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A B S T R A C T

The analysis of image data for benthic biodiversity monitoring is now commonplace within the domain of
marine ecology. Whilst advances in imaging technologies have allowed for the collection of vast quantities
of data, the curation of this has traditionally been performed manually, resulting in a bottleneck whereby
data is collected faster than it can be processed. Recent years have seen marine ecologists turn to the
domain of computer vision to help automate this curation process. However, as the knowledge required
to build such systems spans both domains, there is a high barrier to entry. To help reduce this barrier,
this paper aims to provide an introduction to computer vision-based benthic biodiversity monitoring via a
comprehensive literature review. To aid ecologists, key computer vision concepts are described and example
use-cases highlighted. The major challenges inherent to benthic imagery for computer vision systems are
explored, alongside a discussion of how current systems attempt to mitigate against these. To aid computer
scientists wishing to enter the domain, an exploration of currently available open-source benthic datasets is
also provided. Recommendations for future research are explored, including a move towards human-centric
techniques, committing to ablation studies, reaching community agreement on open-source benchmarking
datasets, and an increased use of innovative methods to allow for improved answering of key benthic ecology
questions.
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1. Introduction

Benthos, meaning ‘the depths of the sea’ in ancient Greek, is the
name given to the community of organisms that live on, in, or near
the bottom of a body of water. The number of benthic animal species
is thought to exceed one million (Sokolova, 2000), located in freshwa-
ter and intertidal environments down to the deepest ocean trenches,

ith benthic algae restricted to the reach of daylight (Lalli and Par-
ons, 1997). Marine macrobenthic fauna play important roles in global

ecosystem function and regulating the fluxes of energy, nutrients, and
matter within global cycles. However, the consequences of anthro-
pogenic change and direct human impacts are altering the structure and
function of benthic communities (Lam-Gordillo et al., 2020). In order to
understand the nature, scale, and intensity of these ecological changes
and the potential impacts on the ecosystem services provided by the
ocean, quantifying and monitoring benthic ecosystems has become
increasingly important.

For most of human history, our knowledge of what lives in the
enthos has relied upon destructive nets or devices (e.g. grabs and
ores) to bring organisms to the surface (Rees, 2009). The development
f technology that enabled us to visit the seafloor (e.g. submersibles
nd SCUBA) and later remotely operated or autonomous devices have

enabled humans to observe and record these organisms in situ, enabling
s to better understand community distributions, structure and func-
ion (Du Preez et al., 2016; Roelfsema et al., 2021; Medelytė et al.,

2022). The rapid evolution of photography and video as a tool to study
the benthos has led to a rise in use of these non-invasive study methods,
with increasing volumes of image-based data now collected from the
world’s oceans (Gomes-Pereira et al., 2016).

However, identification of organisms in images is a very slow
process, taking hours per individual photograph (Williams et al., 2019;
Alicia et al., 2023). It also requires a high level of specialist taxonomic
expertise over a wide range of organisms. The mis-match between
the volume of data that can now be collected and the speed such
data can be curated has caused a bottleneck in analyses of benthic
ommunities (Williams et al., 2019).

Recent years have seen the introduction of a range of automated
solutions to benthic biodiversity monitoring, mostly thanks to ad-
vances in computer vision (CV, definitions of italicised words can be
found in the Glossary) techniques. Such advances were first observed
thanks to progress in the domain of image processing (IP), which al-
lows for the extraction of representative visual features from imagery
through pre-determined algorithmic steps. Later, advances in the field
of machine learning (ML) turned attention away from extraction via
hand-engineered algorithms to more robust statistical models. The rise
of deep learning (DL) expedited this further thanks to the development
of complex multi-layered Convolutional Neural Networks (CNNs) capable
of generalised feature extraction learnt via large-scale training datasets.

Whilst these techniques have been widely embraced by other fields
f ecology to answer key questions, their use in the benthos is not

as widespread. The use of existing CV-based methods, and the de-
velopment of new approaches, often requires an understanding of
their underlying technologies, posing a high barrier to entry. On the
other hand, computer scientists wishing to use their skills to aid in
he domain of benthic ecology are often unaware of potential use-

cases, publicly available sources of high quality data, and may lack

the domain (i.e. benthic ecology) knowledge to ensure any system S

2 
they develop is both useful and correct. Furthermore, the inherent and
unique properties of benthic imagery pose an exciting computational
challenge, most notably overcoming issues surrounding adverse envi-
ronmental or sensor conditions, occlusion and species aggregations, as
well as new-to-science or invasive organisms.

Whilst a host of reviews into CV-based automation of ecology
ata exist, these primarily focus on terrestrial data, such as those
rom camera traps (Norouzzadeh et al., 2018). Kumar et al. (2023)

highlight some marine use cases in their review of species localisation
and identification, though this focuses only on DL-based approaches
ather than a complete view including IP and ML systems also. Of the
eviews focusing on the marine environment, most often concentrate

on midwater rather than benthic environments (Moniruzzaman, Md.
et al., 2017; Saleh et al., 2022; Goodwin et al., 2022) or, as before,
only discuss DL-based approaches (Wang et al., 2023b). Other reviews
examining the benthos often provide an overview of coral-focused
systems only (Raphael et al., 2020).

As such, this review aims to further bridge the gap between benthic
cology and computer science by providing a comprehensive overview

of the work so far into automated benthic biodiversity monitoring CV
systems, an area where to the best of our knowledge no survey currently
exists. Along the way, key terms are introduced and explained. Next,
the inherent properties of benthic imagery which may pose a challenge
to the current state of the art in CV are explored, aiming to guide
researchers entering the area. An overview of the currently avail-
able open-source benthic imagery datasets is then presented. Finally,
potential avenues for future research are provided.

2. Computer vision for benthic biodiversity monitoring

This section explores works that apply CV techniques to benthic
iodiversity monitoring and is structured as follows. Sub-sections are
ategorised by system output type, from classification to segmentation,
eginning with those that make use of IP, moving onto ML, and
inally DL. When discussing ML and DL, particular attention is paid to
upervised learning techniques, given that it is likely researchers wishing
o make use of CV are in possession of an existing catalogue of labelled
ata.

Fig. 1 illustrates the progression of research into CV-based ben-
thic biodiversity monitoring over time. This includes works that have
both developed their own methods and made use of existing ones.
The number of publications for each CV technique, IP, ML, and DL,
represented as stacked bars, highlights the shifts in popularity and
the relative prominence of each approach over time. Note that if a
publication contained more than a single technique, it is represented
multiple times.

Early research focused predominately on IP methods. This contin-
ued until 2006 when the use of ML was also explored, marking the
eginning of data-driven techniques. The use of IP and ML continued,
ith researchers often utilising methods from both domains in tandem

o achieve improved results.
2016 onwards has seen a dominance of DL-based methods in the

pace of automated benthic biodiversity monitoring. Indeed, whilst
only 47% of papers surveyed use DL overall, 69% of papers since 2016
use this technique.1 This has likely been led by rapid advancements

1 Percentage of papers surveyed overall using IP: 33%; ML: 20%; DL: 47%.
ince 2016, IP: 18%; ML: 13%; DL: 69%.
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Fig. 1. The progression of computer vision-based benthic biodiversity monitoring literature over time, subdivided by techniques utilised. If a publication contained more than a
single technique, it is represented multiple times. For a detailed overview of each paper included, see Table S1.
Table 1
A comparison of key selection criteria across different computer vision techniques.

Criteria Computer vision technique

Image processing Machine learning Deep learning

Computational Cost Low Medium High
Data Requirements Low Medium High
Feature Engineering High Medium Low
Feature Extraction Automation Low Medium High
Generalisability Low Medium High
Handle Unstructured Data Medium Low High
Interpretability High Medium Low
Pattern Recognition Low Medium High
Training Time None Short Long
in DL model architectures providing the ability to perform generalised,
domain-agnostic feature extraction (Ahmed et al., 2023), in comparison
to IP and ML-based techniques which often require extensive domain
knowledge and hand-engineering in order to produce efficient, though
task-specific, feature extractors. The rise of DL in benthic ecology
has also been helped by the ease of access to such models provided
by open-source code repositories, model zoos, and their inclusion in
data labelling tools (see Section 3.1). Despite this, DL does have its
disadvantages, notably a typical need for larger data volumes and more
expensive training processes than IP or ML methods. For a comparison
of IP, ML, and DL, see Table 1.

As a result of these trade-offs, there is space in the benthos to
answer ecological questions using all three CV techniques — though
understanding when one is more appropriate over the others is non-
trivial. To afford benthic biodiversity researchers the ability to make
an informed decision regarding their use of CV to answer their desired
ecological questions, a comprehensive literature review into previ-
ous CV use in the benthos was undertaken. The Scopus and Google
Scholar databases were queried for relevant publications using the
specific terms ‘benthos/benthic’, ‘computer vision’, and ‘biodiversity
monitoring’, alongside ‘classification’, ‘detection’, and ‘segmentation’.
To locate literature which may have been missed by the initial search,
the bibliographies of publications deemed within scope were examined.
Additional relevant literature were also highlighted during peer review.

This review defines biodiversity monitoring to encompass a wide va-
riety of ecological questions, including abundance estimation, coverage
estimation, heath assessment, impact assessment, population dynamics,
taxonomic identification, and the detection of new-to-science organ-
isms. Publications were considered in scope if they outlined work mak-
ing use of automated CV methodologies, processing benthic imagery
to extract information which could be utilised to perform biodiversity
3 
monitoring as previously defined. The use of CV in the benthos for other
tasks, such as resource abundance assessment (e.g. Schoening et al.,
2016) or debris detection (e.g. Huang et al., 2023) are considered out
of scope for this review, as are works which make use of supervised
learning for benthic biodiversity monitoring on non-image based data
sources (e.g. Kwon et al., 2024). Note that due to the context-specific
nature of these systems, it is currently not possible to chart a sequence
of improvements over time — this is discussed in greater detail in
Section 5.

To help provide an overview of the literature examined in this study,
Table 2 outlines the CV task-technique pairs utilised by the reviewed
literature in this study, alongside example studies and the ecological
question they aimed to answer. A full breakdown of all papers included
in this study can be found in Table S1. For each, the CV techniques and
system output types used were extracted alongside geographic location
and data availability information.

2.1. Image classification

Works discussed in the following section all perform image classifi-
cation. This technique aims to produce a single class label for a given
image, which typically contains a lone dominant object. This can be
useful to benthic ecologists wishing to classify imagery that has been
previously cropped to contain a single taxa or region of interest (RoI),
such as diseased coral (Ani Brown Mary and Dharma, 2019) or tube
worms (Lüdtke et al., 2012). An example of benthic image classification
can be seen in Fig. 2.

Of the articles reviewed, only Šaškov et al. (2015) perform clas-
sification through IP techniques alone. However, a large volume of
work first makes use of IP techniques to extract relevant features before
passing these to ML models for classification. Extracted features may



C. Trotter et al. Ecological Informatics 86 (2025) 102989 
Table 2
An overview of the computer vision task-technique pairs utilised by the literature reviewed in this study. For each, an example study is highlighted, alongside the ecological
question the work aimed to answer. Table ordered based on task-technique complexity.

Computer vision Example Ecological question

Task Output Technique study answered

Image Classification Single class label Image Processing Šaškov et al. (2015) Coverage estimation
Machine Learning Beijbom et al. (2015) Coverage estimation

Ani Brown Mary and Dharma (2019) Health assessment
Deep Learning Zhou et al. (2023) Taxonomic ID

Object Detection Area-level localisation
and class label

Image Processing Clement et al. (2005) Presence-absence survey

Machine Learning Dawkins et al. (2013) Abundance estimation
Deep Learning Zhang et al. (2024a) Abundance estimation

Cuvelier et al. (2024) Impact assessment
Naseer et al. (2020) Presence-absence survey

Semantic Segmentation Pixel-level localisation
and lass label
(single mask per class)

Image Processing Smith and Dunbabin (2007) Abundance estimation

Morphological analysis
Machine Learning Mohamed et al. (2022) Habitat mapping

Tan et al. (2018) Abundance estimation
Manderson et al. (2017) Health assessment

Deep Learning Pavoni et al. (2021) Habitat mapping
Harrison et al. (2021) Behaviour analysis

Instance Segmentation Pixel-level localisation
and class label
(multiple masks per class)

Deep Learning Lütjens and Sternberg (2021) Abundance estimation
Fig. 2. An example of benthic image classification. All pixels in each input image are provided a single predicted class per taxonomic level. A new classification network is trained
to output labels at different levels of the taxonomic tree.
Source: Figure adapted from Zhou et al. (2023, CC BY 4.0).
be solely texture-based (Lüdtke et al., 2012; Gonzalez-Cid et al., 2017;
Ani Brown Mary and Dharma, 2019), or based on both colour and
texture (Beijbom et al., 2012; Shihavuddin et al., 2013; Beijbom et al.,
2015).

More recent works in benthic image classification forego the need
for hand-engineered feature extraction pipelines, instead relying on
features derived by training DL models such as CNNs (Boulais et al.,
2020; Langenkämper et al., 2020; Zhou et al., 2023). CNNs demonstrate
superior ability to directly extract important classification features from
benthic image data compared to pre-determined IP or ML techniques,
as evidenced by multiple studies (Gonzalez-Cid et al., 2017; Rimavicius
and Gelzinis, 2017). Further, Zhou et al. (2023) show that CNNs are
capable of classifying benthic taxa at multiple taxonomic levels, though
this does require creating a new network for each given taxonomy.

2.1.1. Coverage estimation via image patching
Benthic imagery is often captured at high resolution. When working

with such data, it may be computationally infeasible to process the
whole image at once. To combat this, images may be split into smaller
4 
sub-images, or patches, processed independently, and recombined. An
example of image patching can be seen in Fig. 3. The use of patching
can be seen as advantageous over simply resizing the whole image, as
doing so can result in a loss of image quality which may hinder the
detection of smaller RoIs due to a subsequent loss of representative
features.

Patching large-scale imagery allows for species coverage estimates
to be performed using image classification, rather than more com-
putationally expensive techniques such as semantic segmentation (see
Section 2.3). Multiple works in the literature generate coverage estima-
tions via patched image classification. This is common for the purposes
of coral coverage estimation (Marcos et al., 2008; Shihavuddin et al.,
2013; Mahmood et al., 2016; Gómez-Ríos et al., 2019; González-Rivero
et al., 2020; Chen et al., 2021), though has also been used for estimating
coverage of bacterial mats (Lüdtke et al., 2012), tapeweed (Gonzalez-
Cid et al., 2017), and substrate (Jackett et al., 2023).

Whilst patches are typically generated via a sliding window over
the original image (Shihavuddin et al., 2013; Gómez-Ríos et al., 2019;
Chen et al., 2021), Rimavicius and Gelzinis (2017) make use of IP al-
gorithms to generate non-uniform patches, whilst Marburg and Bigham
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Fig. 3. An example of image patching. A large-scale, high-resolution image (left) may be computationally infeasible to process in a single instance. As such, it can be split into
multiple smaller patches of the same resolution which are processed independently then recombined. Six example patches are shown (right). Images resized for clarity, actual sizes
shown on axes in pixels.
Source: Figure generated using data from Purser et al. (2021, CC BY 4.0).
(2016), Piechaud et al. (2019) and Durden et al. (2021) generate
patches by extracting pixels surrounding labelled RoIs. As with whole
image classification, patch classification may be performed using IP and
ML (Shihavuddin et al., 2013; Lüdtke et al., 2012; Gonzalez-Cid et al.,
2017), or directly via a CNN (Chen et al., 2021; Wyatt et al., 2022;
Lumini et al., 2023).

2.2. Object detection

The works outlined in Section 2.1 classify input images as a single
class. If the image contains multiple RoIs these must first be extracted
before processing, reducing the time and effort savings relative to a
fully manual approach. This limitation can be overcome through the
use of object detection algorithms that perform both RoI localisation and
classification. This allows multiple labels to be associated with a single
image, removing the need for prior RoI extraction. As such, object
detection techniques are well-suited to ecological questions related
to community structure or abundance (Lopez-Vazquez et al., 2020;
Cuvelier et al., 2024).

Earlier works in the area of benthic object detection make use
of IP techniques to extract hand-engineered features for the purposes
of single class RoI localisation. Works utilising IP alone often focus
on visually distinct organisms such as starfish (Di Gesu et al., 2003;
Clement et al., 2005; Smith and Dunbabin, 2007), though these tech-
niques can be combined with ML models to detect less visually distinct
organisms such as crabs (Gobi, 2010), kelp (Bewley et al., 2012), or
scallops (Enomoto et al., 2009; Kannappan and Tanner, 2013; Dawkins
et al., 2013). Aguzzi et al. (2009) is the only reviewed work to make
use of IP and ML to detect multiple benthic classes.

More recently, the focus of benthic object detection works has
shifted to the use of DL techniques. Typically these methods will output
detected RoIs in the form of a bounding box, in contrast to ML methods
where an RoI may take a range of forms. An example of bounding box
outputs for a given input image can be seen in Fig. 4.

A large volume of benthic DL object detection work makes use
of data provided by the Underwater Robot Picking Challenge (URPC,
Liu et al., 2021), aiming to detect commercially valuable taxa such as
scallops, sea cucumbers, and sea urchins (Lv et al., 2019; Chen et al.,
2020; Wang et al., 2021; Fu et al., 2022; Wang et al., 2023c). Huang
et al. (2019) utilise a Faster R-CNN (Ren et al., 2015) model to
detect sea cucumbers, sea urchins, and scallops in underwater imagery,
though based on the literature it is not clear if the authors make use
of a URPC dataset or data from elsewhere. At the time of writing, no
URPC datasets are publicly available, though Liu et al. (2022) develop
5 
a similar open-source dataset called The Underwater Open-sea Farm
Object Detection Dataset (UDD, see Section 4). The authors make use
of this dataset to train their novel AquaNet CNN, taking advantage of
data augmentation strategies (see Section 3.1) such as multi-scale blur-
sampling and feature fusion to increase model robustness and aid in the
detection of small RoIs.

There are however also multiple works which do not make use of
the URPC dataset. Whilst Naseer et al. (2020) use DL to detect lobster
and their burrows, other works such as Yeh et al. (2022) and Zhang
et al. (2023) aim instead to detect multiple distinct objects. Boulais
et al. (2020) makes use of the FathomNet dataset (Katija et al., 2022,
see Section 4) to train their benthic object detector. Due to the long-tail
problem inherent in ecology datasets, where a small number classes
make up the majority of data samples leading to degraded perfor-
mance (Van Horn and Perona, 2017; Van Horn et al., 2018; Miao et al.,
2021), the work found that training for fine-grained classification at
the genus or family level did not lead to speed ups compared to hand
labelling. Instead, they recommend labelling at a coarse-grained level
(e.g. ‘fish’ or ‘crustacean’).

Liu et al. (2024) developed DeepSeaNet, a pipeline which employs
DL, ML, and IP techniques to detect species in benthic imagery. First,
they make use of a modified YOLOv7 Tiny (Wang et al., 2023a)
architecture, adapted with specialised ‘deep-sea modules’ to aid the
detection of organisms with scale variability, evasive behaviour, and
camouflage. Detections from the DL model are then passed through
IP-based feature extractors to generate organism descriptors. These are
then clustered using ML to generate a feature latent space, generating
groupings corresponding to organism species. Previously unseen species
or model mislabels can be detected by comparing an input’s location
in the latent space against all other existing clusters. Such method-
ologies may be thus be useful for detecting new-to-science or invasive
organisms.

2.3. Semantic segmentation

One disadvantage of bounding box-based object detection algo-
rithms is the need to include background features within RoIs in order
to fully encompass an object. This can cause generalisation issues,
particularly if training data is limited to a small spatio-temporal scale.
Under these circumstances, the network may learn to classify based on
background features rather than those present on the object (Tian et al.,
2018; Curry et al., 2021; Shepley et al., 2021; Trotter et al., 2022).

The problem of background inclusion can be solved through the
use of semantic segmentation. Here, RoIs are defined as masks, allowing
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Fig. 4. An example of benthic object detection. Detected RoIs are encapsulated by bounding boxes. Boxes and labels are colour coded based on classification, with labels displayed
above each box.
Source: Figure generated using data from Purser et al. (2021, CC BY 4.0).
Fig. 5. An example benthic image (Left) and corresponding ground truth mask (Right) produced for the task of coral semantic segmentation. Pixel colour denotes class, with black
denoting background.
Source: Figure adapted from Pavoni et al. (2022, CC BY 4.0).
for finer-grained localisation (i.e. pixel level categorisation) when com-
pared to object detection tasks. Benthic ecologists wishing to perform
coral coverage estimates (Alonso et al., 2019; Pavoni et al., 2021) or
classify organism behaviour (Harrison et al., 2021) may find semantic
segmentation methods useful. Furthermore, semantic segmentation also
has the advantage of capturing temporal dynamics of organisms when
they change their geometry over spatio-temporal scales (Harrison et al.,
2021). An example input image and a visualisation of its corresponding
semantically segmented pixel masks can be seen in Fig. 5.

The creation of segmentation masks for benthic imagery can be
performed solely using classical IP techniques (Gleason et al., 2007;
Beuchel et al., 2010; Aguzzi et al., 2011; Tan et al., 2014) or through
a combination of IP and ML (Johnson-Roberson et al., 2006; Johnson-
Roberson et al., 2006; Fearn et al., 2007; Schoening et al., 2012, 2014;
Manderson et al., 2017; Ani Brown Mary and Dejey, 2018). However,
feature extraction pipelines to perform semantic segmentation using
these methods can often be complex and cumbersome for multi-class
tasks. For example, Schoening et al. (2012) makes use of a pipeline of
6 
Support Vector Machines organised in a tree structure, with each trained
to classify a single class.

The use of DL for the task of benthic semantic segmentation can help
reduce the complexity of these pipelines, training directly using images
and their corresponding hand-annotated masks. However, this often
comes at the cost of increased computation requirements. A range of
newer works make use of DL to semantically segment benthic environ-
ments, most notably for the tasks of coral coverage estimation (Alonso
et al., 2017; King et al., 2018; Mizuno et al., 2020; Pavoni et al., 2020;
Song et al., 2021), though use cases also exist for other fauna (Osterloff
et al., 2019; Buškus et al., 2021).

2.4. Instance segmentation

In research areas such as coral reef size estimation, extracting
estimates of class coverage using semantic segmentation may be suf-
ficient for drawing conclusions. However, for tasks such as abundance
estimation this may not hold true. When 90% of pixels in an image



C. Trotter et al. Ecological Informatics 86 (2025) 102989 
Fig. 6. An example of instance segmentation. Unlike object detection, RoIs are provided as masks rather than bounding boxes, outputted on an RoI rather than class basis as in
semantic segmentation. Each mask is visualised as a coloured overlay.
Source: Figure reproduced from Lütjens and Sternberg (2021, CC BY-NC-ND 4.0).
belong to a single class, has one dominant instance or numerous small
instances been captured? This example highlights the unsuitability of
semantic segmentation for tasks where distinguishing between different
instances of the same class is required.

In these cases, techniques such as instance segmentation may be more
beneficial. As with object detection each individual RoI is localised,
however rather than providing this at a coarse-grained level such as a
bounding box, the RoI is represented as a fine-grained pixel mask. This
is in contrast to semantic segmentation, where masks are provided at
a class level. Each RoI can thus be processed in isolation. An example
of instance segmentation can be seen in Fig. 6.

Despite the usefulness of instance segmentation within benthic bio-
diversity monitoring, few examples of its use exist within the literature.
Both Zurowietz et al. (2018) and Shashidhara et al. (2020) utilise a
two-step pipeline to propose and filter RoIs, with the former gener-
ating coarse-grained ellipses with the latter generating fine-grained
pixel-level masks. In contrast, Lütjens and Sternberg (2021) adopt a
more efficient approach, training a CNN capable of producing instance
segmentation masks directly for a small number of benthic classes.

3. Challenges of working with benthic imagery from a computer
vision perspective

When applying CV-based automation techniques to benthic imagery
for the purposes of biodiversity monitoring, several challenges must
be overcome. This section discusses these challenges in detail, and
highlights how existing literature aims to overcome them.

3.1. Required labelling effort

Multiple works available in the literature show that, for benthic im-
agery automation, ML and DL techniques provide a more generalisable
and accurate solution when compared to more traditional IP (Gonzalez-
Cid et al., 2017; Lopez-Vazquez et al., 2020; González-Rivero et al.,
2020). However, the need for extensive manually labelled data can
often be a challenge in this domain.

As the level of required annotation granularity increases, from
image classification to instance segmentation, so does the cost and
effort of labelling. This is exacerbated if objects are aggregated, a
situation commonly observed within benthic imagery. Whilst the use of
citizen scientists could expedite this process, this is only viable when
7 
classifying at high taxonomic levels, such as in Zhang et al. (2023).
Labelling at low levels often requires the use of marine ecologists,
resulting in prolonged and expensive processes (Katija et al., 2022).

The use of semi-automated labelling tools may help reduce the
data curation workload. An overview of semi-automated labelling tools
utilised by the reviewed literature is provided in Table 3. Other semi-
automated labelling tools exist outside of those listed, focussing on both
marine imagery specifically such as VIAME (Dawkins et al., 2017) as
well as more general labelling platforms such as AIDE (Kellenberger
et al., 2020).

Further to this, the use of data augmentation during model training
may help increase the amount of varied data available. Data augmenta-
tion is prevalent in the explored works, with some making use of simple
perturbations such as rotating, cropping, or re-scaling (e.g. Rimavicius
and Gelzinis, 2017; Durden et al., 2021; Pavoni et al., 2021), whilst
others make use of techniques such as copy-pate (Doig et al., 2024) or
domain-specific strategies (e.g. Alonso et al., 2017; Huang et al., 2019;
Lütjens and Sternberg, 2021; Yeh et al., 2022).

The use of transfer learning may also aid model generalisability when
data volumes are low. Typically when training a DL model from scratch
the initial model parameters are randomly assigned and updated dur-
ing the training process to reflect the target dataset’s distribution. In
transfer learning, the learnt parameters from a model trained on a
large source dataset are used as a starting point when training on
the target dataset. This allows for a more generalised model with
higher convergent rate when the target dataset is small, as is often
the case in benthic image analysis, in essence performing a knowledge
transfer (Pan and Yang, 2010). Multiple reviewed works make use of
transfer learning to aid model generalisation (see Table S2).

In spite of this, once a labelled benthic dataset has been obtained
there is no guarantee that it is perfectly annotated. Whilst this issue
is not present solely in the benthic domain (e.g. Van Horn et al.,
2015), the risk of mislabelling is inherently high due to the challenging
environmental conditions images are often captured in and the morpho-
logical similarity between some taxa. As such the performance of any
automated biodiversity data curation system can only be interpreted
as how well the system agrees with the labeller (Boulent et al., 2023).
Even still, errors may be present due to the labeller becoming fatigued
or distracted, resulting in a missed or misclassified organism. The use
of multiple labellers alongside some merging process can reduce this
risk, though this does increase time and monetary expenses.
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Table 3
A comparison of semi-automated labelling tools utilised by the reviewed literature.

Tool Label Local Export Features Quality Multi-User Code Example

name style install Format Active learning Pre-trained models Custom models control support availability study

BIIGLE (Langenkämper et al., 2017) Point,
Line,
Circle,
Bounding
Box,
Polygon

✓ CSV,
JSON

✗ ✓ ✓a ✓ ✓ Open Cuvelier et al. (2024)

CoralNet (Beijbom et al., 2015) Point ✗ CSV ✗ ✓ ✓ ✗ ✓ Open Miller et al. (2023)
EISeg (Hao et al., 2022) Polygon ✓ JSON ✗ ✓ ✓ ✗ ✗ Open Gu et al. (2023)
Roboflowb Image,

Point,
Bounding
Box,
Polygon

✗ CSV,
JSON,
TXT,
XML

✓ ✓ ✓ ✓ ✓ Closed
(Freemium)

Monari et al. (2023)

RootPainter (Smith et al., 2022) Polygon ✓ CSV ✗ ✗ ✓ ✗ ✗ Open Clark et al. (2024)
SQUIDLE+c Image,

Point,
Bounding
Box,
Polygon

✗ CSV,
HTML,
JSON

✓ ✓ ✓ ✓ ✓ Closed
(Free)

Deo et al. (2024)

TagLab (Pavoni et al., 2022) Polygon ✓ CSV,
GeoTIFF,
JSON

✗ ✓ ✓ ✓ ✗ Open Amir et al. (2023)

a Model training and inference in BIIGLE, with the exception of MAIA (Zurowietz et al., 2018), is currently performed outside of the user interface via the API.
b Roboflow: roboflow.com/annotate.
c SQUIDLE+: squidle.org.
c
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3.2. Concept drift

When creating automated CV systems, it is often the case that a
consistent data distribution is assumed. This is unlikely to hold true
in the domain of benthic ecology. Data is often collected over multiple
surveys and spread over a wide spatio-temporal scale (data collected in

ultiple locations or over multiple years). This may result in changes to
collection methodology (e.g. diver, autonomous underwater vehicle),
as well as varying environmental (e.g. weather, lighting, occlusions,
turbidity) or sensor (e.g. noise, blur, lens distortion, colour aberration)
conditions (Drenkow et al., 2022). These factors can lead to concept
rift.

Multiple works in the literature examine the effect of concept drift
n automated benthic CV systems caused by changes in camera type, al-
itude, or time (Langenkämper et al., 2020; Zurowietz and Nattkemper,

2020; Wyatt et al., 2022). Further, a large volume of the work examined
ention issues with, or the need to mitigate against, adverse environ-

mental conditions (see Table S3). Despite this, no existing literature
extensively explores how these conditions affect model performance,
for example through an ablation study (see Section 5.2).

The problem of concept drift for ML and DL systems can be miti-
ated through the use of active learning. This technique allows a system
o prioritise unlabelled data based on their value to the training process.
y strategically selecting which data points should be labelled by
umans and retraining the model, active learning enables the system
o adapt to changes in data distribution over time whilst significantly
educing the required manual labelling effort (Ren et al., 2022). As a
esult, the use of active learning approaches, or other human in the loop
echniques, are present in a range of the literature examined (Mahmood

et al., 2016; Chen et al., 2021; Pavoni et al., 2022; Zhang et al., 2023).
Such techniques may help mitigate the effects of imagery containing

dverse environmental or sensor conditions. If the system is intended
to operate over large spatio-temporal scales, it may be beneficial to
ensure as wide a range of operating conditions are observed during
training as possible to help aid system generalisation. Depending on
the active learning selection criteria, it may be practical to rank such
mages as having a higher value to the training process. However, if
 system is intended to operate in a constrained environment where

uch adverse conditions are unlikely, then such measures may not be

8 
necessary — researchers may find it less expensive to train their model
only to handle nominal conditions and perform labelling of organisms
in adverse conditions manually.

3.3. Other notable issues

Further to the previous challenges, there are other notable issues
with benthic imagery mentioned in the literature which can prove
hallenging for biodiversity monitoring systems. Uneven or insufficient
llumination is the main issue discussed in the literature (e.g. Clement
t al., 2005; Tan et al., 2014; Gonzalez-Cid et al., 2017; Huang et al.,

2019; Chen et al., 2020). The performance of these systems can be
ignificantly influenced by illumination, impacting colour perception
nd potentially causing the misclassification or oversight of RoIs.

Alongside illumination, issues may also arise due to high turbid-
ity causing a reduction in water clarity (e.g. Beijbom et al., 2015;
Rimavicius and Gelzinis, 2017; Lopez-Vazquez et al., 2020). This can
ampen an RoI’s colour or cause occlusion, degrading model perfor-

mance. A handful of works also note further occlusion of objects thanks
to sediment and marine snow present in the water column (e.g. Aguzzi
et al., 2009; Gobi, 2010; Schoening et al., 2012; González-Rivero et al.,
2020).

Whilst illumination and occlusion are common problems in auto-
mated benthic imagery analysis, these issues are not distinct to the
omain and could be considered issues fundamental to the realm of
V. One unique problem however is the challenge of new-to-science
rganisms. As many of the animals in the ocean are currently thought

to be undiscovered (Appeltans et al., 2012), this presents a unique
challenge for supervised benthic CV systems – one which even most
errestrial systems do not have to account for. However, the current

literature primarily treats benthic organisms as closed-set, where the
umber of classes is static, with very few works accounting for the
otential detection of new-to-science or invasive organisms. If such an

animal was observed, current systems may misidentify it as a previously
learnt class. This has the potential to bias human observers, which may
esult in such new-to-science organisms remaining unknown.

More recent advancements, such as the work proposed by Liu et al.
(2024) aim to flag new-to-science and invasive species through the use
of feature extractors and unsupervised learning clustering methods. This
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Table 4
A comparison of publicly available benthic imagery datasets capable of training CV systems.

Dataset Collection Annotation Geographic Depth Taxonomic Class Number of Example

method type location (m) levels types Images Classes Annotations studies

Beijbom et al. (2015) Photoquad-
rant

Point Australia,
French
Polynesia,
Kiribati,
Taiwan,
USA

1–17 Phylum–Genus Anthro-
pogenic
Material,
Biota,
Substratea

5,090 17 218,418 Beijbom et al.
(2015)

BENTHOZ-2015
(Bewley et al., 2015)

AUV Point Australia 15–30 Phylum–Species Biota,
Substrateb

9,874 148 407,968 Bewley et al.
(2015),
Mahmood et al.
(2016)

Brackish Dataset
(Pedersen et al., 2019)

Stationary
Camera

Bounding
Box

Denmark 9 Phylum–Order Biota 14,518 6 25,613 Pedersen et al.
(2019),
Fu et al. (2022)

EILAT (Beijbom et al., 2016) Photoquad-
rant
(Reflectance
&
Flurescence)

Point Israel 3–15 Genus–Species Biota,
Substrate

212 10 42,400 Beijbom et al.
(2016),
(Gómez-Ríos et al.,
2019)

FathomNet
(Katija et al., 2022)c

AUV,
ROV,
Drop
Camera,
Stationary
Camera

Bounding
Box

Canada,
USA,
Taiwan

28–10,641 Class–Species Anthro-
pogenic
Material,
Biota,
Substrate

84,454 2,244 175,873 Boulais et al.
(2020),
Belcher et al. (2023)

Marini et al. (2022b) Stationary
Camera

Bounding
Box

Antarctica 20 Family–Species Biota 775 13 23,881 (Marini et al.,
2022a)

Moorea Labeled Corals
(Moorea Coral Reef LTER and
Edmunds, 2019)

Photoquad-
rant

Point French
Polynesia

Unknown Order–Genus Biota 2055 9 400,000 Beijbom et al.
(2012)

Š.iaulys et al. (2021) ROV,
Drop
Camera

Semantic
Mask

Norway 3–65 Subphylum–Species Biota 47 12 2,242 Buškus et al. (2021)

Underwater Open-Sea Farm
Object Detection Dataset
(UDD) (Liu et al., 2022)

AUV,
Diver

Bounding
Box

China Unknown Class–Family Biota 2,227 3 15,022 Liu et al. (2022),
Zhang et al. (2024a)

a Contains multiple dataset classes for coral and algae genera, though other biota such as sponges are grouped into a single class regardless of genus. Also contains classes for
bjects such as sand, bare space, transect hardware. An ‘all other labels’ class is present for objects not encapsulated by another defined dataset class.

b Dataset is classified in a hierarchical manner according to the Collaborative and Automated Tools for Analysis of Marine Imagery class hierarchy (Althaus et al., 2015).
c Also contains midwater images. Dataset size and taxa can increase as community-provided images are added. Information correct as of July 2022.
d
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b
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work is a promising step towards mitigating an inherent and unique
roblem in the space of automated benthic biodiversity monitoring,
hough more research is needed to improve the accuracy of such

methods – Liu et al. (2024) currently achieves a top-1 accuracy of
43.43% when identifying unfamiliar species.

4. Available benthic imagery datasets

Whilst most of the examined literature makes use of closed-source
ata in their work, a handful provide their data open-source. To guide
esearchers who wish to train or benchmark automated benthic bio-
iversity monitoring systems, but do not have access to private data
ources, this section details the currently available open-source datasets

– an overview of which is provided in Table 4. Note that publications
which have processed existing open-source data for their work but have
subsequently not released this, or require a formal application to access
the used data, have not been included.

Publicly available datasets cover a wide range of collection methods
and geographies. The types of classes labelled within these datasets
is also varied, with some focussing solely on biota whilst others also
include anthropogenic material or substrate. These properties are often
dependant on the use case of the dataset. For example, the Brackish
dataset (Pedersen et al., 2019) focuses on coastal and estuarine areas,
whilst the UDD dataset (Liu et al., 2022) focuses on farmed epibenthic
taxa. Further, as previously explored in Section 3.1, due to inter-
observer variability there is no certainty that the discussed datasets are
perfectly labelled.
9 
Alongside this, the taxonomic level biota are labelled to varies
greatly between, and within, datasets. Whilst this is also influenced
by use case, this range also highlights the difficulty in identifying
organisms in the benthos. For some biota such as brittle star, it may
be impossible to identify at a species level from imagery alone, instead
requiring detailed morphological or molecular analysis (Stöhr et al.,
2020). As a result, many of the datasets examined either group certain
taxa into a single dataset class (e.g. Beijbom et al., 2015; Pedersen et al.,
2019) or make use of a hierarchical labelling structure (e.g. Bewley
et al., 2015; Katija et al., 2022).

As discussed in Section 3.1, annotating benthic imagery for use in
eveloping automated systems is often prohibitively expensive, partic-
larly when labelling RoIs in a granular manner. Publicly available
enthic datasets reflect this, with most making use of either point-
ased (Beijbom et al., 2015; Bewley et al., 2015; Beijbom et al.,

2016; Moorea Coral Reef LTER and Edmunds, 2019) or bounding
box (Pedersen et al., 2019; Katija et al., 2022; Marini et al., 2022b;
Liu et al., 2022) annotations. Only Š.iaulys et al. (2021) provides
RoIs directly usable for semantic segmentation, though the number of
images and annotations present here is comparatively lower than the
ther datasets analysed. None of the datasets analysed annotate to a
evel of granularity which allows for instance segmentation.

Of the datasets analysed, the FathomNet dataset (Katija et al., 2022)
is unique in its aim to continuously grow through the inclusion of
global, community-provided, data. As a result, the number of classes,
nd example images per class, within FathomNet may be updated at

any time. This could potentially address the long-tailed distribution
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challenge by offering data for rarer species, assuming distribution sim-
ilarity and effective mitigation of challenges tied to combining marine
ata from diverse sources (Schoening et al., 2022). Whilst the ultimate

aim of FathomNet is to be global in scope, it should be noted that the
data in the initial dataset (defined as the seed data by Katija et al.,
2022) is only from the USA, Canada, and Taiwan. Further, whilst the
majority of datasets are made up of imagery from shallow benthic
environments collected at depths between 1–30 m, only FathomNet
contains data from deeper waters.

5. Future research

From the literature examined, it is clear that the application of CV
o benthic imagery has shown great promise in its ability to reduce the
ata processing workload of marine ecologists and aid in the answering
f key ecological questions. However, the field is also still in its infancy.
s other areas of underwater imagery research advance, notably im-
rovements in camera hardware and vehicles (see Whitt et al. (2020)
nd Wibisono et al. (2023) for further discussion), the volume and
esolution of image data collected in the benthos will continue to

increase. Such data will be collected over wider spatio-temporal scales,
exhibit a wider variety of environmental and sensor conditions, and
nclude a wider variety of organisms. As a result, the software used
or curating this data will also need to advance at pace, else the data

bottleneck will never clear. To provide direction to this advancement,
he following section outlines potential avenues for future research into
utomated benthic biodiversity monitoring.

5.1. Human-centric techniques

The use of human-centric techniques such as human in the loop and
ctive learning should be fully embraced. The use of these methods
an help mitigate the risk of concept drift, a phenomenon which

may be inevitable for biodiversity monitoring projects undertaken over
large spatio-temporal scales. Furthermore, the use of such techniques
can help mitigate the substantial expense and effort associated with
labelling benthic data, which currently sees research groups curating
only small subsets of the total data collected (Gutt et al., 2019) or
ocussing their analysis on particular taxonomic groups (Segelken-Voigt
t al., 2016).

As highlighted in Section 3.2, only a small subset of existing
work in this domain which is intended to operate over large spatio-
temporal scales make use of human-centric techniques. Given the
advantages provided by such methods however, future automated
monitoring works should aim to utilise these approaches wherever
possible, provided the CV system is intended to operate over large
spatio-temporal scales or over imagery collected by multiple camera
set-ups. In such cases, researchers should ensure that their training
datasets include as wide a range of conditions as possible to help aid
system generalisability. If the system is not intended to operate in such
conditions however, then a standard training procedure may suffice,
with out-of-distribution imagery manually labelled.

5.2. Ablation studies

Several of the works examined discuss or aim to mitigate environ-
ental conditions which they believe may cause the performance of

heir developed systems to degrade (see Table S3). Despite this, these
orks often fall short of fully evaluating the effect these changes have
n system performance, for example through ablation study. As a result,
t is not yet clear how, and by how much, the performance of such
ystems would degrade should these mitigations not be present. Future
orks in this domain should aim to fully quantify the effect of such
itigations on their systems, as without this it is impossible to know
hether built-in mitigations are necessary or working as intended.
10 
5.3. Benchmark datasets

Recent years have seen the development of novel DL architectures
esigned specifically for use on benthic biodiversity data (Chen et al.,

2020; Song et al., 2021; Liu et al., 2022; Yeh et al., 2022; Zhang et al.,
2024b; Liu et al., 2024). Whilst these architectures all report high accu-
racies on the data used in the studies, it is currently extremely difficult
o compare their relative performance without datasets agreed upon by
he community with which to perform benchmarking studies. This is in
ontrast to other areas of CV research, where novel architectures will
ften be benchmarked against community-agreed open-source datasets
o allow for fair comparison.

As highlighted by Fig. 7, whilst data from relatively few areas of the
global benthos have been utilised to train the automated systems de-
scribed by this review (largely due to the difficulty and cost associated
with collecting or curating such data (Bell et al., 2022; Crosby et al.,
2023)), enough labelled data currently exists to allow for the develop-
ment of a sufficiently varied benchmark dataset. Once generated, such
a dataset would allow researchers to gauge the adaptability of current
and future automated benthic analysis approaches when exposed to
varied data. For example, it is plausible that system performance may
decline when exposed to data from different geographies due to dis-
tinctive environmental conditions or organism structures, particularly
at lower taxonomic levels, although quantification currently remains
challenging.

The introduction of benchmark benthic image datasets would vastly
ower the barrier to entry for new researchers into a domain where
dvancements are limited to multi-disciplinary research groups made
p of both marine ecologists and computing scientists, reducing the
peed of progress in this area. These benchmarks may be task-specific
r more general, though should cover diverse conditions to sufficiently

evaluate system robustness.
One key consideration when generating any benchmark dataset is

ensuring that it is not biased towards organisms with economic value.
A significant proportion of work into automated benthic biodiversity
monitoring focusses on the detection of taxa like lobsters (Aguzzi et al.,
2011; Tan et al., 2015, 2018; Naseer et al., 2020), scallops (Fearn
et al., 2007; Enomoto et al., 2009, 2010; Gobi, 2010; Dawkins et al.,
2013; Kannappan and Tanner, 2013), mussels (Gu et al., 2023), or
ea-urchins (Lv et al., 2019; Wang et al., 2021; Fu et al., 2022; Liu

et al., 2021, 2022; Wang et al., 2023c). Such organisms have intrinsic
alue to humans as a food-source, and thus advancements in their
etection may be motivated both by answering ecological questions and

improvements in aquaculture efficiency. Indeed, one of the most used
datasets by reviewed DL object detection works is the URPC dataset
(see Section 2.2), designed to aid research into the automated capture
of economically valuable organisms. Whilst data for such organisms is
abundant, any community-agreed benchmark dataset must ensure as
wide a variety of organisms is represented as possible, not just those
favoured by humans.

Community driven datasets such as FathomNet should ensure that
tatic releases are available for benchmarking purposes, alongside fo-
ussing collation efforts towards the closed-source studies highlighted

in this review. If these datasets are not check-pointed in this way, it will
be impossible to objectively evaluate systems using them. Inspiration
could be taken from platforms such as iNaturalist,2 where biodiversity
data collection is community driven, but static check-pointed ver-
sions are released to facilitate the development and evaluation of CV
models (Van Horn et al., 2018).

2 iNaturalist: inaturalist.org
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Fig. 7. Heatmap showing the geographic origin of image data used to train the automated benthic analysis systems reviewed in this study. Both closed and open-source works
are included.
5.4. Vision transformers

One major issue typical in benthic imagery is the high levels of
noise present, such as marine snow or other adverse environmental
conditions, as well as large potential for organism aggregations. Such
conditions pose major hurdles for current feature extraction methods,
and may lead to highly degraded CV system performance. One avenue
to explore in helping to reduce this performance drop when using
DL is the use of Vision Transformer architectures (ViT, Dosovitskiy
et al., 2021) over the current standard of CNNs. Such architectures
have been shown to be more robust than CNNs when processing noisy
images, leading to more generalised models (Maurício et al., 2023).
As a result, ViTs have seen widespread adoption in other domains,
such as medicine (Shamshad et al., 2023) and robotics (Gupta et al.,
2024), with works in terrestrial ecology now also adopting them for
use (e.g. Gong et al., 2023; Thakur et al., 2023). Given the challenges
the benthos often poses to the feature extraction mechanisms of CNNs,
the use of ViTs should be explored to help alleviate this. However,
given the considerably larger datasets ViTs require to train compared
to CNNs (Maurício et al., 2023), it may not be feasible to train such
architectures from scratch for use in the benthos.

5.5. Foundation models

As highlighted in Table 4, the quantity of open-source benthic
imagery available to train automated benthic biodiversity monitoring
systems is, compared to other areas of CV, low. Given the high cost of
data collection and required labelling effort (see Section 3.1), as well
as the continued need for automated curation systems, it is reasonable
to expect that only small proportions of closed-source datasets held by
benthic research labs are currently labelled. If it is possible to achieve
accurate curation results without the need for large quantities of pre-
labelled data, this could see a considerable speed-up in the adoption of
CV for benthic biodiversity monitoring.

The advent of foundation models may make this a reality. Such ViT-
based models are trained on vast quantities of varied data sources,
resulting in extremely generalised models capable of being applied to
a wide variety of tasks, including those not represented during train-
ing (known as zero-shot learning). Examples of CV-focused foundation
models include CLIP (Radford et al., 2021), DINOv2 (Oquab et al.,
2023), and Segment Anything (SAM, Kirillov et al., 2023). Such models
are seeing widespread use in the CV community as a first step in
downstream task processing, including in ecology (Vyskočil and Picek,
2024; Gong et al., 2024; Zhang et al., 2024b). Recent research has also
seen the development of foundation models with ecology focuses like
BioCLIP (Stevens et al., 2024), and marine-focused foundation models
such as MarineInst (Zheng et al., 2024).
11 
Thanks to their ability to perform well on zero-shot tasks, founda-
tion models should be explored as a component in future automated
benthic biodiversity monitoring systems. Indeed, labelling tools are
now beginning to include foundation models as built-in components,
such as BIIGLE and SQUIDLE+ (see Table 3) which provide SAM. Use
of such models could greatly reduce data curation times, for example
by automatically segmenting objects in a benthic scene, requiring the
researcher to only label the resultant masks, an example of this is
provided by Doig et al. (2024). Future research could extend this by
passing masks from SAM downstream to an automatic mask classifi-
cation model. Further, the ability of foundational models to perform
zero-shot detection may prove useful for the detection of new-to-science
or invasive organisms.

5.6. Semi-supervised learning

So far, this review has focused primarily on the domain of super-
vised learning, or utilising solely the available labelled data to train
automated benthic biodiversity monitoring systems. As previously men-
tioned however, it is often the case that benthic research labs have far
more unlabelled data than labelled. In supervised learning scenarios,
this large unlabelled set must be ignored during initial development,
processed only once a well performing model has been created using
the available labelled data.

Techniques such as semi-supervised learning allow researchers to
make use of all available data, whether labelled or not, during ini-
tial model development. Here, the smaller labelled data is utilised to
provide concrete ground truth examples to the model, as in supervised
learning, whilst the larger unlabelled data is used to provide further
understanding of the overall data distribution and structure (Van En-
gelen and Hoos, 2020). This can be achieved through methods such as
pseudo-labelling, whereby a model is trained using the labelled data to
generate predicted labels for the unlabelled data with some confidence.
Data with high confidence labels are then added to the labelled data,
and the model is re-trained in an iterative process. Whilst this may
lead to labelling errors, pseudo-labelling often improves overall model
performance relative to utilising only the original labelled data (Sohn
et al., 2020), and has recently been utilised with success in biodiversity
monitoring efforts in benthic and midwater environments (Sharma
et al., 2024). Future research should thus aim to greatly expand the
use of semi-supervised approaches in this domain.

5.7. Open-set recognition

Current research into automated benthic biodiversity monitoring
systems focuses heavily on closed-set recognition, where the range of
potential classes is considered static. However this does not reflect real
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world conditions. Organisms initially thought to be rare may actually
be abundant after further exploration of an area, and thus warrant
inclusion in the training dataset. Further, in closed-set recognition
he model may not be able to handle any new-to-science or recently
nvasive organisms, both key to biodiversity monitoring.

These issues can be mitigated by re-framing benthic biodiversity
monitoring as an open-set problem, one where the total number of
classes is not known at training time – a shift which has begun to occur
in terrestrial studies (Lang et al., 2024; Lu et al., 2024). Advances here
ould be aided by work from outside of the ecology domain, such as
hose into anomaly detection (Hojjati et al., 2024) or out of distribution

detection (Yang et al., 2024b), though classes in this context may be too
difficult for such methods to accurately differentiate.

One promising avenue is the use of self-supervised learning, a sub-
et of unsupervised learning that generates a latent feature space by
reating predictive tasks within the data itself, allowing the model to
earn representations that capture meaningful patterns and similarities

between inputs (Rani et al., 2023). This latent space is typically gener-
ated by performing a proxy task, such as distinguishing the similarity
between two images (Jaiswal et al., 2020). Where distinguishing labels
are known prior, as would be the case with previously identified
benthic taxa, these could be utilised to generate similar or dissimilar
image pairs during training, without providing the labels explicitly
to the model. When labels are not present, contrastive learning could
be utilised. This technique makes use of aggressive data augmen-
tations to create two different images from the same source, and
using these to generate a latent space (Jaiswal et al., 2020). Self-
upervised learning has been utilised with success to answer a variety

of ecological questions using terrestrial data sources such as species
identification (Pantazis et al., 2021; Yang et al., 2024a) and individual
nimal re-identification (Schneider et al., 2020). As such, it follows that
he use of such methods in the benthos could help in key tasks such as

the identification of new-to-science or invasive organisms.
The use of unsupervised clustering methods for the detection of

nvasive or new-to-science organisms as proposed by Liu et al. (2024) is
n innovative first step in solving this problem. Future research should
ocus on the refinement of such techniques, both through improved
eature extraction and clustering methods. Taking a self-supervised ap-
roach here may allow for the generation of more fine-grained species
lusters, improving accuracy when detecting previously unseen species.

5.8. Multi-modal models

When performing taxonomic identification manually, ecologists of-
ten utilise contextual data alongside an organism’s features. In the case
of benthic ecology, this data may include the geographic location an
mage was collected at, as well as other auxiliary data obtained by the
amera system such as conductivity, temperature, or depth (Sheehan
t al., 2010). As benthic CV systems traditionally only ingest image

data to make a prediction, this may result in incorrect classification of
organisms which share a high degree of morphological similarity but
are found in dissimilar habitats.

One possible avenue to help mitigate such confusion is the inclusion
of contextual data through the use of multi-modal models. Capable of
processing multiple different modalities of data – imagery, audio, text,
etc. – such models have been shown to perform more accurately in fine-
grained domains such as medicine (Stahlschmidt et al., 2022) and other
ecological areas (Blair et al., 2022; Gu et al., 2024). Indeed, the use
f multi-modal models has been shown to improve the classification
ccuracy of morphologically similar but habitat dissimilar organisms
n terrestrial studies (Terry et al., 2020); it is reasonable to assume the

same would be observed within the benthos.
 l

12 
5.9. Other innovative methods

Outside of the previously described future research directions, the
xpanded use of the following innovative methods within the benthos
ay also improve researchers’ efficiency and ability to answer key eco-

ogical questions. First, researchers should explore the use of synthetic
ata to improve rare organism generalisation. Unlike augmented data
hich is generated using existing samples (see Section 3.1), synthetic

data is generated using 3D graphics engines. The use of synthetic data
has been shown to improve the accuracy of terrestrial models when
detecting rare classes (Bondi et al., 2018; Beery et al., 2020), though
its use is still untested in the benthos.

The problem of concept drift is well described in the literature, with
ultiple examined works making use of active learning techniques in

n attempt to mitigate against this (see Section 3.2). However, Doig
t al. (2023) have recently shown that such shifts can also be miti-
ated in benthic environments through the use of unsupervised domain
daption. Future work should aim to understand the effectiveness of
oth techniques, when one should be favoured over the other, and their
ntegration into biodiversity monitoring tools.

A large volume of work examined in this review makes use of im-
ge patching techniques, classifying patches using image classification
see Section 2.1.1). Whilst the discussed methods may be useful for

answering ecological questions such as coverage estimation, they may
not be appropriate for other use-cases such as abundance estimation
via object detection. Here, methods such as Slicing Aided Hyper Infer-
ence (SAHI, Akyon et al., 2022) may be best. This technique has seen
wide ranging use in other applied-CV domains (Chaurasia and Patro,
2023; Muzammul et al., 2024; Gia et al., 2024), and future research
should aim to explore the use of SAHI in the benthos. Such techniques

ay be useful in improving the detection accuracy of smaller taxa,
s well as the efficiency of high-resolution benthic imagery patching
ompared to previously described task-specific methodologies.

Finally, benthic imagery collected in areas with high levels of
biomass often contain dense organism aggregations, where animals
overlap and occlude each other. When answering ecological questions
relating to abundance, an accurate count of organisms, regardless of
their condition, must be obtained. Typical methods for object count-
ing like object detection often struggle with overlapping or occluded
objects and may undercount (Chattopadhyay et al., 2017). Further,
uch methods often make use of techniques like non-max suppression

to refine model predictions. When dense organism aggregations are
observed, such methods may inadvertently merge correct localisations,
educing the final count. This issue may be mitigated through the use
f DL techniques such as density estimation (Lempitsky and Zisserman,

2010). Rather than learning to localise each individual organism, the
odel instead predicts a density map over the whole image, with

ounts obtained via integration of said map. Density estimation has
een success in other domains where aggregations and occlusions are
ommon, such as counting humans in crowds (Ma et al., 2019; Lin et al.,

2021) or animal colonies in satellite imagery (Hoekendijk et al., 2021;
Qian et al., 2023), and as such may prove useful for benthic abundance
estimation.

6. Conclusion

The use of image data to monitor biodiversity in-situ for the purpose
f answering key ecological questions is now commonplace within the
omain of marine ecology. However, the curation of this data has
raditionally been performed manually, a costly process which has led

to a bottleneck whereby data is collected faster than it can be curated.
As a result, there is a dire need to automate some or all of this process.

Thanks to advances in the domain of computer vision, recent years
have seen an increase in the development of automated benthic bio-
iversity monitoring systems, aiming to reduce curation efforts and re-
ieve the aforementioned data bottleneck. To help navigate and provide
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context to these advances, this review surveys computer vision-based
systems for analysing benthic biodiversity imagery. The key challenges
resented by such data are discussed, alongside analysis of how the

existing literature overcomes these. The current state of available open-
source benthic biodiversity datasets is analysed, and potential avenues
or future research in the area are outlined.

Whilst the current issues and future research directions discussed
here are by no means exhaustive, it is hoped that this review will spur
advancement in the domain of automated benthic biodiversity moni-
oring and ultimately help reduce the barrier to entry, both to marine

ecologists wishing to make use of these systems in their own work
and to computing scientists aiming to bring the latest advancements
into the domain. If this can be achieved the data bottleneck can be
cleared, and benthic biodiversity monitoring studies can make use of
far greater volumes of data, curated in shorter time-frames than is cur-
rently achievable. This will allow researchers to better identify at risk
enthic communities and implement mitigation strategies, regardless
f where, when, or how their imagery is collected thanks to verifiable
utomated analysis systems.

Glossary

Active Learning A technique allowing for the labelling prioritisation
of newly collected, unlabelled data based on estimated value to
the training of a machine or deep learning model (Settles, 2009).
Labelling priority is typically evaluated against some defined
metric, with the data not utilised for learning until it is labelled.

Bounding Box A rectangle defining the location of an object within
an image, typically provided alongside a class label. All pixels
within the bounding box are denoted as forming part of the
class.

Class A qualitative category which is to be predicted by an algorithm.
Typically the predicted variable is made up of a fixed number
of possible categories. For example, a benthic computer vision
algorithm may be designed to detect the classes ‘starfish’ and
‘coral’.

Computer Vision (CV) A field of research which aims to automate the
processing of visual data such as images. Can employ traditional
IP methods, as well as more advanced machine learning or deep
learning processes.

Concept Drift A phenomenon whereby the relationship between a
system’s input and output features changes due to shifts in the
input data distribution.

Contrastive Learning A learning approach where a model learns
to differentiate between similar and dissimilar data points by
bringing representations of similar pairs closer together and
pushing apart representations of dissimilar pairs (Jaiswal et al.,
2020).

Convolutional Neural Network (CNN) A type of deep neural net-
work designed primarily for processing structured grid-like data,
such as images, using convolutional layers. These layers apply
filters to detect patterns, such as edges and textures, through a
series of transformations. After each convolution, a non-linear
activation function is applied to introduce non-linearity, allow-
ing CNNs to learn complex representations.

Data Augmentation A technique whereby existing data is perturbed
to generate new synthetic samples.

Deep Learning (DL) A subset of machine learning that makes use of
complex neural networks consisting of multiple layers (deep
neural networks).
13 
Foundation Model A large-scale, pre-trained model that serves as
a base for a wide range of cross-domain downstream tasks.
Typically trained on extensive datasets, foundation models can
be fine-tuned or adapted to specific applications with minimal
task-specific data.

Human in the Loop The name given to a broad range of techniques
where humans are involved in the decision-making loop, often
in conjunction with automated algorithms.

Image Classification A computer vision task aiming to categorise
whole images into classes.

Image Processing (IP) The task of manipulating or extracting fea-
tures from visual data through pre-determined algorithmic steps.

Instance Segmentation A computer vision task which aims to provide
pixel-level labelling over an image. A segmentation mask is
provided on a per-object basis.

Machine Learning (ML) The development of statistical models capa-
ble of analysing data through some learned function via training,
rather than a pre-determined algorithm. In the case of image-
based machine learning, models are trained to extract relevant
features from some input image.

Mask A binary matrix that indicates a pixel-level region of interest for
an image. Masks can be provided on a per-class basis for tasks
such as semantic segmentation, or a per-object basis for instance
segmentation.

Midwater The section of a water body located vertically between the
surface and the benthos.

Object Detection A computer vision task aiming to localise and clas-
sify multiple regions of interest within a single image.

Region of Interest (RoI) A specific area within an image identified as
requiring attention.

Self-Supervised Learning A subset of unsupervised learning where the
model generates its own data labels, allowing it to learn mean-
ingful representations. Typically, a proxy task, like identifying
similarities between image pairs, is used to capture relationships
in a latent feature space (Rani et al., 2023).

Semantic Segmentation A computer vision task which aims to pro-
vide pixel-level labelling over an image. A segmentation mask
is provided on a per-class basis.

Semi-Supervised Learning A learning approach that combines a small
amount of labelled data with a larger set of unlabelled data to
improve model performance. The labelled data provides ground
truth, whilst the unlabelled data teaches broader data distri-
bution and structure, enhancing generalisation with minimal
labelled examples (Van Engelen and Hoos, 2020).

Supervised Learning The name given to machine or deep learning
techniques which train using labelled data, such as image data
alongside a textual label in the case or image classification or a
list of bounding box locations for object detection.

Support Vector Machine A machine learning algorithm used for clas-
sification and regression tasks. Aims to find the optimal hyper-
plane that maximally separates different classes when plotted
into a latent space.
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Transfer Learning A technique allowing a machine or deep learning
model to learn better data representations by ‘‘transferring in-
formation from a representation built using a data rich or clean
modality to a data scarce or noisy modality’’ (Baltrusaitis et al.,
2019).

Unsupervised Learning A learning approach that identifies patterns
and structure within unlabelled data.

Vision Transformer (ViT) A deep learning model that applies trans-
former architectures, originally developed for Natural Language
Processing, to image data. ViTs process images by dividing them
into patches, treating each patch as a token, and using self-
attention to capture relationships between patches, enabling
effective computer vision tasks (Dosovitskiy et al., 2021).

Zero-Shot Learning A technique enabling a model to perform tasks
not previously encountered during training by leveraging se-
mantic information to generalise across tasks without specific
labelled examples.
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Medelytė, S., Šiaulys, A., Daunys, D., Włodarska-Kowalczuk, M., Węsławski, J.M.,
Olenin, S., 2022. Application of underwater imagery for the description of upper
sublittoral benthic communities in glaciated and ice-free arctic fjords. Polar Biol.
45 (12), 1655–1671. http://dx.doi.org/10.1007/s00300-022-03096-3.

Miao, Z., Liu, Z., Gaynor, K.M., Palmer, M.S., Yu, S.X., Getz, W.M., 2021. Iterative
human and automated identification of wildlife images. Nat. Mach. Intell. 3 (10),
885–895. http://dx.doi.org/10.1038/s42256-021-00393-0.

Miller, S.D., Dubel, A.K., Adam, T.C., Cook, D.T., Holbrook, S.J., Schmitt, R.J.,
Rassweiler, A., 2023. Using machine learning to achieve simultaneous, georefer-
enced surveys of fish and benthic communities on shallow coral reefs. Limnol.
Oceanography: Methods lom3.10557. http://dx.doi.org/10.1002/lom3.10557.

Mizuno, K., Terayama, K., Hagino, S., Tabeta, S., Sakamoto, S., Ogawa, T., Sugimoto, K.,
Fukami, H., 2020. An efficient coral survey method based on a large-scale 3-D
structure model obtained by speedy sea scanner and u-net segmentation. Sci. Rep.
10 (1), 12416. http://dx.doi.org/10.1038/s41598-020-69400-5.

Mohamed, H., Nadaoka, K., Nakamura, T., 2022. Automatic semantic segmentation
of benthic habitats using images from towed underwater camera in a complex
shallow water environment. Remote Sens. 14 (8), 1818. http://dx.doi.org/10.3390/
rs14081818.

Monari, D., Larkin, J., Machado, P., Bird, J.J., Ihianle, I.K., Yahaya, S.W., Tash, F.F.,
Hasan, M.M., Lotfi, A., 2023. UDEEP: edge-based computer vision for in-situ
underwater crayfish and plastic detection. arXiv arXiv:2401.06157.

Moniruzzaman, Md., Islam, S.M.S., Bennamoun, M., Lavery, P., 2017. Deep learning
on underwater marine object detection: a survey. In: Blanc-Talon, J., Penne, R.,
Philips, W., Popescu, D., Scheunders, P. (Eds.), Advanced Concepts for Intelligent
Vision Systems. vol. 10617, Springer International Publishing, Cham, pp. 150–160.
http://dx.doi.org/10.1007/978-3-319-70353-4_13.

Moorea Coral Reef LTER, Edmunds, P., 2019. MCR LTER: Coral Reef: Computer Vision:
Moorea Labeled Corals. Environmental Data Initiative, http://dx.doi.org/10.6073/
PASTA/88DDE0E68AB5232A470389F4BEDD1892.

Muzammul, M., Algarni, A., Ghadi, Y.Y., Assam, M., 2024. Enhancing UAV aerial image
analysis: integrating advanced sahi techniques with real-time detection models on
the VisDrone dataset. IEEE Access 12, 21621–21633. http://dx.doi.org/10.1109/
ACCESS.2024.3363413.

Naseer, A., Baro, E.N., Khan, S.D., Gordillo, Y.V., 2020. Automatic detection of nephrops
norvegicus burrows in underwater images using deep learning. In: 2020 Global
Conference on Wireless and Optical Technologies (GCWOT). IEEE, Malaga, Spain,
pp. 1–6. http://dx.doi.org/10.1109/GCWOT49901.2020.9391590.

Norouzzadeh, M.S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M.S., Packer, C.,
Clune, J., 2018. Automatically identifying, counting, and describing wild animals
in camera-trap images with deep learning. Proc. Natl. Acad. Sci. 115 (25), http:
//dx.doi.org/10.1073/pnas.1719367115.

Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V., Fernan-
dez, P., Haziza, D., Massa, F., El-Nouby, A., Assran, M., Ballas, N., Galuba, W.,
Howes, R., Huang, P.-Y., Li, S.-W., Misra, I., Rabbat, M., Sharma, V., Synnaeve, G.,
Xu, H., Jegou, H., Mairal, J., Labatut, P., Joulin, A., Bojanowski, P., 2023. DINOv2:
learning robust visual features without supervision. http://dx.doi.org/10.48550/
ARXIV.2304.07193.

Osterloff, J., Nilssen, I., Järnegren, J., Van Engeland, T., Buhl-Mortensen, P., Nattkem-
per, T.W., 2019. Computer vision enables short- and long-term analysis of lophelia
pertusa polyp behaviour and colour from an underwater observatory. Sci. Rep. 9
(1), 6578. http://dx.doi.org/10.1038/s41598-019-41275-1.

Pan, S.J., Yang, Q., 2010. A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22 (10), 1345–1359. http://dx.doi.org/10.1109/TKDE.2009.191.

Pantazis, O., Brostow, G.J., Jones, K.E., Aodha, O.M., 2021. Focus on the positives:
self-supervised learning for biodiversity monitoring. In: 2021 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV). IEEE, Montreal, QC, Canada, pp.
10563–10572. http://dx.doi.org/10.1109/ICCV48922.2021.01041.

Pavoni, G., Corsini, M., Callieri, M., Fiameni, G., Edwards, C., Cignoni, P., 2020.
On improving the training of models for the semantic segmentation of benthic
communities from orthographic imagery. Remote Sens. 12 (18), 3106. http://dx.
doi.org/10.3390/rs12183106.

Pavoni, G., Corsini, M., Pedersen, N., Petrovic, V., Cignoni, P., 2021. Challenges in the
deep learning-based semantic segmentation of benthic communities from ortho-
images. Appl. Geomatics 13 (1), 131–146. http://dx.doi.org/10.1007/s12518-020-
00331-6.
17 
Pavoni, G., Corsini, M., Ponchio, F., Muntoni, A., Edwards, C., Pedersen, N., Sandin, S.,
Cignoni, P., 2022. TagLab: AI-assisted annotation for the fast and accurate semantic
segmentation of coral reef orthoimages. J. Field Robotics 39 (3), 246–262. http:
//dx.doi.org/10.1002/rob.22049.

Pedersen, M., Haurum, J.B., Gade, R., Moeslund, T.B., 2019. Detection of marine
animals in a new underwater dataset with varying visibility. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.
Long Beach, USA, pp. 18–26.

Piechaud, N., Hunt, C., Culverhouse, P., Foster, N., Howell, K., 2019. Automated
identification of benthic epifauna with computer vision. Mar. Ecol. Prog. Ser. 615,
15–30. http://dx.doi.org/10.3354/meps12925.

Purser, A., Dreutter, S., Griffiths, H., Hehemann, L., Jerosch, K., Nordhausen, A.,
Piepenburg, D., Richter, C., Schröder, H., Dorschel, B., 2021. Seabed video and
still images from the northern weddell sea and the western flanks of the Powell
basin. Earth Syst. Sci. Data 13 (2), 609–615. http://dx.doi.org/10.5194/essd-13-
609-2021.

Qian, Y., Humphries, G.R.W., Trathan, P.N., Lowther, A., Donovan, C.R., 2023. Counting
animals in aerial images with a density map estimation model. Ecol. Evol. 13 (4),
e9903. http://dx.doi.org/10.1002/ece3.9903.

Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I., 2021. Learning
transferable visual models from natural language supervision. http://dx.doi.org/
10.48550/ARXIV.2103.00020.

Rani, V., Nabi, S.T., Kumar, M., Mittal, A., Kumar, K., 2023. Self-supervised learning:
a succinct review. Arch. Comput. Methods Eng. 30 (4), 2761–2775. http://dx.doi.
org/10.1007/s11831-023-09884-2.

Raphael, A., Dubinsky, Z., Iluz, D., Netanyahu, N.S., 2020. Neural network recognition
of marine benthos and corals. Diversity 12 (1), 29. http://dx.doi.org/10.3390/
d12010029.

Rees, H.L. (Ed.), 2009. Guidelines for the study of the epibenthos of subtidal envi-
ronments. ICES Techniques in Marine Environmental Sciences, (42), International
Council for the Exploration of the Sea, Copenhagen.

Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster r-CNN: towards real-time object
detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D.,
Sugiyama, M., Garnett, R. (Eds.), Advances in Neural Information Processing
Systems. 28, Curran Associates, Inc..

Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Gupta, B.B., Chen, X., Wang, X.,
2022. A survey of deep active learning. ACM Comput. Surv. 54 (9), 1–40. http:
//dx.doi.org/10.1145/3472291.

Rimavicius, T., Gelzinis, A., 2017. A comparison of the deep learning methods for
solving seafloor image classification task. In: Damaˇ sevičius, R., Mikaˇ sytė, V.
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