for 
dichotomised air pollution levels (<50 μg m− 3, ≥50 μg m− 3) can be 
found in Table S6. Imputing missing data through multiple imputation 
did not change the results (Table S7); excluding participants with very 
high exposure (≥100 μg m− 3) only led to marginal changes (Table S8). 
Exploring competing risks with Fine-Gray proportional subdistribution 
hazards regression produced the same cause-specific associations as 
presented earlier (Table S9). After applying the 40 μg m− 3 cut-off for the 
mediation analysis, 21% of the total association was mediated by 
childhood cognitive ability (Fig. S1). Finally, adjusting for urban-rural 
differences in 1939 slightly attenuated findings for all-cause mortality 
(i.e., associations did not remain significant for females) (Table S10), but 
did not change the pattern of cause-specific associations (Table S11). In 
the total sample, regression-based mediation analysis did not converge 

Fig. 3. Concentration-response relationship between PM2.5 in early life and all- 
cause mortality in the Scottish Longitudinal Study Birth Cohort of 1936 for the 
(a) total sample; and among (b) females and (c) males. Curves were obtained by 
penalized splines with two degrees of freedom; observed relationships were 
linear. All-cause mortality was extracted from Scotland’s National Health Ser
vices Central Register available between June 1947 and June 2022. Model was 
adjusted for age, (sex (strata)) parental occupational social position, mother’s 
marital status, and mother’s age. The total sample size was n = 2734. Source: 
Scottish Longitudinal Study. 

Table 3 
Associations between early life PM2.5 exposure and cause-specific mortality in 
the Scottish Longitudinal Study Birth Cohort of 1936.  

Cause-specific 
mortality 

Model 1a HR 
(95% CI) 

Model 2b 

Total HR 
(95% CI) 

Female HR 
(95% CI) 

Male HR 
(95% CI) 

PM2.5 in early life (10 μg m− 3 increase) 
All causes 1.03 

(1.01–1.05) 
1.03 
(1.01–1.05) 

1.02 
(0.99–1.05) 

1.04 
(1.01–1.06) 

All natural 
causes 

1.03 
(1.01–1.05) 

1.03 
(1.01–1.05) 

1.03 
(1.00–1.06) 

1.04 
(1.01–1.06) 

Cancer 1.05 
(1.02–1.08) 

1.05 
(1.02–1.08) 

1.08 
(1.03–1.13) 

1.03 
(0.99–1.07) 

Cardiovascular 1.00 
(0.97–1.04) 

1.00 
(0.97–1.04) 

0.98 
(0.93–1.04) 

1.01 
(0.97–1.06) 

Respiratory 1.02 
(0.96–1.08) 

1.02 
(0.96–1.07) 

1.02 
(0.94–1.10) 

1.02 
(0.94–1.11) 

Other causes 1.06 
(1.01–1.10) 

1.05 
(1.01–1.10) 

0.99 
(0.91–1.08) 

1.08 
(1.03–1.14) 

Source: Scottish Longitudinal Study. The total sample size was n = 1947. Cox 
proportional hazard regressions were run with competing risks (i.e., outcome of 
interest versus other mortality) for each outcome separately. Hazard Ratios (HR) 
with 95% confidence intervals (CI) are presented. Bolded values are significant 
(p < 0.05). Cause-specific mortality was extracted from the Vital Events Deaths 
database, available for those who died between April 1991 and December 2017 
in Scotland. 

a Model 1 was adjusted for age and sex(strata). 
b Model 2 was adjusted for age, (sex [strata]) parental occupational social 

position, mother’s marital status, and mother’s age. 
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after adjusting for residential location; however, among males 17% of 
the total association was still mediated by childhood cognitive ability 
(Fig. S2). 

4. Discussion 

Using a representative administrative cohort, we explored the asso
ciations between PM2.5 concentrations in early life and mortality across 
75 years in 2734 participants. Exposure to higher levels of PM2.5 were 
associated with increased hazard of all-cause mortality, especially be
tween the ages of 65 and 86. Competing risk analyses on a restricted 
sample highlighted that associations were only present for cancer- 
related deaths, especially for lung-cancer mortality among females. 
One potential pathway connecting early life air pollution exposure to 
mortality is via lower childhood cognitive ability, which mediated 25% 
of the total associations in our sample. 

This study strengthens the evidence base linking long-term PM2.5 
exposure to increased risk of mortality in the UK and worldwide (Chen 
and Hoek, 2020; Filleul et al., 2005; Rosenlund et al., 2006; Hansell 
et al., 2016; Dehbi et al., 2017; Yang et al., 2021; Yap et al., 2012). The 
estimated HR was 1.03 per 10 μg m− 3 incremental increase for all-cause 
mortality, which is much lower than the risk (Risk Ratio[RR] = 1.08) 
estimated in a recent meta-analysis (Chen and Hoek, 2020); however, 
this is not unexpected as previous findings with long-term follow-ups 
pointed towards decreasing effect sizes by more distal air pollution ex
posures in comparison to proximal ones (Hansell et al., 2016; Elliott 
et al., 2007). Given the wide range of PM2.5 exposures, and the gentle, 
but steadily increasing slope of association, PM2.5 first crossed the HR =
1 at the relatively higher concentration of 38 μg m− 3, which is much 
higher than thresholds of unhealthy exposure suggested by the literature 
(Chen and Hoek, 2020; Strak et al., 2021), including the WHO guidelines 
(World Health Organization, 2021). We are not aware of previous in
vestigations with a follow-up time of longer than 40 years (e.g. (Hansell 
et al., 2016),) and making direct comparison to the literature is chal
lenging; still, it is remarkable that toxic levels of air pollution might 
contribute to mortality 60–80 years after exposure. 

Early life PM2.5 exposure was more strongly associated with all-cause 
mortality between age 65 and 86 and with cancer-related mortality, 
especially lung cancer. In contrary to all-cause mortality, HR for lung 
cancer in our female subsample (HR = 1.11) was close to identical to 
risks reported in the literature based on shorter follow-up studies (RR =
1.12) (Chen and Hoek, 2020). Cancer-related mortality is the second 

leading cause of death according to the Global Burden of Disease Study, 
with tracheal, bronchus, and lung cancer being the leading cause of 
cancer deaths (Fitzmaurice et al., 2017). Their relative proportion in 
comparison to other cancers is particularly high between the ages of 60 
and 80 years (Fitzmaurice et al., 2017), which overlaps with our find
ings. In contrary to the literature suggesting consistent associations 
between PM2.5 pollution and cardiovascular mortality (Chen and Hoek, 
2020), there was null association in our study. It might be plausible that 
PM2.5 in early life, or its chemical composition in the late 1930s, did not 
have such a long-lasting association with cardiovascular diseases or that 
early life is not a sensitive period for late adulthood cardiovascular 
events. Air pollution exposure has been also associated with neurode
generative disorders in the literature (Shi et al., 2020), with stronger 
associations in males (Cole-Hunter et al., 2023), which align with our 
preliminary findings. Still, these hypotheses need to be explored in 
further investigations. 

In early life, inhaled air pollutants can directly affect healthy 
development in children (Isaevska et al., 2021; Bettiol et al., 2021). Lung 
growth has been shown to be reduced among children exposed to higher 
air pollution levels (Gauderman et al., 2004) and they have also higher 
risks of developing asthma (Bettiol et al., 2021). Toxic environmental 
exposures – through oxidative stress and inflammation – are also asso
ciated with molecular changes in the somatic cells, and these alterations 
might survive subsequent cell replications and affect healthy develop
ment and longevity. For example, modified DNA methylation patterns, 
responsible for gene expression and genome stability, as well as shorter 
telomeres, a marker of cellular ageing, have been associated with air 
pollution exposure in early and later life (Isaevska et al., 2021; Miri 
et al., 2019). A recent Scottish study, based on a sample (Lothian Birth 
Cohort 1936) selected from the same 1936-born population as in our 
study, showed that higher air pollution exposure around birth was 
associated with shorter DNA methylation-based telomere length in late 
adulthood, especially among females (Baranyi et al., 2022), even after 
adjusting for a variety of life-course social and behavioural (e.g. smok
ing) risk factors. Epigenetic markers increase the risk of developing 
cancer (Kulis et al., 2010) and mortality (Marioni et al., 2015), pre
senting a plausible explanation for our sex-specific findings related to 
cancer mortality. 

Air pollution in early life may also affect brain development: 
maternal air pollution exposure from the 25th gestational week onwards 
is associated with head growth (Clemens et al., 2017) but being exposed 
postnatal PM2.5 concentration is also linked to poorer cognitive perfor
mance in childhood (Ni et al., 2022; Chiu et al., 2016; Lopuszanska and 
Samardakiewicz, 2020). The human brain undergoes rapid de
velopments in the early years which continues well into childhood with 
the differentiation and maturation of neurons and myelination of axons 
(Hedman et al., 2012; Stiles and Jernigan, 2010). A whole population 
follow up on the SMS1947 with more than 65000 participants showed 
that higher general cognitive ability scores in childhood decreased 
all-cause mortality and cause-specific mortality for almost all major 
causes of death, including smoking-related cancers and dementia (Cal
vin et al., 2017). Higher cognitive ability in childhood is a powerful 
predictor of longevity with pathways including higher educational 
attainment and adult socioeconomic status, which can impact among 
others health literacy, health behaviour, and diseases management 
(Calvin et al., 2011; Sörberg Wallin et al., 2018). Our findings add that 
higher early life PM2.5 exposure modestly decreases general cognitive 
ability in childhood (even after adjusting for parental occupational so
cial position), thus indirectly contributing to all-cause mortality; 
approximately one-quarter of the total association was mediated 
through childhood cognitive ability presenting an important pathway 
between early life toxic exposure and mortality. 

This study demonstrated the feasibility of exploring the relationship 
between early life PM2.5 exposure and mortality over almost the entire 
life course. The study benefitted from high quality data linkages be
tween different historical and contemporary administrative sources, 

Fig. 4. Total, natural direct, and natural indirect effects between ‘high’ early 
life PM2.5 exposure (≥50 μg m− 3) and all-cause mortality, with mediation 
through childhood general cognitive ability. All-cause mortality was available 
between June 1947 and June 2022 from Scotland’s National Health Services 
Central Register. Total, natural direct, and natural indirect effects were esti
mated with regression-based causal mediation analysis, their 95% CIs with 
10000 bootstrap replications. Models were adjusted for age, sex, parental 
occupational social position, mother’s marital status, and mother’s age. The 
total sample size was n = 2734. Source: Scottish Longitudinal Study. 
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included key family and household confounders in early childhood, a 
validated measure of general cognitive ability at age 11, and an excep
tionally long follow-up of mortality records stretching over 75 years. 
Residential information at age 3 was derived from administrative data, 
thus not prone to recall bias. However, several key limitations should be 
considered when interpreting the results. First, cause-specific mortality 
was only available for a relatively shorter follow-up time (~26 years). 
Although we do not assume that longer follow-up would have change 
the reported associations with cancer-related deaths, it is plausible that 
adding further mortality records across the life course may reveal other 
cause-specific mortality associations in future studies. Second, infor
mation on mortality before age 11 was not available in the SLSBC1936. 
Given the high mortality rates among 1-year olds in England during the 
1930s (Birth- and Death-Rates for 1936 in England, 1937), and the 
strong association between PM2.5 concentrations and infant mortality in 
high pollution contexts (e.g. India (deSouza et al., 2022)), it is plausible 
that air pollution had a strong effect on mortality in the earlier years 
which we were not able to capture. Third, early life residential location 
was only available in the 1939 National Identity Register. As the prob
ability of residential mobility for this birth cohort was relatively low in 
their earliest years (Falkingham et al., 2016), we cannot ascertain that 
air pollution exposure only during postnatal periods contributed to 
higher risk of mortality (as opposed to prenatal). Moreover, missing 
residential history during childhood introduces further uncertainty to 
identify sensitive (or critical) exposure windows. Fourth, making valid 
causal inference on natural direct and indirect effects requires a set of 
key assumptions: i) no unmeasured treatment-outcome confounding; ii) 
no unmeasured mediator-outcome confounding; iii) no unmeasured 
treatment-mediator confounding; iv) no mediator-outcome confounder 
affected by the treatment (Vanderweele, 2015). As the availability of 
administrative data strongly determined the variables we were able to 
include (e.g., no data on maternal smoking, childhood health), unmea
sured confounding might have led to bias in estimating natural direct 
and indirect effects. Fifth, there are inherent uncertainties at all stages of 
the emissions estimation process, even for the present day, and many of 
these problems are magnified when trying to recreate a historical 
context (e.g., emission quantification). The same atmospheric chemistry 
transport models for newer modelling years (2009–2010) have been 
evaluated against concurrent PM2.5 concentrations, which indicated 
good agreement between estimated and measured concentrations, but 
also suggested that PM2.5 concentrations might be underestimated in the 
EMEP4UK models (Lin et al., 2017). While there are increasing un
certainties when pollutants are estimated further back in time, their 
relative spatial concentrations can be considered as sufficiently accu
rate. Further efforts to quantify historical emissions are warranted to 
produce more reliable estimates. We presented main findings for PM2.5 
but given very high correlation with other pollutants (e.g., PM10, SO2) it 
is impossible to disentangle separate effects in historical contexts. Last, 
key air pollution regulatory policies throughout the 20th century (e.g., 
Clean Air Acts 1956, 1968, 1993) reduced PM2.5 concentrations in the 
UK (Carnell et al., 2019), and probably changed its chemical compo
nents. Pollutant concentrations experienced by sample participants in 
their early lives are rarely present in high-income countries anymore. 
Still, with increasing global inequities in pollution though raising con
centration in low- and middle-income countries (World Health Organi
zation, 2021), our findings have relevant global implications. 

Future studies could capitalise on routinely collected data utilising 
census responses, healthcare service use data and Vital Events on mar
riages and children’s birth to extract information on residential loca
tions across the entire life course and provide a more comprehensive 
assessment on how air pollution contributes to morbidity and mortality 
from foetal period onwards. Further high-quality measures of historical 
area-level context are required (e.g., area deprivation, population den
sity), to disentangle the very long-term impact of environmental expo
sures on health and to lower the risk of unaddressed confounding. 
Mechanistic pathways, including social, cognitive, and biological 

processes, should be investigated which have the potential to connect 
childhood exposure to late adulthood health. 

5. Conclusions 

Exposure to higher PM2.5 in early life was associated with higher all- 
cause and cancer-related mortality, especially between the ages of 65 
and 75, with one-quarter of the association being mediated through 
lower childhood general cognitive ability. Future investigation should 
explore mechanistic pathways and assess the relative importance of air 
pollution exposure at different time-points in our lives. The findings 
suggest that air pollution may have very long-term impact on health and 
longevity, with its detrimental impact lasting long after mitigation 
policies reduced concentration levels. 
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