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Abstract: Accelerated sea level rise is placing coastal communities in a vulnerable position; how-
ever, the processes underlying sea level acceleration in China remain uncertain. In this study, we
examine the sea level acceleration and its contributors over the China Seas. We calculate accelera-
tion along the Chinese coast using satellite altimetry and tide gauge records. During the satellite
altimetry era, sea level acceleration from tide gauge records varies across all stations, reaching up
to 0.30 ± 0.20 mm/yr2, while satellite altimetry could underestimate/overestimate the sea level
acceleration in most locations. Acceleration near the coast, except in the Bohai Sea, is mainly driven
by changes in the mass component. In contrast, for the open ocean, changes in steric sea level are
the main contributor to sea level acceleration. The evolution of spatial acceleration patterns over the
China Seas reveals that the ENSO and PDO variabilities dominate the changing patterns of sea level
acceleration in the open ocean, including the Philippine Sea through steric sea level, and changes in
most coastal locations are due to the non-steric component.

Keywords: sea level acceleration; tide gauge; satellite altimetry; steric; mass change

1. Introduction

Sea level rise is regarded as one of the important consequences of climate change,
with implications for regions worldwide [1]. Detecting sea level acceleration is of vital
importance, especially for coastal communities, as many large cities are located along the
coastline, so accelerated sea level rise will place them under greater risks in the future. This
includes densely populated coastal areas of China, which has 32 thousand kilometers of
coastline with ever-increasing infrastructure [2–4].

This consensus has been reached about global sea level rise [1], with proxy and
instrumental observations providing the evidence of global sea level acceleration over the
last two centuries [5–9], leading to a more severe economic impact in the coastal areas
due to an increased frequency of coastal flooding and intensified coastal erosion [10]. In
China, coastal areas account for only 13% of land area, but sustain 43% of the national
population and over 62% of GDP [11], making them vulnerable to sea level rise under all
climate change scenarios [12,13]. Future development and adaptation plans require robust
estimates of sea level rise and its acceleration, identifying when and how the local sea level
deviates from simulated future sea level projections.

Sea level variations are the sum of changes in the steric component (that is produced
by water expansion or contraction) and the mass component, which results from the con-
tribution of mountain glaciers, ice sheets in Greenland and the Antarctic, and land water
storage [1]. Ice sheets melting has been proven to be the main contributor to global mean
sea level acceleration during the satellite altimetry era, while for the regional pattern [14],
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internal variations, including ENSO and PDO, could play the dominant role [14–16]. Vari-
ous sea level contributors define the complex spatial patterns of regional sea level changes,
and there is a lack of understanding about the main physical mechanisms driving sea level
acceleration along the coast of China. Thus, understanding the main drivers for sea level
acceleration is crucial for projecting future sea levels in China.

In this study, we unravel regional patterns of sea level acceleration for coastal areas
in China, examine the contribution of steric and mass-induced sea level components to
sea level acceleration, and explore the role of ENSO and PDO in the changes in accelera-
tion patterns.

2. Materials and Methods
2.1. Tide Gauge Records

Monthly tide gauge records are obtained from PSMSL [17,18], among which NPQB
come from the merging of North Point and Quarry Bay stations as they have matching
datum information [19]. NPQB has the longest record of 71 years while Shanwei and
Beihai have the shortest record of 20 years. Detailed information about the tide gauge
records is presented in Table 1. Inverse barometer effects are corrected for the tide gauge
records to compare with the satellite altimetry data, using monthly sea level pressure data
from NCEP/NCAR reanalysis datasets [20]. Sea level acceleration at tide gauge locations
measured using satellite altimetry is estimated from the time series within the area of
±0.2◦ lat/lon around the station.

Table 1. Selected tide gauge records and the record length in years used in this study and the sea
level acceleration (mm/yr2) at selected locations after removing the seasonal cycle.

Station Name Longitude
(◦E)

Latitude
(◦N) Time Span Completeness

(%)
Record Length

in Years
Acceleration

(mm/yr2)

Qinhuangdao 119.60 39.90 1950–1994 99 45 0.04 ± 0.06
Tanggu 117.72 39.00 1975–1994 100 20 2.08 ± 0.54
Dalian 121.68 38.87 1970–2021 97 52 0.05 ± 0.04
Yantai 121.38 37.53 1954–1994 100 41 −0.33 ± 0.12

Shijiusu 119.55 35.38 1975–1994 100 20 1.02 ± 0.32
Lianyungan 119.45 34.75 1975–1994 100 20 1.50 ± 0.38

Lusi 121.62 32.13 1969–2020 93 52 −0.05 ± 0.04
Kanmen 121.28 28.08 1959–2021 99 63 0.08 ± 0.03
Xiamen 118.07 24.45 1954–2004 100 51 0.00 ± 0.05
Shanwei 115.35 22.75 1975–1994 100 20 0.55 ± 0.40
Zhapo 111.82 21.58 1959–2021 99 63 0.05 ± 0.03
Beinhai 109.08 21.48 1975–1994 100 20 0.20 ± 0.30
Xi Sha 112.33 16.83 1990–2021 99 32 0.09 ± 0.23

Nan Sha 112.88 9.55 1998–2021 83 24 0.38 ± 0.27
Macau 113.55 22.20 1925–1985 96 61 −0.09 ± 0.04
NPQB 114.21 22.29 1950–2020 99 71 0.11 ± 0.02

Tai Po Kau 114.18 22.44 1963–2020 95 58 0.07 ± 0.04
Tsim Bei Tsui 114.01 22.49 1974–2020 84 47 0.24 ± 0.07
Tai Miu Wan 114.29 22.27 1997–2020 94 24 0.23 ± 0.41

Shek Pik 113.89 22.22 1998–2020 97 23 0.41 ± 0.32
Keelung II 121.73 25.13 1956–1995 100 40 0.43 ± 0.05

2.2. Satellite Altimetry

Gridded monthly sea level anomalies from satellite altimetry are used. The satel-
lite altimetry product comes from NASA JPL (Jet Propulsion Laboratory, Pasadena, CA,
USA) (https://podaac.jpl.nasa.gov/dataset/SEA_SURFACE_HEIGHT_ALT_GRIDS_L4_2
SATS_5DAY_6THDEG_V_JPL2205, accessed on 1 April 2023), which processes data from sev-
eral altimeters. The sea level anomalies are available on a resolution of 0.17◦ × 0.17◦ (lat/lon)
from 1993 to 2020 and are corrected for inverted barometer (IB) effects.

https://podaac.jpl.nasa.gov/dataset/SEA_SURFACE_HEIGHT_ALT_GRIDS_L4_2SATS_5DAY_6THDEG_V_JPL2205
https://podaac.jpl.nasa.gov/dataset/SEA_SURFACE_HEIGHT_ALT_GRIDS_L4_2SATS_5DAY_6THDEG_V_JPL2205
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2.3. Steric Component

To determine the contribution to sea level acceleration, we examine the acceleration of
both the steric and mass components.

For studying the steric sea level contribution to acceleration, we use the IAP steric sea
level obtained from the Institute of Atmospheric Physics, Chinese Academy of Sciences
(http://www.ocean.iap.ac.cn/ftp/cheng/IAP_Gridded_Steric_sea_level_upper2000m/, ac-
cessed on 10 December 2022) on a horizontal resolution of 1◦ × 1◦ for upper 2000 m layers,
which has advantages in reducing the sampling errors as it uses available observations to
infill data gaps with an improved interpolation method [21,22]. We re-grid the IAP steric
sea level to the same resolution as the NASA satellite altimetry to make it comparable.

2.4. Mass Component

Mass-induced sea level can be computed from water mass change in the ocean mon-
itored by the Gravity Recovery and Climate Experiment (GRACE) [23–25]. Gridded
monthly liquid water equivalent thickness product on a resolution of 0.5◦ × 0.5◦ de-
rived from GRACE/GRACE-FO, starting from 2002 to the present, are obtained from JPL
(https://grace.jpl.nasa.gov, accessed on 1 April 2023). We re-grid GRACE data to the
resolution of NASA satellite altimetry data (0.17◦ × 0.17◦) as well. GRACE observations are
used to determine the contribution of mass redistribution to regional sea level acceleration.

The version of data we use is based on GRACE and GRACE-FO with a Coastline Reso-
lution Improvement (CRI) filter applied to reduce signal leakage errors that span coastlines.

2.5. Climate Indexes

In this study, two dominant climate indexes influencing the regional sea level accel-
eration are considered, ENSO (El Niño–Southern Oscillation) and PDO (Pacific Decadal
Oscillation), as they are the two major climate modes influencing the sea level pattern
in the Pacific Ocean [26]. MEI index (https://psl.noaa.gov/enso/mei/data/meiv2.data,
accessed on 1 April 2023), which represents the ENSO signal, is adopted; it is the Mul-
tivariate ENSO index which combines several climate variables over the tropical Pacific.
PDOs (https://www.ncdc.noaa.gov/teleconnections/pdo/, accessed on 1 April 2023) are
calculated from sea surface temperature, for north of 20◦N in the Pacific Ocean [26–28].

2.6. Methods

We adopt a regression model to estimate the sea level acceleration around the China
Seas, and we remove annual and semi-annual cycles from the time series by applying a
6- and 12-month least-square fit before applying the model.

h = a + bt + ct2 (1)

where t is time. a, b, c coefficients are estimated using the least-squares fit; a is a constant
and b denotes the linear trend while the acceleration rate is twice the coefficient c. h denotes
the preprocessed sea level time series. We assume that vertical land motion such as Glacial
Isostatic Adjustment is linear and does not affect the sea level acceleration. The calculations
of acceleration are based on the function polyfit in MATLAB, which estimates the sea level
acceleration using a least-square quadratic fit following previous studies [28,29]. The
confidence interval at 95% level is estimated with the function polyparci, which calculates
the covariance matrix based on the key statistics provided by polyfit. The standard deviation
is measured of what the polyfit model is unable to fit in the observations.

To examine the contribution of ENSO and PDO variability to regional sea level acceler-
ation, we remove the annual and semi-annual cycles from the time series at first, and then
we use a linear regression model [28,29] to fit the climate indexes [24]:

h = a0 + a1t + a2t2 + a3MEI(t) + a4PDO(t) (2)

http://www.ocean.iap.ac.cn/ftp/cheng/IAP_Gridded_Steric_sea_level_upper2000m/
https://grace.jpl.nasa.gov
https://psl.noaa.gov/enso/mei/data/meiv2.data
https://www.ncdc.noaa.gov/teleconnections/pdo/
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Here, t is time, coefficients a0 to a4 are estimated with the least-squares fit, and
h denotes the preprocessed sea level time series. The time series of MEI and PDO indexes
are filtered following Zhang and Church [30], as the MEI index is high-pass filtered while
the PDO index is low-pass filtered. The part related to ENSO and PDO variabilities in
Equation (2) is removed from h to exclude their contribution [16,30].

3. Results
3.1. Estimates of Sea Level Acceleration along the Coast of China

In our study, we denote ‘the China Seas’ as a wider region, which is located between
100–180◦E and 0–50◦N; thus, several different countries are included. We select all 21 tide
gauge stations with records no less than 20 years and completeness higher than 80% to
study the sea level acceleration around the China coast. All selected tide gauge stations
in our study area as well as the bathymetry map are shown in Figure 1. Among all these
stations, Tai Po Kau, Tsim Bei Tsui, Tai Miu Wan, and Shek Pik are close to each other, and
so are presented in the figure but are not labeled due to the limited space.
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Figure 1. The spatial distribution of 21 tide gauge locations and bathymetry within the study area.

After removing the seasonal cycle, the sea level acceleration at each tide gauge station
is estimated using a least-square fit (see Methods) over the observational period (Table 1).
Table 1 shows that the estimates of acceleration range from −0.05 ± 0.04 mm/yr2 in Lusi
(1969–2020) to 0.41 ± 0.32 mm/yr2 in Shek Pik (1998–2020) for records ending after the
2000s, and depend on the length of time series. Acceleration for the longest sea level record
(1950–2020) at NPQB is 0.11 ± 0.02 mm/yr2.

Accelerations for all 21 tide gauge records with increasing lengths from 20 years to
the whole period of observations before and after removing the seasonal cycle are shown
in Figure 2a,b, respectively, while the difference between them is shown in Figure 2c. We
estimate the acceleration from twenty years to the whole period using moving windows
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for record lengths longer than twenty years; different colors represent different stations.
All tide gauge records show multidecadal variations in estimates of sea level acceleration,
suggesting that there are 20–30 year oscillations in sea level records. The scatter of sea-
level-acceleration values decreases with an increase in record length. Figure 2c shows that
estimates of acceleration in records shorter than 30 years are sensitive to seasonal variability,
the removal of seasonality could change the acceleration by −0.30 mm/yr2 (Tsim Bei Tsui)
to 0.22 mm/yr2 (Nan Sha) for a record length of 20 years.
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Figure 2. Acceleration (mm/yr2) vs. record lengths using 21 tide gauge records (represented by
different colored dots) before removing the seasonal cycle (a). Acceleration (mm/yr2) vs. record
lengths using 21 tide gauge records (represented by different colored dots) after removing the seasonal
cycle (b) and the difference between before and after removing the seasonal cycle (c).

Using satellite altimetry data, we examine the evolution of acceleration in time de-
pending on the lengths of time series for the near coastal locations and open ocean. We
apply variable windows from 10 to 300 months to sea level time series near the coastline
(within 0.2◦ to the coast) and averaged over the study area presented in Figure 1 between
1993 and 2020. By sliding the windows month-by-month over the satellite altimetry era,
we show the evolution of sea level acceleration depending on the length of window and
time span of data. Figure 3 shows that the sea level has been evolving with positive and
negative accelerations since 1993. The reversal between positive and negative accelerations
is more frequent near the coastline compared with the open-ocean study area.
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3.2. Patterns in Regional Sea Level Acceleration

We calculate the sea level acceleration from satellite altimetry, IAP steric, and the dif-
ferences between them (e.g., acceleration in non-steric component) as shown in Figure 4a–c.
There is an agreement between the patterns for sea level acceleration from satellite altimetry
and for steric sea level in the open ocean areas, e.g., around the Philippine Sea: they both
show negative acceleration. Along the coast, estimates of acceleration from tide gauge
records, available for 1993–2020, vary from −0.07 ± 0.19 mm/yr2 to 0.30 ± 0.20 mm/yr2,
with large error bars (Table 2). Note that only eight tide gauge records are available over the
satellite altimetry era (Table 2). Most tide gauge locations show positive acceleration, except
Dalian and Lusi, while for all locations, the acceleration in steric sea level is negative. There
is almost no contribution to sea level acceleration from the steric component in coastal
locations (Figure 4a–c, Table 2) except Dalian, suggesting that a possible mass redistribution
accounts for the acceleration (Figure 4a–c, Table 2). The acceleration for longer tide gauge
records since 1970 could not be explained by the steric component in most locations.
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during 1993–2020. Stippling indicates regions with no significant difference at the 95% level.

Table 2. Sea level acceleration (mm/yr2) from tide gauge records, steric sea level, and satellite
altimetry over different periods.

Tide Gauge Time of Span
1970–2020 1993–2020

TG a ST b TG AL c ST

Dalian 1970–2021 0.04 ± 0.04 0.04 ± 0.01 −0.05 ± 0.15 0.03 ± 0.03 −0.04 ± 0.03
Lusi 1969–2020 −0.07 ± 0.04 N/A d −0.07 ± 0.19 −0.23 ± 0.01 −0.00 ± 0.01

Kanmen 1959–2021 0.15 ± 0.04 N/A d 0.30 ± 0.20 −0.41 ± 0.01 −0.03 ± 0.01
Zhapo 1959–2021 0.11 ± 0.04 N/A d 0.22 ± 0.20 −0.11 ± 0.20 −0.08 ± 0.03
Xi Sha 1990–2021 0.02 ± 0.24 ※ 0.01 ± 0.03 ※ 0.14 ± 0.31 −0.38 ± 0.12 −0.30 ± 0.12
NPQB 1950–2020 0.05 ± 0.05 N/A d 0.02 ± 0.20 0.17 ± 0.02 −0.06 ± 0.02

Tai Po Kau 1963–2020 0.17 ± 0.05 N/A d 0.26 ± 0.20 0.18 ± 0.02 −0.06 ± 0.02
Tsim Bei Tsui 1974–2020 0.22 ± 0.07 ※ N/A d,※ 0.29 ± 0.23 0.18 ± 0.02 −0.06 ± 0.02

※ Denotes tide gauge records starting later than 1970; we calculate from the record over the maximum time span
between 1970 and 2020. a Tide Gauge. b Steric. c Altimetry. d N/A denotes that the steric sea level acceleration is
negligible compared to tide gauges and altimetry.
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The acceleration (Table 2) near the tide gauge locations from satellite altimetry is
underestimated compared with tide gauge records in most locations, although there are
larger error bars in the estimates of acceleration from tide gauge records than those in
satellite altimetry.

Strong negative acceleration in the Philippine Sea and the open ocean (Figure 4a) is
statistically significant and in agreement with steric sea level acceleration (Figure 4b). The
magnitude of acceleration from satellite altimetry and IAP steric sea level in the Philippine
Sea and open ocean areas is reduced with the removal of the ENSO and PDO variability
(Figure 4d–f).

Evolutions of sea-level-acceleration patterns in time, using a 20-year moving window,
are shown in Figures 5 and 6 (for satellite altimetry) and Figures 7 and 8 (for steric).
Figures 5–8 demonstrate that acceleration patterns are varying along the coast and in open
ocean areas. After removing the ENSO and PDO variabilities, sea level acceleration from
satellite altimetry (Figure 6) for each 20-year window shows an increase in acceleration
in the Philippine Sea and around open ocean areas compared with Figure 5. Such time-
variable changing patterns are also revealed in IAP steric (Figure 8), suggesting that steric
changes mainly contribute to the evolution of the sea-level-acceleration patterns in the
Philippine Sea and its open ocean areas.
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We calculate the sea level accelerations from tide gauge records (Table 3) and IAP
steric (Table 4) before and after removing the ENSO and PDO variabilities at individual
locations for a 20-year moving window. While along the coast tide, gauge records generally
show a coherent pattern after the removal of ENSO and PDO variabilities, which could
contribute up to 0.32 mm/yr2 of coastal sea level acceleration at certain tide gauge locations
(Tables 3 and 5), the steric component is not considered as the main contributor (Table 4).
ENSO and PDO variabilities are proven to have more pronounced impacts for some coastal
regions than the global region.

Table 3. Sea level acceleration (mm/yr2) from tide gauge records before and after removing ENSO
and PDO variabilities for a 20-year moving window.

1993–2012 1994–2013 1995–2014 1996–2015 1997–2016

Tide Gauge Before After Before After Before After Before After Before After

Dalian −0.27 −0.28 −0.13 −0.06 −0.15 −0.11 −0.05 −0.10 0.19 0.04
Lusi 0.10 0.08 −0.08 0.16 0.19 0.51 0.61 0.86 1.19 1.24

Kanmen 0.62 0.62 0.47 0.68 0.77 1.01 0.93 1.20 1.26 1.44
Zhapo 0.03 0.06 0.44 0.59 0.37 0.75 0.35 1.03 0.75 1.42
Xi Sha 0.38 0.43 0.35 0.44 0.31 0.56 0.23 0.92 −0.01 0.92
NPQB −0.30 −0.25 0.44 0.61 0.80 1.10 0.93 1.52 1.14 1.78

Tai Po Kau 0.62 0.63 1.29 1.23 1.35 1.46 0.89 1.35 0.89 1.42
Tsim Bei Tsui 0.63 0.66 0.47 0.71 −0.28 0.38 −0.53 0.47 −0.02 0.87

1998–2017 1999–2018 2000–2019 2001–2020
Tide Gauge Before After Before After Before After Before After

Dallian 0.22 0.17 0.00 0.06 0.20 0.11 0.46 0.34
Lusi 0.61 0.74 0.18 0.27 0.03 −0.12 −0.06 −0.17

Kanmen 1.11 1.31 0.59 0.71 0.34 0.28 0.11 −0.01
Zhapo 1.04 1.50 1.16 1.45 1.02 1.22 0.70 0.79
Xi Sha 0.26 0.73 −0.17 −0.03 0.33 0.81 0.02 0.52
NPQB 1.30 1.68 1.19 1.34 0.67 0.78 0.29 0.26

Tai Po Kau 0.81 1.23 0.46 0.66 0.26 0.42 0.21 0.21
Tsim Bei Tsui 0.20 0.94 0.39 0.92 0.34 0.75 0.14 0.26
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Table 4. Sea level acceleration (mm/yr2) from IAP steric sea level before and after removing ENSO
and PDO variabilities for a 20-year moving window.

1993–2012 1994–2013 1995–2014 1996–2015 1997–2016

Tide Gauge Before After Before After Before After Before After Before After

Dalian −0.09 −0.10 −0.05 −0.07 −0.08 −0.11 −0.09 −0.14 0.00 −0.05
Lusi −0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02

Kanmen −0.10 −0.09 −0.06 −0.04 −0.06 −0.03 −0.04 0.01 0.02 0.07
Zhapo −0.08 −0.07 0.02 0.06 −0.01 0.07 0.01 0.11 0.04 0.14
Xi Sha −0.07 −0.05 0.16 0.23 0.25 0.45 0.32 0.72 0.20 0.68
NPQB −0.08 −0.07 0.00 0.03 −0.03 0.04 0.00 0.09 0.02 0.11

Tai Po Kau −0.08 −0.07 0.00 0.03 −0.03 0.04 0.00 0.09 0.02 0.11
Tsim Bei Tsui −0.08 −0.07 0.00 0.03 −0.03 0.04 0.00 0.09 0.02 0.11

1998–2017 1999–2018 2000–2019 2001–2020
Tide Gauge Before After Before After Before After Before After

Dalian 0.01 −0.03 0.03 0.00 0.01 −0.02 0.07 0.06
Lusi 0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.00

Kanmen 0.06 0.11 0.02 0.06 0.02 0.05 0.02 0.05
Zhapo 0.04 0.14 −0.01 0.07 −0.01 0.04 −0.05 0.00
Xi Sha 0.18 0.50 −0.26 −0.06 −0.36 −0.13 −0.46 −0.26
NPQB 0.03 0.11 0.00 0.07 0.01 0.06 −0.01 0.04

Tai Po Kau 0.03 0.11 0.00 0.07 0.01 0.06 −0.01 0.04
Tsim Bei Tsui 0.03 0.11 0.00 0.07 0.01 0.06 −0.01 0.04

Table 5. Sea level acceleration (mm/yr2) from tide gauge records after removing ENSO and PDO
variability.

Tide Gauge 1970–2020 1993–2020

Dalian 0.03 ± 0.04 −0.12 ± 0.16
Lusi −0.03 ± 0.04 −0.08 ± 0.18

Kanmen 0.15 ± 0.04 0.30 ± 0.20
Zhapo 0.07 ± 0.04 0.31 ± 0.20
Xi Sha −0.30 ± 0.24 ※ 0.60 ± 0.31
NPQB 0.01 ± 0.05 0.04 ± 0.20

Tai Po Kau 0.13 ± 0.05 0.20 ± 0.20
Tsim Bei Tsui 0.26 ± 0.07 ※ 0.61 ± 0.23

※ Denotes tide gauge records starting later than 1970, we calculate from the record over the maximum time span
between 1970–2020.

To verify the contribution of the non-steric component, we compare the sea level
acceleration from the difference between satellite altimetry and IAP steric, and sea level
acceleration calculated from GRACE from 2002 to 2020 (Figure 9). The spatial acceleration
pattern from GRACE-based sea level data, accompanied by the difference between satellite
altimetry and IAP steric sea level, show that most of the coastal locations have statistically
significant positive sea level acceleration compare to the negative estimates for open ocean
areas, including the Philippine Sea. However, due to the relatively short time span and
coarse resolution of GRACE observations, there are some deviations from the dominant
pattern. The sea level trend estimated from GRACE for 2002–2011 and 2011–2020 (Figure 10)
suggests that there is an increasing contribution of mass redistribution to coastal sea level
rise. It is generally consistent with the positive pattern of coastal sea level acceleration from
the difference between satellite altimetry and IAP steric; thus, the increasing contribution
of mass redistribution could be the main driver of coastal sea level acceleration.
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4. Discussion
4.1. The Robustness of Coastal Sea-Level-Acceleration Estimation

Individual tide gauge records show that coastal sea level accelerations range be-
tween −0.03 ± 0.04 mm/yr2 in Lusi and 0.15 ± 0.04 mm/yr2 in Kanmen (Table 3) after
removing the ENSO and PDO variability for 1970–2020. This is consistent with estima-
tions from Wang et al. [29] for 1970–2018, in which a recent decrease in groundwater
extraction could be expected to account for the significant negative acceleration in coastal
cities. There are some estimates of acceleration from previous studies [29,31], e.g., an
acceleration of 0.085 ± 0.020 mm/yr2 is detected in the Bohai Sea, while the number is
0.074 ± 0.032 mm/yr2 in the East China Sea from the 1950s to 2013 [31]; however, there is a
significant difference in time span in these studies compared with our results.

Our analysis shows that apart from Dalian, Lusi, and NPQB, other locations all show
much higher accelerations than the global mean sea level estimates, after correcting for
ENSO and PDO variabilities during the satellite altimetry era [14], while the neighboring
station of NPQB shows a much higher acceleration than the global. A possible explanation
for such a difference could be vertical land movement, which is generally assumed to
be linear and not contaminating the estimate of acceleration. However, local subsidence
estimates could be changed over time [32].

The reversal between positive and negative accelerations is found to be more frequent
near the coastline compared with the open ocean, also suggesting that complex coastal
conditions require more careful treatment to estimate the coastal sea level acceleration.
However, it is difficult to determine whether coastal sea levels are accelerating from
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tide gauge records as internal variability could obscure the underlying anthropogenic
contribution to the acceleration calculated from short records [33–40]. For the record
length of 20 years around the China coast, the range of acceleration varies greatly from
−3 to 2 mm/yr2 (Figure 1). It can be explained by the multidecadal sea-level variations
that dominate the coastal sea level from 20–30 years or longer periods [41,42], and such
oscillations are in part driven by natural climate variations associated with atmospheric
pressure and wind stress [43,44]. The estimations of sea level acceleration calculated from
tide gauge records for 1970–2020 and for 1993–2020 suggest that the uncertainty decreases
hugely with the extension of record length, so it could be attributed to the removal of
multidecadal variations. The scatter of sea-level-acceleration values calculated from tide
gauge records around the China coast also decreases rapidly with an increase in record
length; when the record length increases to more than 70 years, sea level acceleration is
much smaller.

To improve the monitoring of sea level rise and acceleration, there is a need for
continuous tide gauge observations [45], and an increase in tide gauge locations along the
coast. The underestimation/overestimation in satellite altimetry compared with tide gauge
records, which mostly results from land contamination within the radar echo [46], suggests
that new altimetry sensors might improve future sea level monitoring along the coast [46].

4.2. Determining Drivers for Sea Level Acceleration over the China Seas

Our analysis suggests that steric sea level changes, associated with ENSO and PDO
variabilities, are the main contributor to sea level acceleration in the Philippine Sea and its
surrounding open ocean areas, supporting the previous publications [30]. Since the late
1990’s, PDO has shifted to a cold phase, where the negative PDO brings cool water into
this region, which reduces the positive pattern of sea level acceleration, and so, sea level
acceleration from satellite altimetry and IAP steric both increase in this region with the
removal of ENSO and PDO variabilities. Then, in the early 2000’s, the PDO returned to a
short-lived warm phase, followed by a swift return to a cold phase [30], thus the changing
patterns of sea level acceleration from both satellite altimetry and IAP steric weaken during
that time, as demonstrated in our study.

Along the coast, sea level acceleration could be explained by changes in the mass
component, as suggested by an analysis of GRACE observations and some agreement with
the difference between satellite altimetry and IAP steric sea level (Figure 9). Around the
China coast, before 1997, regional sea level acceleration from satellite altimetry presented a
changing pattern with the evolving of a 20-year moving window, after removing the ENSO
and PDO variabilities. Sea level acceleration also changes in most tide gauge locations
(Table 4), which is consistent with the changing pattern from satellite altimetry around
the China coast. The changing pattern of the steric component could not account for the
evolving pattern of sea level acceleration around the China coast, which reveals that steric
sea level is not the main contributor to coastal sea level acceleration. The relatively short
time span of the GRACE data limits our understanding of the mass contribution associated
with ENSO and PDO variabilities to the evolving pattern of coastal sea level acceleration;
thus, it remains unresolved whether and how the mass component is mainly contributing
to the coastal sea level acceleration. Complicated coastal conditions strongly require more
efforts to understand the underlying physical mechanism which drives the coastal sea
level acceleration. For example, sea level acceleration calculated from tide gauge records
in Dalian is consistent with steric sea level acceleration for both 1970–2020 and 1993–2020
(Table 2); however, the contribution of the steric component is not supposed to account
for such acceleration in sea levels due to the shallow Bohai Sea. Instead, the ocean bottom
pressure associated with external forcing, including winds and currents, is considered to
play the dominant role [47]. The moving window of sea level acceleration from satellite
altimetry (Table 4) and IAP steric (Table 5) also proves that the steric component is not the
main contributor. The match for sea level acceleration from tide gauge records and IAP
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steric sea level for certain periods is likely to be related to contamination from vertical land
movement. Longer GRACE observations are necessary to study such underlying processes.

The GRACE-based sea-level-acceleration pattern reveals that the strong positive/negative
accelerations in the Kuroshio and Kuroshio-extension regions [48,49] are significant. While
it is insignificant based on the difference between satellite altimetry and IAP steric sea level,
this could be explained by the relatively low resolution of GRACE observations, which is
unable to capture all underlying processes, especially in the Kuroshio-extension region. To
better interpret the physical mechanisms driving regional sea level acceleration, a higher
resolution of GRACE observations is also strongly needed.

5. Conclusions

In this study, we explore the sea level acceleration around the China coast as well as
over the China Seas using tide gauge records combined with high-resolution satellite altime-
try. Average sea level acceleration varies from −0.05 ± 0.04 mm/yr2 to 0.41 ± 0.32 mm/yr2

for records ending after the 2000s. Around the China coast, sea level acceleration changes
with a large variability if the record length is not long enough. To examine the evolution of
acceleration for the near coastal locations and open ocean, we also calculate the moving
window of sea level acceleration from satellite altimetry near the coastline and over the
whole study area. It is found that sea level acceleration is more sensitive near the coastline
compared with the whole study area.

The agreement between the patterns of sea level acceleration from satellite altimetry
and from the steric sea level in the Philippine Sea and its surrounding deep ocean, before
and after removing the ENSO and PDO variabilities, suggests that the steric sea level is
the main contributor to sea level acceleration in the open ocean. The evolving acceleration
pattern from satellite altimetry and IAP steric sea level after removing the ENSO and PDO
variabilities, compared with before removing it, proves that the steric component mainly
contributes to the evolution pattern of sea level acceleration in the Philippine Sea and its
surrounding deep ocean through the PDO variations, which obscure the changing pattern
of sea level acceleration. While for coastal regions, mass redistribution is considered to be
the main contributor to coastal sea level acceleration in most locations, as presented by
the difference between satellite altimetry and IAP steric as well as GRACE-based sea level
acceleration, the physical mechanisms, however, still remain a subject for further discussion
with the need for longer GRACE observations.
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