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Abstract

During protracted dry spells, there is considerable interest from water managers, media and the
public in when and how drought termination (DT) will occur. Robust answers to these questions
require better understanding of the hydroclimatic drivers of DT than currently available. Integrated
vapour transport (IVT) has been found to drive DT in Western North America, but evidence
elsewhere is lacking. To evaluate this association for the British—Irish Isles, event coincidence
analysis is applied to 354 catchments in the UK and Ireland over the period 1900-2010 using
ERA-20C reanalysis IVT data and 7589 DT events extracted from reconstructed river flow series.
Linkages are identified for 53% of all DT events across all catchments. Associations are particularly
strong for catchments in western and southern regions and in autumn and winter. In Western
Scotland, 80% of autumn DTs are preceded by high IVT, whilst in Southern England more than
two thirds of winter DTs follow high IVT episodes. High IVT and DT are most strongly associated
in less permeable, wetter upland catchments of Western Britain, reflecting their maritime setting
and orographic enhancement of prevailing south-westerly high IVT episodes. Although high IVT
remains an important drought-terminating mechanism further east, it less frequently results in DT.
Furthermore, the highest rates of DT occur with increasing IVT intensity, and the vast majority of
the most abrupt DTs only occur following top decile IVT and under strongly positive North
Atlantic Oscillation (NAO) conditions. Since IVT and NAO forecasts may be more skilful than
those for rainfall which underpin current forecasting systems, incorporating these findings into
such systems has potential to underpin enhanced forecasting of DTs. This could help to mitigate
impacts of abrupt recoveries from drought including water quality issues and managing compound

drought—flood hazards concurrently.

1. Introduction

Drought is a naturally recurring phenomenon influ-
enced by a range of factors but ultimately caused
by a prolonged lack of rainfall (Van Loon 2015).
The UK and Ireland (hereafter jointly referred to as
the British—Irish Isles; BII) have an extensive history
of drought events over multiple centuries, despite
reputations as relatively wet countries, which chal-
lenges public perceptions. Drought is an increasingly

© 2023 The Author(s). Published by IOP Publishing Ltd

topical issue in the BII, due to the combined pressures
of increasing populations and water demands plus
climate change projections of more frequent and
severe droughts (Meresa and Murphy 2023, Parry
etal 2023).

Drought termination (DT)—the return to nor-
mal quantities of water—is a critical drought phase
(Parry et al 2016a), and vital to avoiding the
most damaging impacts and costly management
interventions (Seneviratne and Ciais 2017). However,
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DT has generally received far less attention than other
aspects of drought (Parry et al 2016b) despite the
compound occurrence of drought and flooding mul-
tiplying their impacts (Parry et al 2013, Swain et al
2018, He and Sheffield 2020, Seeley and Wordsworth
2021). Increasing abruptness of DTs has already been
observed (Christian et al 2015, Qiao et al 2022),
with climate change also impacting both historical
(Michaelis et al 2022) and future occurrences of DT
(Chen and Wang 2022).

Relative to DT events, the likelihood of recovery
from drought has received greater attention because
of its relevance to water managers, decision makers
and wider society during protracted droughts (Panu
and Sharma 2002). These studies have addressed
related questions such as when DT is likely to occur,
how much precipitation this will require, and the like-
lihood of this occurring (e.g. Karl et al 1987, Bell et al
2013, Pan et al 2013, Antofie et al 2015). Associations
between DT and hydroclimatic drivers including
tropical cyclones (Lam et al 2012, Kam et al 2013),
frontal systems (Maxwell et al 2017), and atmospheric
rivers (ARs) (Dettinger 2013, Maxwell eral 2017) have
been explored to some extent. However, there remains
poor understanding of rainfall mechanisms that trig-
ger DT (Schwalm et al 2017), hindering progress in
forecasting (Huang ef al 2015, Han and Singh 2021).

ARs and their vertically-integrated horizontal
water vapour transport (IVT) have received consid-
erable attention over recent years as an important
driver of intense rainfall and flooding in mid-latitude
settings (Kingston et al 2016, Nayak and Villarini
2017, Waliser and Guan 2017, Kamae et al 2019,
Esfandiari and Rezaei 2022, Guan et al 2023), includ-
ing Western Europe (Lavers and Villarini 2013a, De
Luca et al 2017, Matthews et al 2018). Despite the
frequent occurrence of floods following droughts,
linkages between DT and high IVT have not been
explored sufficiently. IVT linkages to drought devel-
opment have been assessed (Bennet and Kingston
2022) and most studies which have focused on DT are
for North America. For instance, Maxwell et al (2017)
found that frontal storms were more important than
ARs in the Southern and Eastern USA domain. In
contrast, in western parts of the USA Dettinger (2013)
found that ARs were responsible for up to two thirds
of DTs. It is reasonable to anticipate that this might
also apply to Western Europe—a mid-latitude, mari-
time setting with upland areas close to coastlines that
favour orographic enhancement.

High IVT and ARs are projected to become
more frequent and intense under climate change (e.g.
Dettinger 2011, Gao et al 2016, Ramos et al 2016,
Espinoza et al 2018, Curry et al 2019), implying that
they may become a more prevalent DT mechanism in
future. Previous studies have assessed the influence on
high IVT of different patterns of atmosphere—ocean
circulation, including the North Atlantic Oscillation
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(NAO) (Dhana Laskhmi and Satyanarayana 2020,
Gonzales et al 2022, Baek et al 2023, Singh et al
2023). Taken together these have potential to inform
improved forecasting of DT and its impacts. Forecasts
of IVT and NAO are more skilful than rainfall (Scaife
et al 2014, Lavers et al 2016) hence they may yield
more reliable outlooks at improved lead times than
currently possible.

This study aims to better understand the associ-
ation between high IVT and hydrological DT in the
BIL. The following research questions are addressed:

e How important is high IVT as a hydroclimatic
driver of DT?

e How does this association vary seasonally and spa-
tially across the BII?

e How do catchment characteristics modulate these
associations?

e How do high IVT intensity and the NAO influence
characteristics of DT?

2. Data & methods

2.1.DT

2.1.1. Reconstructed river flows

Record lengths of reconstructed river flows far exceed
those of observations, thus maximising the sample
size of DT events for robust statistical analysis.
Daily reconstructed river flows are available for 303
UK catchments for the period 1891-2015 (Smith
et al 2018, 2019), while monthly reconstructions are
available for 51 Irish catchments during 1766-2010
(O’Connor et al 2021). Reconstructed flows for the
1900-2010 timeframe were used, concurrent with
that of the reanalysis product used to source IVT data.
For the UK, daily flows were aggregated to monthly
mean flows since a monthly time step is sufficient for
identifying robust DT.

The 354 catchments were grouped into 12 hydro-
climatic regions (SI figure 1) following previous
hydrological studies in the BII (e.g. Harrigan et al
2018, Quinn et al 2021). Selected catchment charac-
teristics hypothesised to modulate the hydroclimatic
influence of high IVT on DT were extracted for all 354
study catchments (Marsh and Hannaford 2008, Mills
et al 2014), describing the location (‘Longitude’ and
‘Latitude’), elevation (‘Max_Alt’), wetness (‘SAAR’)
and storage capacity (base flow index, ‘BFI’) of
catchments.

2.1.2. Identification and characterisation of DTs

For each catchment, DT events were identified object-
ively from monthly reconstructed flow series via
the methodology described by Parry et al (2016a),
(2016b). Each drought event consists of drought
development and DT phases, with the DT rate (DTR)
quantifying how abruptly droughts terminate on
average. For each catchment, monthly time series of
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DT were extracted from reconstructed flows. These
were then converted into binary series: ‘1° corres-
ponding to the final month of DT and ‘0’ otherwise.

2.2. Integrated vapour transport

2.2.1. Reanalysis data

Reanalysis data were used herein because observa-
tions of IVT are unavailable and to ensure consist-
ency of data across UK and Irish catchments. The
ERA-20C reanalysis (Poli et al 2016; grid resolution of
125 km) spanning the period 1900-2010 was applied
to maximise overlap with river flow reconstructions.
For each catchment, data were extracted from the
nearest grid cell to the catchment centroid.

2.2.2. Identification of high IVT episodes

High IVT was defined as monthly IVT falling within
the upper quartile of seasonal mean IVT. Whilst a
monthly time step cannot identify individual high
IVT storm events which occur on single or mul-
tiple days, high monthly values are indicative of
above average IVT and associated ARs within a given
month. For each catchment, the resulting monthly
binary time series of high IVT (‘1’ for instances of IVT
within the upper quartile of the seasonal mean, and
‘0’ otherwise) were filtered to include only those epis-
odes of high IVT occurring during identified drought
events.

2.2.3. NAO index data

Given the intensified flux of landfalling atmospheric
water, it is hypothesised that both positive NAO and
increased IVT could lead to higher DTRs (SI figure
2(a)). In order to test this hypothesis, monthly NAO
data spanning the 1900-2010 timeframe were sourced
(Jones et al 1997).

2.3. Event coincidence analysis
Event coincidence analysis (ECA; Donges et al 2016)
was applied (through the R package ‘CoinCalc),
Siegmund et al 2017) to all catchments to characterise
associations between high IVT and DT during 1900—
2010. ECA has been applied to independently-defined
drought and flooding events (He and Sheffield 2020)
but not yet potential drivers of DT. ECA reads in two
binary time series of events that are hypothesised to
be associated; in this instance, the binaries of DT and
high IVT. Event series ‘A’ is the binary DT series and
event series ‘B’ is the binary high IVT series, since this
study assesses the importance of high IVT in driving
DT. A window of T'months is applied to detect occur-
rences of high IVT preceding DT. A value of T' = 2 was
used to reflect the termination criteria of identified
DT events (two months; Parry et al 2016a, 2016b).
ECA yields two metrics that quantify associations
between high IVT and DT. The precursor coincid-
ence rate (PCR) considers all occurrences of DT
and quantifies how many are preceded by high IVT;
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PCR =1 (PCR = 0) when every (no) DT is preceded
by high IVT. Subtly different, the trigger coincidence
rate (TCR) considers all occurrences of high IVT dur-
ing a drought and quantifies how many lead to DT;
TCR = 1 (TCR = 0) when every (no) high IVT epis-
ode is followed by DT.

The relative values of PCR and TCR highlight
important differences between catchments (SI figure
2(b)). High PCR and low TCR suggests that high IVT
is a frequent driver of DT but not every episode will
result in DT. Conversely, low PCR and high TCR sug-
gests that high IVT almost always results in DT, but
these episodes occur less frequently and/or high IVT
is one of a number of potential drivers.

Terciles were applied to indicate high (>0.67),
moderate (0.33-0.67) and low (<0.33) values. PCRs
and TCRs were evaluated for statistical significance
whereby significance equates to a greater number of
occurrences than expected by chance.

3. Results

Applying the DT methodology described above to
monthly river flow time series spanning 1900-2010
for 354 catchments in the BII yielded 7589 events
(SI figure 3) which generally terminate multi-year
droughts.

3.1. High IVT and DT
Highest PCR values (>0.67) are found in Western
and Southern Britain, and south-western and north-
ern parts of Ireland (figure 1(a)). Elsewhere, PCRs
remain moderately high (0.33-0.67) in most catch-
ments. Of the 12 hydroclimate regions identified for
the BII, ten have regional mean PCRs in the range
0.51-0.61 (SI table 1). Low PCRs (<0.33) are restric-
ted to Eastern and particularly North-Eastern Britain
(SItable 1). Nevertheless, PCRs are statistically signi-
ficant in all but five catchments, suggesting that high
IVT is a necessary driver of DT for most of the BIIL.
The spatial extent of high TCR values (>0.67) is
much more constrained and generally limited to a
dozen catchments in Western Britain (figure 1(b)).
Moreover, the gradient of decreasing values—moving
from west to east across Britain—is steeper for TCRs
than PCRs. A similar gradient is not evident for the
island of Ireland, with relatively uniform TCR values
of 0.3-0.5. Low values (<0.33) are more widespread,
encompassing many catchments in Central, Southern
and particularly Eastern Britain. Southern England
and Anglian regions join Eastern Scotland and North-
East England as outliers in regional mean TCRs (SI
table 1). Regardless, TCRs are statistically significant
in all but four catchments.

3.2. Seasonal variations
Of the 7589 DTs identified across all 354 study catch-
ments in the BII, 53% are preceded by high IVT,
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although important seasonal variations exist. Across
all catchments, DTs preceded by high IVT are more
frequent in autumn/winter than in spring/summer.
In autumn, IVT-driven events comprise substantially
more than half of all DTs for 9/12 hydroclimatic
regions. In Western Scotland, 80% of autumn DTs
are preceded by high IVT. In winter, for South-West
England and South Wales and Southern England,
more than two thirds of all DTs are preceded by high
IVT (figure 2). In spring and summer, the importance
of high IVT in driving DT is less striking, although in
half of the regions IVT-driven DTs outnumber those
unrelated to high IVT for each season.

The majority of DTs in Western Scotland, Severn-
Trent, Western Ireland and Southern Ireland are pre-
ceded by high IVT regardless of season (figure 2). This
is also true for three of the four seasons in Northern
Ireland, Eastern Ireland, North-West England and
North Wales, South-West England and South Wales,
and Southern England. The year-round importance
of high IVT is particularly noticeable for the island
of Ireland. The only regions for which high IVT pre-
cedes less than half of DTs in all seasons are Eastern
Scotland and North-East England.

3.3.IVT-DT and catchment characteristics

Average rainfall (‘SAAR’) has the greatest associ-
ation with each ECA metric (figures 3(e) and (f)).
TCRs correlate positively with catchment wetness
(Spearman rank rs = 0.67; p < 0.001) and, whereas
a range of PCRs are exhibited for drier catchments,
the wettest catchments all have PCRs exceeding 0.5
(rs =0.24; p < 0.001).

Elevation (‘Max_AIt’) is associated with TCR
(figure 3(h), though to a lesser extent than for
SAAR; figure 3(f)), but not with PCR (figure 3(g)).
Nevertheless, there are relatively fewer low PCR
and TCR values for catchments with high max-
imum altitudes (compared to lower altitude catch-
ments). Higher TCRs in higher elevation catchments
(rs=0.40; p < 0.001) suggest that a single occurrence
of high IVT during a drought is more likely to lead to
DT.

TCR decreases strongly with increasing longitude
(distance east) across the BII (rs = —0.61; p < 0.001;
figure 3(b)). Irish catchments (longitudes of —10.0
to —5.0) all have moderate to high PCRs and TCRs,
with PCRs less than 0.4 and TCRs less than 0.2
almost entirely restricted to eastern catchments of
the BIIL. Similarly, for catchments east of longitude
—2.5, TCRs appear to be truncated with no catch-
ments exceeding 0.4 (the same pattern is not evid-
ent for PCRs; figure 3(a)). These results indicate a
stronger association between high IVT and DT in
western catchments of the BII.

The opposite is true for latitude. PCRs are
more strongly correlated with latitude (figure 3(c)),
decreasing with distance north (rs = —0.30;
p < 0.001). At lower latitudes (further south in
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the BII), there are relatively few catchments with
PCRs less than 0.4, and an increasing range of PCRs
in catchments further north (increasing latitude).
Conversely, there is no signal for TCR with latitude
(figure 3(d)). Higher PCRs at lower latitudes (further
south) suggests that episodes of high IVT frequently
lead to DT, whereas this is not necessarily the case
further north.

Catchment storage (‘BFI’) has a modest associ-
ation with TCRs (rs = —0.36; p < 0.001; figure 3(j))
but not so for PCRs (figure 3(i)). TCRs are strongly
truncated at values of 0.3 for BFIs exceeding 0.75.
The limited correlation between BFI and PCRs sug-
gests that high IVT is just as likely to precede DT
regardless of catchment storage. However, the lim-
its placed on TCRs in high BFI catchments sug-
gests that multiple high IVT episodes occur before
DT.

Taken together, a coherent narrative emerges link-
ing high IVT and DT in different catchment types.
High IVT frequently precedes DT in wetter catch-
ments, and those further west and south, but is less
likely to precede DT in drier catchments and those
further north and east (PCRs; figures 3(a), (¢), (e), (g)
and (i)). Similarly, mid-drought high IVT episodes
more frequently lead directly to DT in wetter, upland
and/or western catchments, with high IVT less likely
to lead to DT in drier, lowland and/or eastern catch-
ments, particularly those with more substantial catch-
ment storage (TCRs; figures 3(b), (d), (f), (h) and (j)).

3.4. Influence of NAO and IVT intensity on DT
characteristics
The NAO plays a key role in influencing the intens-
ity of high IVT. Across all DT events preceded by high
IVT in all study catchments, strong positive NAO con-
ditions (NAO > 2.0) favour the occurrence of higher
intensity IVT episodes (as evidenced by higher NAO
values with increasing IVT intensity in figures 4(a)—
(c)). Furthermore, it is clear that an increasingly high
intensity of IVT influences the upper limit of DTR
that can be realised (figure 4). The upper limit of
DTRs increases markedly with IVT threshold (partic-
ularly for IVT above the 90th percentile). The major-
ity of the highest DTR values (>100% month™!) are
associated with the highest IVT values (figure 4(c)).
Taken together, these findings confirm that posit-
ive NAO triggers higher IVT and that increased IVT,
in turn, produces the highest DTRs. Whilst a range of
DTRs is plausible for all positive NAO values and for
all high IVT values, the highest DTRs (i.e. the most
abrupt terminations) are almost entirely limited to
episodes of high IVT above the 90th percentile during
strongly positive NAO conditions (figure 4(c)).

4. Discussion

This research sought to better understand the import-
ance of high IVT as a potential driver of DT and its
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spatial and seasonal variations across the BIL. High
IVT is very influential in driving DTs (especially in
autumn and winter; figure 2), consistent with find-
ings from previous studies (Debbage et al 2017, Nayak
and Villarini 2017, Dettinger et al 2018, Akbary et al
2019, Sharma and Dery 2019). Summer associations
are limited by less intense high IVT-derived rainfall
(Champion et al 2015).

TCRs vary more markedly with a stronger asso-
ciation with catchment characteristics but PCRs are
relatively higher across a range of catchment charac-
teristics (figure 3). This suggests that high IVT is an
important trigger for DT in most catchments, but that
in some catchments not every episode of high IVT
will lead to DT (where TCRs are lower). Where PCRs
and TCRs are lower, it also implies that other hydro-
climatic drivers largely unrelated to high IVT may be
more influential in driving DT, an aspect which would
require further research.

The catchment characteristic with the strongest
correlation with the ECA metrics is catchment aver-
age rainfall (figures 3(e) and (f)). High IVT is most
responsible for DT in the wettest regions, likely
explained by lower potential evapotranspiration and
wetter shallower soils meaning such catchments are
more responsive to rainfall inputs (e.g. McCabe and
Wolock 2016). Catchment maximum elevation is also
found to be influential on TCRs (figure 3(h)). It is
likely that the orographic enhancement of plumes of
high IVT over the higher ground of Western Britain
and Ireland (Burt and Howden 2013, Griffith et al
2020) produces a swifter response and thus higher
TCRs (i.e. a greater proportion of high IVT episodes
result in DT). Orographic enhancement of high IVT
has also been cited as a controlling factor in other
parts of the world (e.g. Neiman et al 2008).

Despite the strong association between elevation
and rainfall across the BII, associations with TCRs are
weaker for elevation (non-existent for PCRs) than for
rainfall. Whilst there are west—east gradients for both
rainfall and elevation, the western uplands cast a rain
shadow effect inhibiting rainfall totals. Although high
elevation is an important explanatory factor linking
high IVT with DT (e.g. Neiman et al 2008), it is not
necessarily elevation which best reflects this pattern.

Longitude was also found to be an important
factor (figures 3(a) and (b)). Both PCRs (figure 1(a))
and especially TCRs (figure 1(b)) are higher in west-
ern than eastern catchments (SI table 1). This is most
likely explained by the prevailing south-westerly dir-
ection from which plumes of high IVT arrive in the
BII (Griffith et al 2020). It also explains why Irish
catchments tend to have both high PCRs and TCRs
despite lacking the same higher elevations which
promote orographic enhancement and higher rain-
fall totals in Western Britain. This mirrors previous
findings of stronger associations in western mari-
time settings of other countries (Dhana Laskhmi and
Satyanarayana 2020, Singh et al 2023).

S Parry et al

The importance of catchment wetness, elevation
and the location of the wettest and highest eleva-
tion catchments along the same western maritime set-
ting in which plumes of high IVT make landfall is
highlighted by the lack of seasonality in associations
between high IVT and DT. For regions comprising
the entirety of the western maritime BII, high IVT is
an important driver of DT in all seasons (SI table 1).
The dominance in autumn/winter is consistent with
previous findings in similar western upland maritime
settings, attributed to the increased effectiveness of
orographic enhancement (Neiman et al 2008, Burt
and Howden 2013, Khouakhi ef al 2022).

DT in catchments in Eastern Scotland and North-
East England are least correlated with high IVT
(figure 1). This is probably also attributable to the
presence of the rain shadow cast by western uplands
over north-eastern regions and reducing the influ-
ence of south-westerly airflows on DT (Malby et al
2007). This is borne out by steeper west—east gradi-
ents in PCRs and TCRs in the north than further
south (figures 3(c) and (d)).

In general, high IVT less often leads to DT in
drier lowland catchments (figures 3(e)—(h)). More
frequently characterised by higher rates of evapotran-
spiration, higher soil moisture deficits, and more sub-
stantial subsurface storage, these catchments are gen-
erally less responsive to rainfall inputs. This suggests
that multiple episodes of high IVT might be neces-
sary to trigger DT, resulting in reduced TCRs. Such
catchments are also subject to higher surface and
groundwater abstractions to meet water demands—
an additional factor confounding DT occurrence.
Whilst abstractions are higher today than in the early
20th century, the reconstructed river flow data used
herein were calibrated over recent decades, incorpor-
ating current artificial influences and extrapolating
them over the entire time series.

In addition to the influence of catchment proper-
ties, the intensity of IVT and the NAO are also found
to coincide with the occurrence of particularly abrupt
DTs (figure 4). Strong positive NAO favouring the
prevalence of higher intensity IVT episodes is con-
sistent with previous findings in North-West Europe.
Positive NAO conditions were found to promote the
development of ARs that draw atmospheric mois-
ture from subtropical sources under a south-westerly
airflow (Stohl et al 2008). It is perhaps no surprise
that abrupt DTs are more prevalent under positive
NAO conditions, which generally bring more winter
storms, higher IVT, increased rainfall and higher tem-
peratures across the BII and Northern Europe (Li et al
2020, Barnes et al 2022). Even within the UK there are
spatio-temporal variations in the influence of NAO
on rainfall and river flows, with positive NAO found
to be more important primarily in the north-west and
in winter (West et al 2021). By extension, given the
influence of positive NAO, negative NAO may also
suppress rainfall; the relative sequencing of negative
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(dry) and positive (wet) NAO phases (e.g. Burt and
Howden 2013, West et al 2022) is a potential mech-
anism of DT.

These findings have important implications for
forecasting DTs. Catchments with high PCRs and
TCRs are those in which DT is most likely to be suc-
cessfully forecast, as most DTs are triggered by high
IVT and most mid-drought high IVT episodes result
in DT. Such conditions are most prevalent in autum-
n/winter in western parts of the BIL. Only one of
the study catchments falls within the highest tercile
of both PCR and TCR; the Nevis drains the slopes
of the highest peak in the BII and is the sixth wet-
test of ~1600 catchments in the UK (Marsh and
Hannaford 2008).

For more than 90% of study catchments, PCR val-
ues exceed TCR values, meaning that whilst high IVT
tends to lead to DT, not every high IVT episode results
in DT. Lower TCR values could act to limit the fore-
casting potential of high IVT. Where values of TCR
are lower, it is more likely that a given high IVT epis-
ode will not result in DT (a ‘false alarm’ in a fore-
casting context). Confounding factors that weaken
the IVT-DT association (such as catchment storage,
higher evaporative demand and soil moisture defi-
cits, artificial influences) are consistent with previous
findings in the UK (Lavers et al 2012).

Nevertheless, whilst there are important regional,
seasonal and catchment-specific controls on the
extent to which high IVT associates with DT, these
findings demonstrate the potential for forecasting.
Despite recent improvements in the skill of medium-
term rainfall forecasts (e.g. Scaife et al 2014), fore-
casts of IVT and NAO over a similar timeframe show
greater skill, particularly at longer lead times (e.g.
Lavers et al 2016, 2017, Scaife et al 2016, Hall et al
2017, Weisheimer et al 2017). Combining this skill
with the insights gained herein offers scope to forecast
DTs and therefore both better manage droughts and
minimise negative impacts of destructive DT events
(Han and Singh 2021, Ficklin et al 2022).

5. Conclusion

This study has provided the science that might poten-
tially underpin enhanced forecasting of DTs in the
BII. Subsequent research is required to more formally
evaluate the success of hindcasts of sub-seasonal IVT
and NAO outlooks. Such evaluations would provide
formal skill assessments which could inform the con-
fidence with which decision-makers, water managers
and other stakeholders might utilise forecasts. The
UK Hydrological Outlook (Prudhomme et al 2017)
is an existing forecasting system which could opera-
tionalise enhanced DT forecasting capabilities.

Given the strength of associations between high
IVT and DT identified herein for the BII, as well as
findings on the importance of high IVT in triggering
flooding elsewhere in Western Europe (e.g. Stohl et al

10

S Parry et al

2008, Lavers and Villarini 2013a), a natural successor
study could explore the extent to which findings are
similar elsewhere in the region. The development
of reconstructed flow series in other countries (e.g.
Caillouet et al 2017 for France) offers tantalising
potential to underpin enhanced forecasting of DTs
across the region.
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