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A B S T R A C T   

The ecosystem service potential of urban green infrastructure (GI) is increasingly appreciated, yet its under-
pinning role in the food-energy-water-habitat (FEWH) nexus is unclear. In order to explore the positive and 
negative impacts of GI on the FEWH nexus, this study asked three questions: 1) What are the research hotspots in 
FEWH for GI and what are the trends over time? 2) What ecosystem services can GI provide in terms of FEWH? 3) 
Can we quantify the ecosystem service potential of GI, and what are the synergies and trade-offs among the 
service types? By collating the research evidence which supports the ecosystem service potential of GI to 
contribute to FEWH, we developed a matrix to score the potential and to assess the synergies and trade-offs 
among ecosystem services. From this, a conceptual framework of the role of GI in supporting the FEWH nexus 
was developed. The results show that the potential of GI to sustain the FEWH nexus is significant and that multi- 
functional GI planning is necessary to minimize the trade-offs between them. This requires the application of new 
methods, theories, adaptation to new circumstances, and the development of appropriate business models within 
the planning domain, as well as compliance with policy directions and funding externally.   

1. Introduction 

Green infrastructure (GI) is increasingly being adopted to address 
urban environmental challenges. With rising human population and 
urbanization, sustainability has become a more pressing issue (Riffat, 
Powell & Aydin, 2016). While humans depend on nature and ecosystem 
services like production of oxygen, food, and water purification as well 
as energy production and mitigation of natural disasters (Hanes, 
Gopalakrishnan & Bakshi, 2017; Wang, Zhou, Pickett, Yu & Li, 2019), 
they increasingly put a strain on the environment through habitat 
destruction, change, fragmentation and pollution (Li, Fang, Wang & 
Sun, 2016; Naslund, Gerson, Brooks, Walters & Bernhardt, 2020). This 
has led to climate change, loss of biodiversity, and increased costs of 
potable water (McNeely, 1992; Stock, 2021). To offset some of the 
negative impacts, the idea to use GI more efficiently within an urban 
setting was developed a couple of decades ago (Benedict & MacMahon, 
2002; Bolund, 1999; Van Oijstaeijen, Van Passel & Cools, 2020). 

The concept of GI was formally introduced by the “Green 

Infrastructure Working Group” organized by the Conservation Fund and 
US Department of Agriculture Forest Service in 1999. GI usually refers to 
strategic planning, creation, and management of an interconnected 
network of green space within an urban environment and can provide 
considerable ecological, social, and economic benefits (Gashu & 
Gebre-Egziabher, 2019; Soga et al., 2017). In 2013, the European 
Commission Communication on GI laid the foundation for the strategic 
planning and management of GI, providing concrete suggestions on how 
to use GI as a tool through nature-based solutions (NBS), helping us 
maintain and enhance benefits in GI investments (European Commis-
sion, 2013). The concept of NBS was formally proposed by European 
Commission in 2015, considered as an evolution of the concept of GI. 
Compared with the specificity of GI, the concept of NBS is more exten-
sive (Escobedo, Giannico, Jim, Sanesi & Lafortezza, 2019). 

GI has great potential to supply four key elements of food, energy, 
water and habitat. Food, energy and water are essential and funda-
mental resources that support human survival and socioeconomic 
development (Djehdian, Chini, Marston, Konar & Stillwell, 2019). 
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Policies for food, energy, and water are often in conflict with each other, 
optimizing one resource at the expense of another (Zhang et al., 2019). 
To maintain the sustainability of urban systems and avoid considering a 
single aspect that leads to trade-offs, scholars have proposed an inte-
grated nexus approach to deal with the conflicts between the utilization 
of resources (Chang, Hossain, Valencia, Qiu & Kapucu, 2020). This 
approach has been widely welcomed especially after the formal pre-
sentation of food-energy-water (FEW) nexus studies at the Bonn con-
ference in 2011 (Hoff, 2011; Romero-Lankao, McPhearson & Davidson, 
2017). Simultaneously, biodiversity conservation is also important for 
urban sustainable development (Garrard, Williams, Mata, Thomas & 
Bekessy, 2018). Therefore, we extended the nexus to 
food-energy-water-habitat (FEWH). 

Urban infrastructures are key determinants of FEWH security. gray 
infrastructure such as power plants, roads, and water supply systems 
tend to be stable and, once adopted, become path-dependent and diffi-
cult to change (Romero-Lankao et al., 2017). GI has gradually become a 
priority for urban planners due to its short establishment period and low 
cost (Bowler, Buyung-Ali, Knight & Pullin, 2010). The impact of GI on 
the FEW nexus has been studied and its importance in policy develop-
ment has been noted (Bellezoni, Meng, He & Seto, 2021). There is also 
extensive evidence from scholars to quantify the impact of urban GI on 
the FEW nexus (Meng et al., 2023). Currently, we have found few studies 
that address GI and FEWH nexus. However, under the dual pressure of 
urbanization and climate change, it is necessary to strengthen the 
research on GI for coupling FEWH nexus to resolve the 
people-environment-infrastructure conflict. In order to address a key 
knowledge gap around people-environment-infrastructure interactions, 
it is necessary to better understand the role of GI in the delivery of food, 
energy, water and habitat, while taking into account their dependence 
and interaction with people and with built structures. Together these 
improve human living conditions (Emmanuel & Loconsole, 2015), but 
the role of GI can also be constrained within the local environment by 
limited resources such as energy, water and land (Sen & Khazanovich, 
2021; Vijayaraghavan, 2016). Thus these interactions can be both pos-
itive and negative. 

In order to explore the positive and negative impacts of GI on the 
coupling of FEWH nexus, this study was conducted based on the 
following three questions: 1) What are the research hotspots in FEWH 
for GI and what are the trends over time? 2) What ecosystem services 
can different types of GI provide in terms of FEWH, and in what pro-
portion? 3) Can we quantify the ecosystem service potential of GI, and 
what are the synergies and trade-offs among the service types? To 
address the above questions, based on published literature, this study 
conducted time-series analysis and knowledge flow sorting on the 
research hotspots and ecosystem services of GI in terms of FEWH. In 
addition, a matrix was created to score the service potential of GI, and 
the synergies and trade-offs among service types were discussed through 
ordination analysis. Our research aims to elaborate on the challenges 
and priorities of GI in providing ecosystem services for coupled FEWH 
nexus, and to develop a conceptual framework which outlines solutions 
to guide GI implementation. 

2. Data source and methodology 

2.1. Data source 

Data were searched in two parts in the web of science core collection 
database on December 20, 2022. One part of the data was searched with 
terms related to green infrastructure, urban, and FEWH (see Table S1 in 
Supplementary Materials), and a total of 3452 publications were ob-
tained. Research terms in this part included blue infrastructure and 
nature-based solutions because 1) although some scholars classify blue 
infrastructure as GI as well, some scholars prefer to describe it sepa-
rately; 2) nature-based solutions are based on planning and imple-
menting GI, and the two concepts often appear simultaneously. The 

search terms include only the city-wide due to the conflict among pop-
ulation, resources and environment in cities, which are the main sites of 
GI planning and implementation, although there are also a small but 
limited number of GI plans in rural areas. 

Another part of the data was retrieved considering that there are 
specific types of GI, such as city farms, green roofs and gardens, etc. A 
total of 16 types of GI related to FEWH were selected (see search terms in 
Supplementary Materials). In order to avoid obtaining a large number of 
irrelevant publications, only the top 50 most relevant publications for 
each GI were selected. Therefore, 800 publications were obtained in this 
part. Duplicates were removed from both parts of the data, which 
resulted in 3357 papers. Although other databases are also available, 
such as Scopus, the web of science literature is sufficient to support the 
analysis of GI (Bellezoni et al., 2021). 

2.2. Methodology 

2.2.1. Time series analysis 
Time series analysis of keywords can better reveal the temporal 

evolution of GI research. The annual frequencies of the keywords in the 
obtained literature were extracted and the synonyms were combined. 
The Ward distance method was used to perform temporal cluster anal-
ysis of keywords, and the research period was divided into 2001–2016 
and 2017–2022 (Fig. S1 in Supplementary Materials). By calculating the 
frequency of keyword occurrences in two periods, the trend factor of 
keywords can be derived (see Supplementary Materials for the calcula-
tion process). When the trend factor is greater than 0, it indicates an 
increasing trend of keyword research interest and vice versa (Zhu, 
Dressel, Pacion & Ren, 2021). 

A bubble chart of GI research hotspots was created in the Origin 
software by selecting 200 high frequency keywords. The search terms 
“green infrastructure”, “blue infrastructure”, and “nature-based solu-
tions” were excluded because their frequency was too high and would 
have overshadowed other keywords. Emerging keywords with high 
frequency (frequency > 3) that only appear in 2017–2022 were also 
listed separately in the bubble chart. 

2.2.2. Knowledge flow 
Knowledge flow has been widely used for visual analysis of multi-

dimensional data (Lupton & Allwood, 2017). By reviewing the abstracts 
of obtained publications, the main types of FEWH-related ecosystem 
services of GI were identified. The literature involved in GI types and the 
services it provides were counted separately to produce a knowledge 
flow. In this case, a publication may be duplicated for counting, as there 
are cases where a single publication includes multiple GI types and 
multiple ecosystem services. 

Food-related services of GI were divided into food provision and food 
safety. Food is the basic material needs of human beings, and food 
provision affects social stability (Goldstein, Hauschild, Fernandez & 
Birkved, 2016). Food safety means that food is safe to eat, meets the due 
nutritional requirements, and does not cause any harm to human health 
(Carvalho, 2017). Food provision and food safety reflect the ecosystem 
service potential of GI in quantitative and qualitative terms, 
respectively. 

Energy-related services of GI were divided into energy provision, 
carbon storage and heat mitigation. Energy is an important material 
basis of the national economy (Almeshaiei, Al-Habaibeh & Shakmak, 
2020). Energy consumption is the main source of carbon emissions. 
Reducing energy consumption or increasing carbon sequestration are 
effective measures to alter carbon storage (Kavehei, Jenkins, Adame & 
Lemckert, 2018). Relying on GI for heat mitigation can reduce the en-
ergy consumption of machine cooling (Chen, Haase, Qureshi & Fir-
ozjaei, 2022). Energy provision, carbon storage and heat mitigation 
directly and indirectly reflect the relationship between GI and energy. 

Water-related ecosystem services of GI mainly include water provi-
sion, water quality improvement and water flow management. Water is 
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also a basic human need, and water quality improvement is an important 
measure to ensure water security (Guzman, Wang, Muellerklein, Smith 
& Eger, 2022). Water flow management is an essential way to prevent 
and control water disasters (Ibrahim, Bartsch & Sharifi, 2020). From 
water provision to water quality improvement and water flow man-
agement reflecting the strong regulatory ability of GI from passive to 
active. 

GI services to habitats have focused on providing habitat for wildlife 
and thus conserving biodiversity (Aiken, Mulloy, Dwane & Jackson, 
2021). The supply of food, energy and water represents the provisioning 
services of ecosystem services. Food safety, carbon storage, heat miti-
gation, water quality improvement, and water flow management are 
among the regulating services of ecosystems. Biodiversity conservation 
belongs to ecosystem supporting services. In addition to ecosystem 
services, the economic impact of GI in terms of FEWH was investigated. 
GI primarily provides ecological benefits, however economic benefits 
can influence and even determine the choice of GI by urban planners 
(Isaifan & Baldauf, 2020). 

2.2.3. Ordination analysis 
The scoring of GI services enables the quantitative measurement of 

their potential to serve food, energy, water and habitat. A matrix was 
introduced to describe the service potential of GI for FEWH (see Sup-
plementary Materials), following the approach used by Jones et al. to 
assess the ecosystem service potential of GI (Jones et al., 2022a). In the 
matrix developed by Jones et al. the types of GI were systematically 
classified and the ecosystem service benefits were scored (negligible ~ 
very high = 0 ~ 4) for each type of GI. Original scorings in Jones et al. 
(2022a) were based on evidence in the literature, and using first prin-
ciples based on understanding of ecological processes and social be-
haviours to score GI elements which are currently under-researched. 
Since the matrix developed in this study was targeted to explore the 
ecosystem services of GI for food, energy, water, and habitat, only 16 
essential GI types were emphasized. The matrix takes into account both 
the positive and negative effects of GI on ecosystem services in our 
research, as it has been stated that the disbenefits of GI should not be 
ignored either (Bellezoni et al., 2021). 

The scoring process for this study included 1) While referring to 
Jones et al.’s (2022a) scoring criteria, for each score in the matrix, an 
additional representative literature was provided to support the scoring 
(see Table S2 in Supplementary Materials). The degree of negative and 
positive impacts was assigned separately (high negative impact ~ high 
positive impact = − 3 ~ 3, Table 1). 2) The proposed scoring matrix was 

sent to other co-authors to discuss the validity of the scores until a 
consensus was formed on the final matrix. We believed the matrix to be 
reasonable because all of the authors came from diverse scientific 
backgrounds. 

A principal component analysis mapping was performed to analyze 
the synergies and trade-offs of GI on FEWH. Principal component 
analysis (Coskun-Hepcan & Hepcan, 2018) is one of the ordination 
analysis methods. In this study, each GI type was used as a sample point 
and each ecosystem service type was used as a species for mapping. In 
addition, correlations between ecosystem services were calculated to 
complement the judgment of synergies and trade-offs. The quantifica-
tion of ecosystem service potential can provide a reference basis for the 
planning and implementation of GI. 

3. Results 

3.1. Research hotspots and trend 

Ecosystem services were the most important research theme for GI in 
relation to FEWH since 2001 (Fig.1). In terms of supporting services of 
GI, biodiversity conservation received more research interest from 
scholars from 2001 to 2016 and less interest after 2017. In the area of 
regulating services, there was considerable interest in urban planning as 
a means of applying GI for climate change mitigation and adaptation, 
particularly for stormwater management and urban heat mitigation. 
Flood and low impact development associated with stormwater man-
agement accounted for a relatively large number of literature reports. 
However, surface temperature and cooling effect as correlates of heat 
mitigation were reported less but with high trend factors. 

In respect to specific GI types, green roofs received comparable 
attention over the two research periods. The trend factors for green walls 
and city farm were high, indicating that they were in the spotlight for 
2017–2022. Urban woodland was only a hotspot for research from 2001 
to 2016. In addition to the focus on FEWH, the trend factors for air 
pollution and air quality were high. Emerging keywords reflected the 
hotspots of GI research in recent years. Hotspots in GI research methods 
included machine learning, random forest, analytic hierarchy process, 
and decision support system. COVID 19 and sustainable development 
goals were emerging keywords in a socio-environmental context. 
Stakeholder and co-create were a focus in the co-design and imple-
mentation of GI. 

Table 1 
The matrix with scores of services provided by GIs for food, energy, water, habitat.  

Name Food 
provision 

Food 
safety 

Energy 
provision 

Carbon 
storage 

Heat 
mitigation 

Water 
provision 

Water quality 
improvement 

Water flow 
management 

Biodiversity 
conservation 

Economic 
benefits 

City farm 3 2 − 1 0 1 − 3 − 2 1 2 3 
Woodland 1 1 1 3 3 − 1 3 3 3 1 
Garden 2 2 0 3 2 − 1 2 2 3 1 
Park 1 0 0 3 3 − 2 3 2 3 1 
Green 

corridor 
1 1 0 1 2 0 1 1 2 − 1 

Green roof 1 1 1 2 2 − 1 − 1 1 2 − 2 
Green wall 0 0 1 1 1 0 0 1 1 − 3 
Lake 2 1 1 2 3 2 3 2 3 0 
Pond 1 − 1 0 1 1 2 1 2 3 − 1 
Reservoir 1 − 1 3 2 2 3 − 1 2 − 1 2 
Coast 3 1 2 3 2 0 3 0 3 − 1 
River 1 1 0 1 3 2 2 2 3 0 
Drainage 0 0 − 1 1 1 1 1 3 1 − 1 
Green 

swale 
0 0 0 2 1 0 2 2 2 − 1 

Wetland 0 1 0 2 2 1 3 3 3 1 
Protected 

area 
1 2 0 3 3 1 2 2 3 1 

Note: negative impacts (high, medium, low), negligible, positive impacts (low, medium, high) = − 3, − 2, − 1, 0, 1, 2, 3. 
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3.2. Ecosystem services 

There were differences in the research focus on FEWH for different 
types of GI (Fig.2). The percentage of GI research on food was only 10%, 
with food provisioning being the main type of service. City farm was the 
most frequently mentioned source of food provision, followed by gar-
dens and parks. Food safety has received relatively little focus in GI 

research, accounting for about 1.3% of papers. A total of 21.6% of pa-
pers mentioned energy, where energy provision was less reported, and 
the main source of supply was lake, pond and reservoir. Carbon storage 
and heat mitigation were of high interest in GI research, at 8% and 
11.8%, respectively. The greater potential for carbon storage was in 
woodlands, while heat mitigation research mentioned green roofs, green 
walls, gardens and parks most frequently. 

Fig. 1. Top 200 frequently occurring keywords (bubbles) based on time trend distribution of past (2001 - 2016) and recent (2017 - 2022) normalized cumulative 
frequencies (some bubbles with the same trend factor as the normalized cumulative frequency appear superimposed). The shade of color indicates the magnitude of 
the trend factor value of the keyword. The size of the bubble indicates the cumulative frequency of the keyword. 

Fig. 2. Knowledge flow of GI and FEWH, the numbers represent the quantity of publications.  

T. Ruan et al.                                                                                                                                                                                                                                    



Sustainable Cities and Society 98 (2023) 104845

5

Water research was the biggest for GI research at 36.1%. Of these, the 
percentage of water supply and water quality studies was the same, both 
at 4.7%, while 26.7% of studies focused on water flow management 
using green swales and drainage systems. GI providing habitat for 
wildlife for biodiversity conservation was also a hot topic, accounting 
for 32.3%. Almost all GI types were able to provide habitats for wildlife, 
with gardens, parks and woodlands getting more attention for biodi-
versity conservation research. 

The ecosystem services of GI for FEWH reported in the literature 
represented that the regulating services (52.4%) had greater coverage in 
the literature than that of provisioning (15.3%) and supporting services 
(32.3%). Cultural services were not counted here because they were 
mentioned rarely. Apart from ecosystem services, the economic impact 
studies of GI accounted for 3.3%. The main GIs involved in economic 
impact studies were green roofs, lakes and drainage systems. 

3.3. Contribution and correlation 

There was a large variation in the ability of GI to serve FEWH. In the 
PCA diagram, the first principal component (PC1) and the second 
principal component (PC2) contributed 30.27% and 26.77% of the 
variance, respectively (Fig. 3a). The types of services provided by GI for 
FEWH were indicated by arrows. The length of the arrow indicated the 
correlation between the service type and the ranking axis, for example, 
water provision and food safety contributed the most to the first and 
second ranking axes, respectively. The direction of the arrow indicated 
the direction of the fastest growing value, and the angle between the 
arrows indicated the correlation between the service types. For example, 
food provision was positively correlated with economic benefits and 
negatively correlated with water provision (Fig. 3a). 

Each GI type was represented by points, and the size of the points 
indicated the total score, which could be interpreted as the overall 
contribution of GI (Fig. 3a). Lakes had the highest total score, followed 
by woodland. It shows that lakes and woodlands contribute more to 
FEWH. Green walls, green roofs and drainage systems have lower total 
scores, indicating their lower overall contribution. The colors of the 
points characterize the green and blue features of GI, respectively. 
Points close together indicate high similarity between GI, such as gar-
dens and parks, wetlands and lakes that were close together, which have 
similar GI characteristics. 

The relationship between GI and service type is the relationship 
between points and arrows (Fig. 3a). For a service type, a vertical line 
was made from each point to the line where the arrow was located, and 
the points were ranked according to the direction of the arrow growth. 
For example, for food provision, city farm has the highest score while 
reservoir has the lowest score. According to the correlation among ser-
vice types (Fig. 3b), there were negative correlations between food 
provision and water flow management (− 0.55) and between water 
provision and food safety (− 0.47). For water quality improvement, there 
was a positive correlation with biodiversity conservation (0.67) and 
with carbon storage (0.63). The correlation coefficient between eco-
nomic benefit and each service type was less than 0.5. 

4. Discussion 

4.1. Research trends 

The topic of multi-functionality of GI in FEWH research is gradually 
increasing. At the beginning of the 21st century, urban planners were 
primarily concerned with the connectivity of GI. GI can provide a sound 
green network for wildlife migration and ecological processes (Weber & 
Wolf, 2000). Therefore, biodiversity conservation became the main 
function of GI and received high focus. As climate change intensifies, the 
thinking and research around GI has been gradually transitioning to 
multi-functionality, expanding to consider other ecosystem services 
such as stormwater management and heat mitigation (Meerow & 
Newell, 2017). 

The high potential for services but resistance to implementation, as 
well as a lack of space in cities, has led to more research attention on 
green roofs, green walls, and city farms. Roofs and walls tend to be 
privately owned, but allow retro-fitting, or clever incorporation into 
new building designs. By contrast, city farms take up significant 
amounts of urban land, water, and other resources. Despite the various 
environmental benefits that these GI can provide, lack of land access, 
poor technological maturity and long payback cycles limit their popu-
larity to a certain extent. Research on production intensification, tech-
nology upgrading, community participation and economic growth is 
increasing to address some of these barrier issues such as land, tech-
nology and finance (Alim et al., 2022). 

Among the ecosystem services of GI for FEWH, coverage of 

Fig. 3. Principal components analysis showing relationships among GI types (a) and correlations between ecosystem service types (b). FP - Food Provision; FS - Food 
Safety; CS - Carbon Storage; EP - Energy Provision; HM - Heat Mitigation; WP - Water Provision; WQ - Water Quality Improvement; WF - Water Flow Management; BC 
- Biodiversity Conservation; EB - Economic Benefits. 
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regulating services in the literature was greater than provisioning and 
supporting services. This is possibly because provisioning and support-
ing services of GI require higher technical and financial inputs, such as 
solar energy and urban agriculture construction (Chen & Chen, 2021; 
Weidner, Yang, Forster & Hamm, 2022). In contrast, GI that provides 
regulating services is less costly to establish, such as managing vegeta-
tion and controlling runoff (Ab Azis & Zulkifli, 2021). Moreover, pro-
visioning and supporting services often require more complex 
management and maintenance. However, forests, parks, and wetlands 
have better cooling, stormwater management, and biodiversity conser-
vation effects along with relatively less maintenance (Garcia-Herrero 
et al., 2022; Oldfield, Warren, Felson & Bradford, 2013). Another factor 
behind this trend is that it is often easier to quantify regulating services, 
and they offer a level of direct mitigation of many urban pressures such 
as flooding or cooling (Jones et al., 2022b). 

4.2. Synergies and trade-offs among ecosystem services 

If carbon sequestration, biodiversity conservation, water quality 
regulation and cooling are required at the same time, then the best 
choices for GI are woodlands, protected areas and wetlands. It can be 
seen that there are significant synergistic effects of GI in carbon storage, 
habitat provision, water quality improvement and heat mitigation 
(Fig.3a and 3b). Moreover, woodlands, protected areas and wetlands 
contributed more to these four service types. In agreement with Jones 
et al., the more natural habitats (woodlands, the coast, lakes) are more 
multi-functional, while the more constructed habitats (green roofs, and 
constructed wetland features) are less multi-functional (Jones et al., 
2022a). This is likely because constructed features tend to be designed 
with a primary purpose in mind. However, some features, particularly 
green roofs, are increasingly designed to be multi-functional, for 
example with the aim of storing carbon and supporting biodiversity in 
addition to water management and providing thermal stability to 
buildings (Knapp, Schmauck & Zehnsdorf, 2019). 

While the potential for GI to sustain FEWH nexus is significant, it 
simultaneously raises new trade-offs (Fig. 4a). In particular, the trade- 
offs between water and food are stronger (Fig. 4b). GIs capable of 
water supply and water flow management have difficulty providing food 
and ensuring food safety, such as drainage systems and reservoirs 
(Jokinen, Hillman & Tymensen, 2019). Vice versa, food production 

causes high water consumption and GIs capable of producing food were 
less capable of water flow management. For example, city farms were 
less resilient to floods due to changes in the original ecology (Alberti 
et al., 2022). As food straw can be converted into biofuel and waste from 
energy production may be used as fertilizer for crop development, there 
is a rather high synergy between food and energy (Tilman, Socolow, 
Foley, Hill & Larson, 2009). Additionally, there is a strong synergy be-
tween habitat and food, with good habitat luring pollinators to disperse 
pollen for crop production and food production sites also serving as 
excellent habitats for both plants and animals (Carvalho, 2017). 

The objects that have both trade-offs and synergies include: 1) En-
ergy and water, where water can provide hydropower, but water 
transport consumes energy (Chang et al., 2020). 2) Habitat and water, 
where habitat needs water supply and is also threatened by flooding, 
and although the habitat can purify the water, it may also be affected by 
water pollution (Scheffers & Paszkowski, 2013). 3) Habitat and energy, 
GIs that supply energy such as solar farms can provide habitat for plants 
and animals, but at the same time the establishment of energy infra-
structure may destroy the biodiversity of habitat (Semeraro, Pomes, Del 
Giudice, Negro & Aretano, 2018). Exploring the synergies and trade-offs 
among ecosystem services of GI can provide knowledge to enhance 
positive impacts and avoid negative impacts when planning GI for the 
future adaptation of people to urban environment. 

The economic benefits of the services provided by GI to FEWH have 
still received relatively little study effort. Compared to the ecological 
benefits, the economic benefits of GI have not been quantified as 
extensively. Unlike the material abundance in developed countries, 
there is often resistance to building GI in a large number of developing 
countries because of the increased cost, and low direct economic bene-
fits and unclear beneficiaries (Manso, Teotonio, Silva & Cruz, 2021). 
This occurs despite the large number of indirect economic and societal 
benefits provided by GI (Bowen & Lynch, 2017; Fletcher et al., 2022; 
Mell, Henneberry, Hehl-Lange & Keskin, 2016). 

PCA and correlation analysis provide a more comprehensive inves-
tigation of the synergies and trade-offs among ecosystem services pro-
vided by GI, and identify issues that need to be focused on to promote 
the coupling of FEWH nexus in the future. The visualization of synergies 
and trade-offs within FEWH nexus provides important knowledge sup-
port for the development of the conceptual framework and forms an 
important part of it (Fig. 4b). This has led to the proposed final solution 

Fig. 4. Conceptual framework for green infrastructure (GI) to sustain food-energy-water-habitat (FEWH) nexus. (a): positive and negative impacts of GI on FEWH. 
(b): synergies and trade-offs among FEWH. (c): solutions to reduce trade-offs among FEWH. FP - Food Provision; FS - Food Safety; CS - Carbon Storage; EP - Energy 
Provision; HM - Heat Mitigation; WP - Water Provision; WQ - Water Quality Improvement; WF - Water Flow Management; BC - Biodiversity Conservation; EB - 
Economic Benefits. 
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in the framework, which is necessary to resolve the people-environment- 
infrastructure conflict in future cities. 

4.3. Solutions 

Utilizing a nexus approach to synergistically address the negative 
impacts of climate change and human activities on FEWH has become an 
efficient solution. Moreover, GI has greater positive benefits for 
ecosystem services in the FEWH nexus and is an effective tool for sus-
taining the nexus. To address emerging trade-offs and enhance synergies 
among FEWH, multi-functional GI planning is necessary. This requires 
applying new methods and theories, adapting to new circumstances, and 
developing appropriate business models within planning, and seeking 
policy and funding support externally (Fig. 4c). 

New methods, new circumstances and new theories make the 
development of GI promising. With regard to new methods, de-
velopments in the computing have brought new technologies, from 
machine learning to decision support systems, that make the research, 
planning and implementation of GI more intelligent, precise and 
comprehensive (Guzman et al., 2022). In terms of new circumstances, in 
the context of the COVID-19 outbreak, there has been recognition of the 
great potential of GI to help with mental health regulation in addition to 
basic material supply and ecological protection (Zhang, Zhang & Zhai, 
2021). On the new theories side, under the framework of co-design 
theory, the rights and interests of stakeholders are maintained, which 
stimulates co-creation and promotes the sustainable development of GI 
(Patra et al., 2021), while the idea of multiple overlapping and inter-
acting domains of influence, termed ‘sheds’ allows better informed 
spatial planning both within cities and their surroundings (Jones et al., 
2022b). 

Developing the appropriate business model is an important internal 
support for the sustainability of GI. While certain GIs, like city farms and 
reservoirs, have the potential to boost the local economy, other GIs, like 
green roofs and walls, that are costly but difficult to achieve economic 
benefits (Fig. 4a). In order to sustain GI in the long term, its commercial 
value needs to be realized. This requires the development of locally 
appropriate business models, such as increased urban greenery to 
enhance real estate value, health management value for healing gar-
dens, tourism value for heritage site reuse, and environmental education 
value for green spaces (Cilliers et al., 2018; Coombes & Viles, 2021; 
Sohn, Kim, Kim & Li, 2020). 

Obtaining policy and financial support is an important external 
guarantee for GI. Policy-oriented GI planning responds to regional and 
national development trends, effectively avoids political barriers. 
Effectively accessing policy support needs to be based on local condi-
tions and clarify the government’s positioning for local development 
(Harrington & Hsu, 2018). External finance is the source of funding for 
GI in the planning and implementation stages, and it determines 
whether GI can be established satisfactorily. External funding acquisi-
tion needs to fully consider the rights and interests of funders and 
maximize their benefits (Davies et al., 2018). 

5. Conclusion 

As semi-natural facilities, GIs can reduce human pressure on the 
environment, thus maintaining a positive interaction among people, 
environment, and infrastructure. Information on the multi-functionality 
of GI has gradually increased over time as its potential to provide mul-
tiple services to people is increasingly understood. A major knowledge 
gap in the literature remains on the quantification of the economic 
benefits of many GI types. For improving the ability of GI to facilitate a 
coupled FEWH nexus, future multi-functional GI planning should 
employ computer systems-based approaches such as machine learning 
to improve efficiency; utilize stakeholder engagement theories such as 
co-design to ensure green equity; and continually adjust planning pri-
orities to address the major challenges facing society. Additionally, in 

order to maintain the sustainability of GI, appropriate business models 
and external policy and financial support are needed. 

The innovations of this study are 1) proposal to apply the FEWH 
nexus approach to help address conflicts in resource allocation, 2) 
developing a matrix of ecosystem service potential for GI to explore the 
synergies and trade-offs between services, and 3) creating a conceptual 
framework for GI for coupling the FEWH nexus. The nexus approach and 
matrix provide methods for resolving the mutual exclusion of resource 
use and quantifying the interactions between people-environment- 
infrastructure, and the conceptual framework offers a systematic solu-
tion for dealing with future urban people-environment-infrastructure 
contradictions. One potential weakness is that only 10 typical 
ecosystem services were chosen for the study, since additional types of 
ecosystem services may bring additional effects on the FEWH nexus. 
Future research and evaluation of the synergies and trade-offs between 
additional GI ecosystem services and these representative services can 
offer more comprehensive evidence for urban GI development. 
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