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A B S T R A C T   

Surrogate modelling has been used successfully to alleviate the computational burden that results from high- 
fidelity numerical models of seawater intrusion in simulation-optimization routines. Nevertheless, little atten
tion has been given to multi-fidelity modelling methods to address cases where only limited runs with compu
tationally expensive seawater intrusion models are considered affordable imposing a limiting factor for single- 
fidelity surrogate-based optimization as well. In this work, a new adaptive multi-fidelity optimization frame
work is proposed based on co-Kriging surrogate models considering two model fidelities of seawater intrusion. 
The methodology is tailored to the needs of solving pumping optimization problems with computationally 
expensive constraint functions and utilizes only small high-fidelity training datasets. Results from both hypo
thetical and real-world optimization problems demonstrate the efficiency and practicality of the proposed 
framework to provide a steep improvement of the objective function while it outperforms a comprehensive 
single-fidelity surrogate-based optimization method. The method can also be used to locate optimal solutions in 
the region of the global optimum when larger high-fidelity training datasets are available.   

1. Introduction 

There are several characteristics that define the fidelity of a physics- 
based numerical model and the interpretation is mainly problem 
dependent (Razavi et al. (2012),Asher et al., (2015) and references 
therein). Typically, a high-fidelity (HF) numerical model of a physical 
system considers the important processes and boundary conditions that 
represent reality as close as possible or includes those features that 
justify an acceptable accuracy for simulating the processes of interest 
(Giselle Fernández-Godino et al., 2019). Low or lower fidelity (LF) 
models can be defined for the same system by omitting part of the 
physics, by reducing the dimensionality of a 3D process to 2D, or even 
using the HF model but with relaxed convergence criteria or coarser 
spatial discretization (Razavi et al., 2012). As expected, the higher the 
complexity of the numerical model the longer it takes to simulate the 
system which in turn hinders the implementation of repetitive simula
tions tasks such as optimization. 

In many water resources management studies, surrogate modelling 
has been an effective approach to confront the associated computational 
burden arising from HF and computationally expensive physics-based 
models (Castelletti et al., 2012; Wang et al., 2014; Song et al., 2018; 
Lim, 2021; Soleimani et al., 2021). However, when the HF numerical 
model is of substantial computational cost, only a few simulations might 
be considered affordable to provide the training dataset for constructing 
the surrogate models. In such cases, surrogate-based optimization (SBO) 
methods that only rely on HF data (single-fidelity) might struggle to 
return a satisfactory solution for the optimization problem at hand 
(Giselle Fernández-Godino et al., 2019). This complication that results 
from time-consuming HF numerical simulations can be tackled with the 
use of multi-fidelity or variable-fidelity optimization methods (Rob
inson et al., 2006). Moreover, the available computational budget for 
the HF model runs could indicate whether it is more efficient to choose a 
single-fidelity or a multi-fidelity SBO framework (Giselle Fernández-
Godino et al., 2019). 
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Often, the exploration of the optimal search space may be informed 
by simpler, computationally efficient models which simulate the phys
ical system at a LF level (Forrester et al., 2008). Within a multi-fidelity 
optimization framework, multiple simulations from faster LF models 
provide information on the general trends of the objective/constraint 
functions while fewer HF model runs improve the accuracy of the 
so-called multi-fidelity surrogate models. The latter, are constructed by 
considering the discrepancies among the various model fidelities to 
obtain a fast predictor that approximates the more accurate HF model 
(Zhou et al., 2020). Various studies have proposed different approaches 
to build multi-fidelity surrogates such as scaling functions based on 
Kriging or radial basis functions models (RBF) (Gano et al., 2004; Tyan 
et al., 2015; Song et al., 2019), co-RBF models (Durantin et al., 2017), 
polynomial chaos expansion (Man et al., 2021), hierarchical Kriging 
(Cheng et al., 2022), or co-Kriging models (e.g., Forrester et al., 2007; Le 
Gratiet and Garnier, 2014; Perdikaris et al., 2015; Perdikaris et al., 2017; 
Zhou et al., 2020). 

In general, multi-fidelity optimization methods are essential when 
the HF data cannot be obtained in manageable CPU-time to construct 
single-fidelity surrogate models (Koziel and Leifsson, 2016). As with 
single-fidelity SBO, it is important that a sampling strategy, based on 
appropriate infill criteria, is utilized to adaptively locate the additional 
promising points, that will be evaluated with the physics-based models, 
other than the training points obtained from the initial sampling plan. 
Many papers in engineering optimization have explored such strategies 
in multi-fidelity optimization by developing variants of popular infill 
sampling criteria (e.g. Liu et al., 2016; Pellegrini et al., 2018; J. Zhang 
et al., 2018; Jiao et al., 2019; Serani et al., 2019; Shi et al., 2020; Yi et al., 
2020; Cheng et al., 2022). Despite the successful application of 
multi-fidelity surrogates in other engineering disciplines, Razavi et al., 
(2012) and Asher et al., (2015) in their review papers noted that these 
methods have been less explored than the corresponding single-fidelity 
surrogates in water resources optimization studies. However, recently, 
multi-fidelity modelling has started seeing a growing interest in envi
ronmental applications with examples in CO2 sequestration (Bianchi 
et al., 2016), inverse modelling (Y. Zhang et al., 2018; Xiao and Tian, 
2020; Kreitmair et al., 2022), data assimilation (Zheng et al., 2019), 
hydrodynamic simulations (Moreno-Rodenas et al., 2018), brine trans
port simulation (Christelis and Hughes, 2022), pollution source identi
fication on surface waters (Wu et al., 2020), flow and heat transport 
modelling (Menberg et al., 2020; Man et al., 2021) or flood recon
struction simulations (Bomers et al., 2019). 

Pumping optimization of coastal aquifers is one of those widely 
addressed water resources management problems where the HF simula
tions of seawater intrusion, based on variable density flow and solute 
transport models (VDST), are computationally intensive. The numerical 
simulation is based on the solution of a non-linear coupled system of the 
partial differential equations for flow and solute transport in porous 
media that leads to long execution times (Younes et al., 2009; Hamzehloo 
et al., 2022). The coupling of VDST models with evolutionary algorithms 
is a rigorous approach to calculate optimal pumping rates for coastal 
aquifer management while literature suggests that evolutionary algo
rithms are highly competent to escape local optima and provide near 
global solutions, at the cost of thousands of objective function evaluations 
with the seawater intrusion model (Mantoglou et al., 2004; Ketabchi and 
Ataie-Ashtiani 2015b). Therefore, the overall computational cost can be 
prohibitive to employ a simulation-optimization routine, which depends 
also on the number of the decision variables (curse of dimensionality). It 
is fair to assume, that for a regional real-world coastal aquifer this task 
appears computationally intractable without resorting to code paralleli
zation, which evidently requires additional resources and effort to set it 
up (Ketabchi and Ataie-Ashtiani, 2015a). 

Similar to other water resources optimization studies, single-fidelity 
SBO methods have been successfully applied in coastal aquifer man
agement problems by using various sampling frameworks and types of 
surrogate models (e.g., Sreekanth and Datta, 2010; Ataie-Ashtiani et al., 

2014; Christelis et al., 2018; Lal and Datta, 2018; Roy and Datta, 2019; 
Yin and Tsai, 2020; Siade et al., 2020; Yu et al., 2021). However, a 
common assumption, adopted in previous studies of SBO for coastal 
aquifer management, is that a reasonable amount of HF training data 
can be obtained from VDST simulations. Several LF models of seawater 
intrusion have been developed to approximate coastal aquifer flow at a 
different accuracy level and computational efficiency (e.g., Strack, 
1976; Bakker, 2003; Bakker et al., 2004; Koussis et al., 2012; Koussis 
et al., 2015; Rozos et al., 2021). Nevertheless, only a few studies have 
examined, so far, the fusion of HF data from VDST models and LF data 
from LF models of seawater intrusion for pumping optimization prob
lems of coastal aquifers. 

For example, Christelis and Mantoglou (2016) developed an opti
mization strategy embedded within the operations of an evolutionary 
algorithm where two model fidelities of seawater intrusion were 
considered, a sharp interface model and the VDST model. Their 
approach was based on an adaptive adjustment of the buoyancy ratio to 
smooth out the differences of the constraint functions between the two 
model fidelities. That was, to the best of our knowledge, the first study 
that combined seawater intrusion models of different fidelities for 
solving pumping optimization problems in coastal aquifers and has 
similarities to the implicit space mapping techniques (Bandler et al., 
2004). The advantage of that method is that it locates feasible solutions 
within a few iterations of the optimization algorithm, but it can easily 
get trapped on local minima and for certain sets of aquifer parameters it 
will unnecessarily utilize runs from the VDST model (Christelis, 2021). 

Christelis and Mantoglou (2019) applied simple response corrections 
for the constraints of the sharp interface model based on radial basis 
functions to match the response of the VDST model. That multi-fidelity 
optimization framework was compared to a single-fidelity SBO method 
but did not offer notable advantages for a HF computation budget that 
was equal to ten times the number of the decision variables of the 
optimization problem. Dey and Prakash (2020) developed a similar 
methodology to Christelis and Mantoglou (2016) for a real-world coastal 
aquifer in India. Their approach also showed significant computational 
gains and located feasible solutions for the VDST-based optimization 
that were also better than using the LF sharp interface model alone. 
Christelis (2021) proposed a multi-fidelity optimization method for 
coastal aquifer management based on co-Kriging surrogate models. That 
method provided promising results, but it was only based on a 
prediction-based exploitation strategy that can get trapped on local 
minima. Also, it was tested against single-fidelity SBO methods for very 
small HF training datasets, which is a favourable condition for 
multi-fidelity optimization. 

Clearly, multi-fidelity optimization has received little attention for 
coastal aquifer management and there is a need to further explore those 
methods for cases where only a limited number of VDST model runs is 
affordable due to high computational cost. For example, this situation 
can be encountered in real-world VDST models developed over large 
spatial scales with complex boundary conditions and many pumping 
wells. Such features can have an adverse effect on the application of 
single-fidelity surrogate models for limited HF training data. In the 
present study, we build upon our previous work on adaptive single- 
fidelity SBO frameworks (Regis, 2011,2014a) as well as on single- and 
multi-fidelity SBO for coastal aquifer management (Christelis et al., 
2018; Christelis, 2021). Our motivation stems from the practical need to 
develop an efficient and robust approach that locates feasible solutions 
for pumping optimization problems of coastal aquifers with computa
tionally expensive constraint functions when only a small number of 
VDST model runs is considered affordable. 

To achieve that, we propose a multi-fidelity optimization framework 
that utilizes individual co-Kriging surrogate models to emulate the 
response of the constraint functions and an adaptive stochastic sampling 
strategy to evaluate promising candidate points with the computation
ally expensive VDST model. The method of co-Kriging, which is a special 
formulation of Kriging, differs from a typical surrogate model in the 
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sense that it amalgamates data from at least two models (usually a larger 
amount of LF data and much fewer HF data), in order to develop a multi- 
fidelity surrogate of the HF numerical model (Forrester et al., 2007). 
Given an adequate training sample and a good correlation between the 
LF and the HF model response, the co-kriging surrogate model is ex
pected to predict the HF model response more accurately than using the 
LF model alone. It is also noted that many studies, in other engineering 
disciplines, employ constrained SBO through the use of the probability 
of feasibility function, but much fewer studies apply direct handling of 
constraints either using single- or multi- fidelity surrogate models (e.g., 
Regis, 2011,2014; Cheng et al., 2022). Furthermore, there is little 
existing literature on coastal aquifer management and SBO strategies 
that consider balanced exploration and exploitation adaptive schemes 
(Song et al., 2018; Christelis 2021). Ideally, a SBO strategy should up
date the accuracy of the surrogate models, after the initial training, 
either by focusing on new points in the region of the optimum that the 
surrogate models predict (local exploitation) or by improving their 
general accuracy with training data away from current known optimal 
points (global exploration) (Forrester et al., 2008). While this is chal
lenging to achieve, particularly when the HF data are limited, devel
oping a balanced exploitation/exploration scheme that is controlled by 
appropriate criteria enables the global search capabilities of the SBO 
algorithm. 

The proposed multi-fidelity SBO scheme of this work employs a merit 
function that can balance local exploitation and global exploration while 
it also adopts an online correction of the LF model to handle acknowl
edged discrepancies between sharp interface and VDST models. We 
explore different approaches for generating infill points after the initial 
training design and how optimization performance is related to 
increasing HF and LF computational budgets. For performance com
parison, the proposed multi-fidelity SBO approach is compared to a 
comprehensive single-fidelity SBO algorithm that has previously 
demonstrated a robust performance on pumping optimization of coastal 
aquifers within small HF training points (Christelis et al., 2018). This 
enables a better understanding of the practicality of multi-fidelity 
methods in pumping optimization of coastal aquifers in comparison to 
the less complicated and faster approach of single-fidelity SBO algo
rithms. All SBO methods that are employed in this work are applied first 
for a hypothetical 3D coastal aquifer model to facilitate the run of 
multiple independent optimization trials and obtain sample statistics. 
Then, we evaluate the proposed method on a pumping optimization 
problem for a real-world 3D coastal aquifer model of the Vathy coastal 
aquifer located in the Greek island Kalymnos in the Aegean Sea. 

2. Seawater intrusion models and optimization problem 

As discussed in the introduction part, various mathematical models 
are available to simulate seawater intrusion at different levels of accu
racy and sophistication. For the purposes of the present study, we 
employ two model fidelities, that is, a 3D VDST numerical model that 
represents the HF option for simulating seawater intrusion and a 2D 
sharp interface model that is the LF option. The latter neglects mixing of 
freshwater with seawater and only considers a 2D one-fluid aquifer flow. 
Therefore, the LF model utilized here omits part of the coastal aquifer 
flow physics and it is also of reduced dimensionality. Depending on the 
problem at hand, different HF and LF models can be considered for 
implementation with the proposed multi-fidelity framework. In the 
sections that follow, we describe the two model fidelities selected for 
simulating seawater intrusion, the application models, and the formu
lation of the pumping optimization problem. 

2.1. The HF model 

In this study, the finite-difference numerical code SEAWAT-version 4 
(Langevin and Guo, 2006) was used to simulate seawater intrusion 
based on the VDST model. A brief description of the governing equations 

of the VDST model is presented, assuming that density is affected only by 
concentration while thermal and viscosity effects are neglected. The 
following flow and solute transport differential equations are coupled, as 
the density across the dispersive zone varies from that of freshwater 
(≈ 1000kg /m3) to that of seawater (≈ 1025 kg /m3). 

− ∇⋅(ρq) + ρsqs = ρSf
∂hf

∂t
+ n

∂ρ
∂C

∂C
∂t

(1)  

∂C
∂t

= ∇⋅(D⋅∇C) − ∇⋅(vC) −
qs

n
Cs (2)  

where the variables ρ and ρs represent the fluid density and the density 
of water entering or leaving the system through a source or sink. The 
specific discharge vector q and the volumetric flow rate per unit volume 
of porous medium representing sources and sinks qs, are the other two 
terms of the left part of Eq. (1). On the right hand side, hf is the equiv
alent freshwater head, t represents time, specific storage is Sf, n is the 
porosity while solute concentration is denoted by C. The first term, in the 
right hand side of Eq. (2) is the hydrodynamic dispersion term with D 
being the hydrodynamic dispersion tensor, and the second term de
scribes advection, with v being the fluid velocity vector, while Cs is the 
solute concentration of water entering or leaving through sources and 
sinks, respectively. 

The specific discharge term, for variable-density flow with constant 
viscosity, is calculated using Darcy’s law with the components of specific 
discharge expressed along the principal directions of anisotropy for 
hydraulic conductivity Kx, Ky and Kz, as: 

qx = − Kfx

(
∂hf

∂x

)

qy = − Kfy

(
∂hf

∂y

)

qz = − Kfz

(
∂hf

∂z
+

ρ − ρf

ρ

)

(3)  

with the freshwater density denoted as ρf and qx, qy, qz and Kfx, Kfy, Kfz 
representing the components of the specific discharge and the compo
nents of freshwater hydraulic conductivity along the principal di
rections, respectively. Fluid density depends on solute concentration 
through the following relationship: 

ρ = ρo

(

1+
ε

(Cs − Co)
(C − Co)

)

(4)  

where ρo is the reference density, Co is the reference concentration and 
Cs is the maximum concentration, which for this work take the values 
Co = 0kg /m3for freshwater and Cs = 35 kg /m3for seawater. The 
buoyancy ratio is expressed as ε = (ρs − ρo) /ρo with ρo = ρf for the case of 
freshwater while ρs corresponds to maximum seawater density. 

2.2. The LF model 

The lower fidelity model employed here adopts the Dupuit approx
imation and it is based on the sharp interface assumption where only 
flow in the freshwater zone is considered (one-fluid approach). The 
model neglects spatial density variability, aquifer flow is horizontal and 
steady-state, there is no mixing between freshwater and saltwater and 
the discharge potential formulation is applied (Strack 1976). The depth 
to the interface is estimated using the Ghyben-Herzberg approximation. 
For irregularly shaped aquifers with spatially variable hydraulic con
ductivity and recharge, this analytical model can be solved using a nu
merical groundwater flow code with minimal computational 
requirements as only a steady-state flow equation is solved for either 
confined or unconfined aquifers (Mantoglou et al., 2004). 
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∂
∂x

(

K
∂Φ
∂x

)

+
∂
∂y

(

K
∂Φ
∂y

)

− Q(x, y) = 0, confined interface flow

∂
∂x

(

K
∂Φ
∂x

)

+
∂
∂y

(

K
∂Φ
∂y

)

+ N − Q(x, y) = 0, unconfined interface flow

(5)  

where K is the aquifer’s horizontal hydraulic conductivity,Nrepresents 
the rate of groundwater recharge for the case of unconfined aquifer flow 
and the term Q(x, y) denotes the distributed pumping rate. The 
discharge potential Φ is calculated separately for confined and uncon
fined flow (Strack, 1976; Mantoglou et al., 2004) while its value Φtoe at 
the location of the interface toe is of particular interest in pumping 
optimization problems and is calculated as (Mantoglou, 2003): 

Φtoe =
ε
2
B2, confined aquifer

Φtoe =

[
ε(ε + 1)

2

]

d2, unconfined aquifer

⎫
⎪⎬

⎪⎭
(6)  

where B is aquifer thickness and variable d is the vertical distance from 
sea level to the aquifer base. The discharge potential is generally defined 
as Φ = 1

2 K ρs
(ρs − ρf )

(ϕ − Hsea)
2
+ Cconst , where ϕ denotes the freshwater 

hydraulic head, Hsea = B for confined flow and Hsea = d for unconfined 
flow, while Cconst is a constant that ensures that Φ is single-valued 
throughout the aquifer (Koussis et al., 2012). 

2.3. Hypothetical application 

The hypothetical coastal aquifer model (Fig. 1) refers to an uncon
fined coastal aquifer of a simple orthogonal shape geometry with hori
zontal dimensions X = 7000m, Y = 3000m and an horizontal aquifer 
base set at z = 25m below sea level. 

A finite difference grid is applied with dx = dy = 50m for each of the 
five layers of the 3D VDST numerical model. Hydrostatic boundary 
conditions are applied at the left side of the aquifer model to represent 
the hydraulic connection with the sea, based on a saltwater density of 
1025Kg /m3and a specified constant salinity concentration of 35 Kg /m3. 
A homogeneous and anisotropic hydraulic conductivity is assumed with 
Kfx = Kfy = 50m /day and Kfz = 5m /day, while the longitudinal, trans
verse, and vertical transverse dispersivity values are set correspondingly 
to αL = 25m, αT = 2.5m and αTV = 0.25m. A daily average surface 
recharge of 3x10− 4m /day replenishes the aquifer at the top model layer 
while ten fully penetrating pumping wells extract groundwater based on 
daily average rates for a management simulation period of 30 years. This 
3D hypothetical model with a runtime of approximately 25 s enabled 
multiple VDST simulations at a manageable computational cost given 

that a total of 30 independent optimization trials were considered for 
each framework to obtain meaningful sample statistics on their perfor
mance. The corresponding LF sharp interface model, which is a 2D 
model, takes only 0.31 s to solve for the discharge potential Eq. (5) of
fering a significant decrease in computational time. 

2.4. Real-world application 

Our real-world application is an unconfined aquifer located at the 
central part of Kalymnos Island, Greece, situated in the eastern Medi
terranean region (Fig. 2). 

The elongated shaped aquifer follows the WNW – ESE orientation of 
the Vathy valley and mainly consists of carbonate rocks (e.g., limestones 
and marbles), that cover perimetrically more than 70% of the surface 
area. The central area of the aquifer could be divided in three litho
logical units, which in descending order of permeability- are the 
following: 1) scree, 2) alluvial deposits and 3) tuff (Mantoglou et al., 
2004). According to the available borehole logging data, the aquifer is 
bounded at the bottom by an impermeable schist unit at the depth of 25 
m below sea level. The sea boundary is in the east side of the aquifer, 
while the remaining boundaries are considered impermeable. The 
recharge rates vary from 30 mm/year to 150 mm/year according to the 
hydro-lithological characteristics of the rock formations. The recharge 
zones coincide with the lithological units described above. Overall, the 
coastal aquifer model includes 4 separate zones of hydraulic conduc
tivity and recharge. A single runtime with the Kalymnos 3D VDST model 
is approximately 2.5 min while the corresponding 2D sharp interface 
model simulates aquifer flow in 1.6 s. 

2.5. Formulation of the pumping optimization problem 

The control of seawater encroachment while satisfying the demand 
for freshwater in coastal regions is a common groundwater management 
problem with approaches varying from standard simulation- 
optimization methodologies (Sreekanth and Datta, 2015) to game the
ory (Nagkoulis and Katsifarakis, 2022). Here, we solve a 
simulation-optimization problem where the decision variables are the 
individual pumping rates Qi, i = 1, ..., k with k being the total number of 
pumping wells. We wish to maximize the objective function f(Q), where 
Q = (Q1,..., Qk) is a decision vector of pumping rates, subject to a set of 
constraints gj, j = 1, ..., 2k that monitor the extent of seawater intrusion 
and the groundwater levels and satisfy certain criteria for each pumping 
well. For our study, the mathematical formulation of the VDST-based 
optimization is: 

min −
∑k

i=1
Qi

s.t. xCt
i (Q1,…,Qk) ≤ xwi,∀i = 1,…, k

hi(Q1,…,Qk) ≥ 0, ∀i = 1,…, k

Qmin ≤ Qi ≤ Qmax, i = 1,…, k

(7)  

where xCt
i (Q1, ...,Qk) represents the extent of seawater intrusion based 

on the isosalinity contour with a value equal to the threshold Ct as a 
function of the pumping rates. It is marginally allowed for xCt

i to reach 
the ith pumping well location xwi. Similarly, the piezometric head hi at 
the ith pumping well should remain at a level greater than or equal to 
zero with respect to sea level. The variables Qmin and Qmax are the lower 
and upper values that can be assigned to pumping rates during optimi
zation. It is noted that the negative sign in front of the objective function 
in Eq. (7) indicates maximization given that the location of the 
maximum f(Q*) lies at the same point with the minimum − f(Q*). The 
objective function is linear with respect to the decision variables and 
computationally cheap to evaluate but the inequality constraints hi and 

xCt
i are non-linear with respect to pumping rates because of the 

Fig. 1. Hypothetical coastal aquifer model with applied boundary conditions 
and location of pumping wells (in blue color). 
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equations that govern the VDST model formulation and are obtained 
from computationally expensive simulations with that model. 

While the VDST simulations provide a salinity concentration field, 
the output from the sharp interface model is the potential flow field 
where the interface location is indirectly calculated using linear inter
polation and the value of Φtoe from Eq. (6). Hence, the corresponding 
optimization problem for the sharp interface model is formulated as: 

min −
∑k

i=1
Qi

s.t. xΦtoe
i (Q1,…,Qk) ≤ xwi,∀i = 1,…, k

Φi(Q1,…,Qk) ≥ 0, ∀i = 1,…, k

Qmin ≤ Qi ≤ Qmax, i = 1,…, k

(8)  

where xΦtoe
i (Q1, ...,Qk)denotes the extent of seawater intrusion based on 

the location of the interface toe as a function of the pumping rates. In 
analogy with the VDST model it is also marginally allowed for xΦtoe

i to 
reach the ith pumping well location xwi while Φi, which is the discharge 
potential at the ith pumping well, should also remain at a level greater 
than or equal to zero with respect to sea level. 

The above pumping optimization problems can be solved using a 
direct approach by combining the HF VDST or the LF sharp interface 
model with an evolutionary algorithm. Here, we employ the evolu
tionary annealing-simplex (EAS) algorithm (Efstratiadis and Kout
soyiannis 2002) which has demonstrated global exploration capabilities 
in both smooth and rugged search spaces (Tsoukalas et al., 2016) and an 
efficient and robust performance in pumping optimization of coastal 
aquifers (Christelis et al., 2019; Kopsiaftis et al., 2019). To enable the 
direct optimization using the EAS algorithm the nonlinear constraints 
were embedded into the objective function by using penalty terms. This 
is expressed below for the HF case similar to Christelis et al., (2018): 

f (Q) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
∑k

i=1
Qi, if ∀ j ;

(
gj

H(Q) ≤ 0
)
, j = 1, ..., 2k

Mg

∑2k

j=1

[
max

(
gj

H , 0
)]2

, if ∃ j ;
(
gj

H(Q) > 0
)
, j = 1, ..., 2k

(9)  

where Mg represents the number of constraint function violations either 
for salinity or hydraulic head criteria or both. It is assumed that for a 
decision vector Q, the HF constraint functions are summarized in gj

H(Q)

and the corresponding LF constraint funtions in gj
L(Q) if we use the LF 

model alone to solve the pumping optimization problem. 

3. Surrogate-based optimization 

3.1. The surrogate models 

The multi-fidelity optimization framework is based on the con
struction of individual co-Kriging (coKRG) surrogate models to 
approximate the response of the HF constraint functions using training 
data from both model fidelities for simulating seawater intrusion. The 
method of coKRG is an extension of Kriging that incorporates data from 
various model fidelities and it is an established surrogate modelling 
technique for multi-fidelity optimization applied in engineering prob
lems and fluid mechanics (e.g., Forrester et al., 2007; Koziel et al., 2013, 
Singh et al., 2017; Ruan et al., 2020). We compare the multi-fidelity SBO 
against the ConstrLMSRBF algorithm (Regis, 2011). The latter is a 
single-fidelity SBO method, that has shown a strong performance for 
pumping optimization problems of coastal aquifers under limited 
computational budgets (Christelis et al., 2018). The version of the 
ConstrLMSRBF algorithm applied here requires that at least one feasible 
point exists among the initial training points and uses radial basis 
functions (RBF) as surrogate models of the constraints and the objective 
function. 

Both coKRG and RBF models have interpolating capabilities that 
allow for an exact estimation of the previously evaluated sampling 
points with the original physics-based model. This feature has been 
successfully exploited in the development of adaptive SBO schemes for 
deterministic computer simulations of water resources systems (e.g., 
Müller and Woodbury, 2017; Xia and Shoemaker, 2020; Xia et al., 2021; 
Pang et al., 2022; Lu et al., 2022). In the next two sections we only 
briefly present the surrogate model predictors as more elaborative de
tails on their mathematical formulation can be found elsewhere (e.g., 
Regis and Shoemaker, 2005; Forrester et al., 2007; Forrester and Keane, 
2009). More emphasis is given to the practical application of those 
techniques for developing the SBO frameworks and the implications for 
coastal aquifer management. 

First, we define the required variables for describing the surrogate 
model predictors based on the samples provided by both the HF and the 
LF physics-based models. Consider a set of nH training points denoted 
asXH = [x(1)

H , ..., x(nH)
H ] ∈ Rk where we sample the HF numerical model 

(here, the VDST model). The corresponding model responses for all HF 
constraint functions (except bounds on decision variables) are summa
rized in the form G(j)

H = [gj
H(x

(1)
H ), ..., gj

H(x
(nH)
H )] where j = 1, ..., 2k denotes 

the number of constraint functions which, for our study, is twice the 
number of pumping wells k. Similarly, consider a set of nL training points 
denoted as XL = [x(1)

L , ..., x(nL)
L ] ∈ Rk that are used to run the sharp 

interface model and obtain the corresponding LF constraint functions 
summarized in the form G(j)

L = [gj
L(x

(1)
L ), ..., gj

L(x
(nL)
L )]. The HF and LF 

constraint functions are calculated in the form of g(x) ≤ 0. For the 

Fig. 2. The Vathy aquifer in Kalymnos Island along with the location of the pumping wells and the distribution of the geological materials.  
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specific case of the multi-fidelity approach,XH is typically a subset of the 
XL training points (i.e.,XH⊂XL). 

Therefore, for the implementation of the ConstrLMSRBF algorithm 
and for each of the constraint functions the following RBF approxima
tion is defined (Regis, 2011): 

s(xH) =
∑nH

j=1
λjφ

(
‖ xH − x(j)

H ‖
)
+ p(xH), xH ∈ Rk (10)  

where λ = [λ1, ..., λnH ]
T
∈ RnH are coefficients to be determined, ‖ ⋅ ‖ is 

the Euclidean norm and φ( ⋅ ) is the basis function, which in our case takes 
the cubic form φ(r) = r3 due to previous successful performance of this 
RBF type on pumping optimization problems of coastal aquifers (Chris
telis et al., 2018). The term p(xH) represents a linear polynomial tail 
whose coefficients along with the coefficients λ also need to be deter
mined such that the resulting RBF model passes through all the nH design 
points. The required coefficients are obtained by solving a linear system 
of equations while it is noted that at least k + 1 affinely independent 
points are required to train the RBF model (Regis and Shoemaker, 2013): 
[

Φ P
PT 0(k+1)×(k+1)

][
λ
w

]

=

[
Gi

H

0(k+1)×1

]

(11)  

where P∈ RnH×(k+1) is a matrix so that the ith row is [1, (xi
H)

T
], while 

Φ ∈ RnH×nH is a matrix with entries Φj, l = φ(‖xH
(j) − xH

(l)‖), j, l = 1, ..., 
nH and w = (w1,..., wk + 1)T represents the coefficients of the linear 
polynomial p(xH). The term 0(k + 1) × (k + 1) is a zero matrix and 0(k + 1) ×

1is a zero vector. The significant advantage of using RBF models with 
adaptive SBO methods is that their training time is computationally 
inexpensive even for large training datasets (Regis, 2011). 

Following Forrester et al., (2007), we now consider also a combined 

set of low and HF points denoted as XHL =

(
XL
XH

)

and the set of observed 

responses is defined as G(i)
HL =

⎛

⎝
G(i)

L

G(i)
H

⎞

⎠. Similar to Kriging models, the 

value at a sampling point in XHL is treated as generated by stochastic 
processes. The Gaussian process ZH( ⋅ ) and ZL( ⋅ ) are also defined to 
represent the local features of the HF and the lower fidelity models 
respectively, while the Gaussian process Zd( ⋅ ) represents the difference 
between βZL( ⋅ ) and ZH( ⋅ ), where β is a scaling factor that multiplies the 
lower fidelity model and is estimated through optimization (Forrester 
et al., 2007). The approximation of the HF model in the coKGR formu
lation is expressed as (Forrester et al., 2008): 

ŷH(x) = μ̂ + cT C− 1(y − 1μ̂) (12)  

where C represents a complex covariance matrix of the co-Kriging 
method, which now includes correlations between the HF XH and LF 
data XL and a set of hyper-parameters θ and p to be determined. The term 
c is defined as a vector of the covariance of XHL and the point to be 
predicted x, μ̂ represents the maximum likelihood estimation of the 
mean and 1 denotes a vector of ones. A thorough analysis on the deri
vation of coKRG models for surrogate-based optimization can be found 
in Forrester et al., (2007) and Forrester et al., (2008) while the ooDACE 
MATLAB toolbox was used here for the development of the coKRG 
models (Couckuyt et al., 2014; Ulaganathan et al., 2015). 

3.2. The multi-fidelity SBO framework 

Our aim is to develop an optimization framework that considers both 
seawater intrusion model fidelities and returns optimal solutions that 
cannot be obtained by using the few HF runs or the LF model alone. As 
discussed in the introduction, it is challenging to obtain a steep 
improvement of the objective function while utilizing only a few HF 
model simulations due to the potential excess computational cost. For 

example, a global search based on a HF model, with runtimes in the 
order of hours, is computationally impractical on a desktop-based 
analysis. This is particularly difficult if other features co-exist such as 
increased dimensionality or a multi-modal objective function landscape. 
In fact, even attaining a good local feasible solution might be non-trivial 
under a limited HF computational budget. Therefore, a more focused 
framework is required to exploit as much information as possible from 
both model fidelities towards locating improved feasible solutions. An 
established method in Kriging-based frameworks is to define an auxil
iary optimization problem that minimizes an acquisition function that 
involves infill criteria for identifying one or more promising points to 
evaluate with the HF model in an iterative fashion. These frameworks 
have demonstrated their global capabilities in many engineering opti
mization problems, but for our problem at hand and based on our pre
liminary computational experiments with these frameworks, a 
considerable number of iterations is required to return notable im
provements of the objective function and thus, they do not address the 
scope of this study. 

In a previous study, Christelis et al., (2018) showed that the 
single-fidelity ConstrLMSRBF algorithm (Regis, 2011) had a strong 
performance for a series of problems with increasing numbers of deci
sion variables within small HF computational budgets (maximum was 
ten times the number of decision variables). ConstrLMSRBF follows a 
rather different concept compared to the approach of minimizing an 
acquisition function. In each iteration, a large random set of candidate 
solutions is generated by using normal distributions with zero mean on 
the current best HF solution and a standard deviation σ that varies 
depending on the progress of the algorithm. Therefore, perturbations of 
different magnitude around the current best solution are utilized to 
generate a set of candidate points and radial basis functions are used as 
surrogate models to provide a fast evaluation of those candidate solu
tions. The identification of the next promising point for evaluation with 
the HF model is based on a weighted score function that balances 
exploration with exploitation. 

Here, the need is to locate feasible solutions using a quite small 
number of HF model runs, which favours the stochastic sampling 
strategy of ConstrLMSRBF for our multi-fidelity implementation. How
ever, the application of multi-fidelity SBO methods is not always 
straightforward as the discrepancies between the LF and the HF model 
might negatively affect the successful implementation (Zhou et al., 
2016). It is not uncommon that a much faster LF model can be quite 
inaccurate compared to the HF model. Indeed, in our case, it has been 
observed that the computationally cheap sharp interface model of 
Strack (1976) underestimates maximum allowed total pumping, as the 
extent of seawater intrusion is overestimated compared to the corre
sponding VDST simulation (Dausman et al., 2010; Pool and Carrera, 
2011). A simple correction to that discrepancy was proposed by Pool and 
Carrera (2011) by reducing the buoyancy ratio ε through an empirical 
equation. This one-off correction of ε improves the generic match with 
the simulated dispersion zone from the VDST model but it should be 
controlled during optimization to ensure that the constraints of the HF 
VDST model are not violated (Christelis and Mantoglou, 2016; Kop
siaftis et al., 2019). Thus, it is not straightforward to identify which 
value of ε might be optimal to better align the response of the constraint 
functions of the sharp interface model to that of the VDST model for 
solving a pumping optimization problem when thousands of pumping 
rate combinations should be evaluated. 

To that end, the multi-fidelity framework developed here combines 
the stochastic sampling strategy proposed in Regis (2011), the use of 
coKRG surrogate models for the constraint functions and the concept of 
adaptive correction of the buoyancy ratio, during the operations of a 
pumping optimization framework of coastal aquifers (Christelis and 
Mantoglou, 2016). As our proposed multi-fidelity SBO algorithm falls 
within the general category of adaptive-recursive frameworks, it will be 
henceforth named as Adaptive Recursive Optimization with 
Multi-fidelity Surrogates (AROMS). In AROMS, the LF model is first 
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evaluated on a large set of points provided by a space-filling design. How 
large this LF sample should be is problem-dependent but generally, the 
empirical rule of ten times the number of decision variables (Jones et al., 
1998) is considered an adequate choice. A critical step is to select a 
subset of those LF points for evaluation with the HF model to obtain a 
necessary initial training sample (at least two HF points) to fit the pa
rameters of the co-Kriging surrogate models. It is suggested to start with 
as low as two expensive HF points and let the next infill points to be 
found via the iterative framework of AROMS. Based on our several tests 
with AROMS framework, this minimal setting for the initial HF training 
points ensures a better performance than evaluating a larger subset and 
provides a more effective use of the limited HF model simulations. In our 
implementation, the values of the LF objective function are first sorted 
and the points that correspond to the best and second-best value are 
selected. If, based on the HF evaluation, none of those initial points are 
feasible, additional known feasible HF points should be provided even if 
the latter are a conservative solution far from the expected near global 
optima. It is possible to locate feasible solutions during the iteration 
steps of AROMS when none of the initial HF points are feasible, but this 
choice will worsen its performance. 

Let NL and N0
HF represent the number of the initially available LF and 

HF training points obtained before starting the iterations of the AROMS 
framework. Also, NHF denotes the number of additional high-fidelity 
training points obtained at the Neval iteration of AROMS and Nmax is 
the maximum number of high-fidelity model runs (or interchangeably 
number of high-fidelity training points) that we can afford during 
optimization and it also defines the stopping criterion for the algorithm. 
The initial best feasible HF solution xbest is first identified from the set 
N0

HF . Within the main loop of the AROMS algorithm, an essential part is 
to generate a large number ncand = min {1000k, 10000} of promising 
candidate solutions Xcand = [x(1)

cand, ..., x(ncand)

cand ]. These are generated by 
perturbing the current known best solution xbest, as indicated from the 
previous evaluations with the HF model, using normal distributions with 
zero mean and standard deviation σ. The latter varies between a mini
mum and a maximum value and depends on the progress of the algo
rithm in terms of the number of successful iterations in locating a new 
xbest, as described in the ConstrLMSRBF framework (Regis, 2011). 

Every time an updated xbest is identified, a secondary optimization 
problem is occasionally solved, within AROMS operations, that seeks for 
an optimal buoyancy ratio ε* that minimizes the following metric: 

gdiff (ε∗) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[∑(

gj
H(xbest) − gj

L(xbest, ε∗)
)2
/

k
]√

(13) 

That is, a root mean square error metric gdiff that considers the dif
ference between the constraint functions calculated from the LF sharp 
interface model gj

L and those of the HF model gj
H with j = 1, ..., 2k at the 

current optimum solution xbest. A new updated value for ε* is obtained 
based on the MATLAB’s fminbnd function (Optimization Toolbox 2021) 
that finds the minimum of a single-variable function (Eq. (13)) on a fixed 
interval εlb < ε* < εub where εlb = 0.0079 and εub = 0.025 in our case. The 
value of εlb is based on the Pool and Carrera (2011) empirical equation 
while εub is the standard buoyancy ratio for freshwater and saltwater. 
After finding an optimal value for the buoyancy ratio at xbest, the LF model 
re-evaluates the available LF points, which facilitates the construction of 
more accurate coKRG models, as the constraints of the LF model are now 
better correlated with that of the HF model. Obviously, if it is known a 
priori that the response of the chosen LF model correlates well with that of 
the HF model, then the coKRG surrogate models can be constructed for 
the constraint functions without the need for extra LF corrections and the 
main iterative framework of AROMS is directly applied. 

The computationally expensive constraint functions are calculated 
using the coKRG surrogate models on all the candidate points Xcand 
whereas the computationally cheap objective function is calculated as in 
Eq. (9) to provide the vector of ̂y(Xcand) values. The next promising point 
to evaluate with the HF model is selected based on the weighted score of 

a merit function that seeks to balance exploration with exploitation and 
has the following form: 

Fa(Xcand) = wcr ŷsc(Xcand) + (1 − wcr)Msc (14) 

The term ŷsc(Xcand) = [ŷ(Xcand) − ymin] /[ymax − ymin] focuses more on the 
predicted optimum (exploitation) based on the constraint function cal
culations with the coRKG surrogates and represents the rescaled formu
lation of the estimated objective function values of the candidate points 
Xcand. The values ymin and ymax are the minimum and maximum values of 
the objective function estimates before rescaling, respectively. However, 
it is also desirable to improve the knowledge of the surrogates on points 
further from the region of the current optimum (exploration) to avoid 
getting stuck on local optima too quickly. That is achieved via the term 
Msc in the merit function and here is expressed in two different versions. 

The first version, defined asMd
sc = [dmax − dE] /[dmax − dmin], is the 

rescaled formulation of the set dE which includes the minimum 
Euclidean distances of each point in the set Xcand from all existing points 
in the existing coKRG training dataset XHL, with dmaxand dmin being the 
maximum and minimum values of dE, respectively. The second utilizes 
the capability of coKRG models to return the prediction uncertainty 
ŝg,i (x) for the ith constraint function. For each xcand of the Xcand set, the 
constraint with the maximum value ĝmax = max{ĝH,j(xcand), 0}, j = 1, ...
2k is identified as well as its associated uncertainty prediction value 
ŝgmax (xcand). In rescaled formulation, similar to Md

sc, we now have 
Mcu

sc = [cumax − cug] /[cumax − cumin] where cug represents the set of val
uesŝgmax (Xcand), with cumaxand cumin being the maximum and minimum 
values of cug, respectively. 

As shown in Eq. (14), the merit function also includes the choice of a 
weight parameter wcr. The latter indicates how much weight the merit 
function puts on either exploitation or exploration. Various suggestions 
exist in the literature for determining the weight for this type of merit 
functions (e.g., Regis, 2011; Regis and Shoemaker, 2013; Tsoukalas 
et al., 2016). Here, we opt for a fixed weight wcr = 0.95 due to the 
adopted scenario that the HF model is of extreme computational cost 
and only few runs can be utilized. In any case, the definition of wcr de
pends on the available computational budget with the HF model and if 
improving the global accuracy of the surrogates is considered important 
for the problem at hand. Moreover, the two versions of the merit func
tion used in AROMS ensure a certain distance among the infill points in 
the training dataset to avoid cases of close proximity that cause nu
merical issues with the construction of the coKRG surrogate models. 
According to the score given from Eq. (14) to all points in Xcand the 
candidate solution with the minimum value is then evaluated with the 
HF model and together with the calculated constraint function values 
are added to the coKRG training dataset. A flow diagram presentation of 
the AROMS algorithm as implemented for our problem is given in Fig. 3. 

4. Results 

Before any optimization runs with the hypothetical and the real- 
world VDST models, coastal aquifer flow was simulated until hydrau
lic head and salinity distribution reached steady-state conditions in the 
absence of pumping. Next, an additional simulation was employed 
where equally distributed and intensive pumping was applied, to 
represent a more realistic scenario where the coastal aquifer is already 
stressed to a certain extent. Those simulation outputs were used as initial 
conditions for the VDST models to run the optimization frameworks. The 
optimization runs were performed for a salinity threshold of 
Ct = 0.1kg /m3 and the time horizon for the pumping management plan 
was set to 30 years. The direct optimization based on the VDST model is 
denoted as EAS-HF and EAS-LF indicates the direct optimization based 
on the sharp interface model. To ensure a fairer comparison among the 
SBO methods in terms of initial conditions, 30 Latin Hypercube Sam
pling (LHS) designs of the LF points (the NL set) were generated based on 
MATLAB’s lhsdesign function (Statistics and Machine Learning Toolbox 
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2021) and were used for running the independent optimization trials 
with AROMS. Regarding the comparison with the single-fidelity 
ConstrLMSRBF algorithm two cases were examined. First, an initial in
dependent LHS training design of k + 1 points was generated for the RBF 
models without information from the LF runs. Second, the initial LF 
sample points were also used for the initial training design of the 
ConstrLMSRBF algorithm (henceforth called ConstrLMSRBFLF) by 
selecting a space-filling subset of k + 1 points by using the exchange 
algorithm (Forrester et al., 2007). This was in order to investigate if the 
larger set of points provided by the LF runs could have a notable 
improvement on ConstrLMSRBF algorithm performance. 

For convenience, AROMSd denotes the case for the distance criterion 
Md

sc while AROMScu denotes the case for the uncertainty prediction 
criterion Mcu

sc as described previously in Eq. (14). We examine the per
formance of AROMS for three limited HF computational budgets of Nmax 
= 22, Nmax = 50 and Nmax = 100. The first is in the range of 2(k + 1) 
which is commonly utilized as initial sampling size for single-fidelity 
SBO methods, however here it is considered as the extreme case 
where we can only afford a few HF simulations (k = 10 in the 

hypothetical problem and k = 11 in the real-world problem). We also 
investigate the impact of using more LF points, that is, two scenarios of 
NL = 100 and NL = 200. It is noted that the LF model used in this study is 
computationally cheap but overestimates the seawater intrusion extent 
under pumping; therefore we want to investigate if adding more LF 
samples offers any advantages, or it just adds computational cost to the 
development of the coKRG models. For all SBO comparisons, a one-way 
analysis of variance (ANOVA) test followed by a multiple comparison 
test, using the Tukey–Kramer procedure, was conducted on the best 
feasible objective function values to assess which method has statisti
cally significantly better sample mean than the other, based on the p- 
values. The analysis was based on the built-in MATLAB functions anova1 
and multcompare (Statistics and Machine Learning Toolbox 2021). All 
simulations and optimization runs have been performed on 2.7 GHz 
Intel i5 processor with 8 GB of RAM in a 64-bit Windows 10 system. 

4.1. Results from the hypothetical model 

Here, we present the results obtained from running the optimization 

Fig. 3. Workflow diagram of AROMS algorithm using a LF sharp interface model and a HF VDST model.  
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problem based on the hypothetical coastal aquifer model. It is reminded 
that the assessment of the SBO methods was based on sample statistics 
from 30 independent trials. A single optimization run was conducted 
with the VDST and the sharp interface model with EAS, as it has pre
viously shown a robust performance in pumping optimization problems 
of coastal aquifers (Christelis et al., 2019; Kopsiaftis et al., 2019). 
Therefore, EAS-HF and EAS-LF represent the benchmark near global 
optimal solutions that were obtained without any restrictions on the 
number of VDST and sharp interface model runs. Table 1 shows the 
performance of the SBO optimization methods for NL = 100 and Nmax =

22 while Fig. 4 illustrates simulation outputs from both model fidelities 
for given pumping rates. 

For this extreme scenario of only 22 HF runs, ConstrLMSRBF was not 
expected to be as competitive as AROMS, but it is promising that the 
latter clearly outperformed the former with notably better sample 

statistics and a p-value in the order of 10− 12 between AROMScu and the 
two ConstrLMSRBF implementations. AROMScu also has better sample 
statistics than AROMSd but the ANOVA test didn’t show a statistically 
significant difference. All SBO methods outperform EAS-LF which pro
vides a much lower global optimum than the corresponding EAS-HF 
approach. It is noteworthy that AROMScu can locate in its best run an 
optimal solution that is quite close to the benchmark optimum from the 
EAS-HF approach. 

Another useful way to compare the SBO algorithms is to employ the 
actual relative improvement I, the maximum possible relative 
improvement Imax and the relative improvement ratio rI metrics (Viana 
et al., 2010). These metrics are defined as follows: 

I =
yinB − ŷ∗

|yinB|
, Imax =

yinB − y∗HF

|yinB|
, rI =

I
Imax

(15)  

where yinB is the initial best solution (could be the one from the initial 
design points), ŷ∗is the actual solution found from the SBO algorithm 
and y∗HF is the global optimum known from the optimization with the HF 
model. If I = 0 means that the SBO algorithm did not improve further 
from the known starting best feasible solution. When I > 0 means that 
there is improvement over the starting feasible solution which could be 
significant depending on the progress of the algorithm. Accordingly, Imax 
sets a standard of how far the initial best feasible point from the “true” 
global optimum is. Therefore, a ratio rI closer to the value of 1 indicates 
an algorithm that produced significant progress during optimization and 
found a solution closer to the region of the global optimum. These 
measures can be used in a progress plot showing the improvement over 
the number of HF model runs. 

From the relative improvement ratio is evident that AROMS climbs 

Fig. 4. Salinity and hydraulic head contours corresponding to optimal pumping 
rates for the VDST model (plot a) and hydraulic head and calculated interface 
for the same pumping rates for the sharp interface model (plot b). Results are 
shown for smaller part of the grid to enable a better visual comparison between 
the outputs of the two seawater intrusion models closer to the location of the 
pumping wells (grey dots). 

Table 1 
Optimal solutions from the HF VDST and LF sharp interface models along with summary of sample statistics for the SBO frameworks using 22 HF model runs and 100 LF 
model runs. Best values for the SBO methods are in bold and the benchmark HF near global optimum is underlined.  

Optimization method Total maximum pumping (m3/day) VDST model runs Sharp interface model runs Time*** (hr) 

EAS-HF 5.1101e±03 4700 NA* 36.18 
EAS-LF 3.9665e+03 NA* 7000 0.61  

Worst (m3/day) Best (m3/day) Mean (m3/day) Standard error (mean) VDST model runs Sharp interface model runs  
AROMSd 4.5519e+03 4.9345e+03 4.8207e+03 15.8924 22 100 0.32 
AROMScu 4.6364eþ03 4.9770eþ03 4.8396eþ03 13.3537 22 100 0.33 
ConstrLMSRBF 4.4185e+03 4.8975e+03 4.6127e+03 23.3188 22 NA* 0.16 
ConstrLMSRBFLF 4.3265e+03 4.8315e+03 4.6116e+03 25.4594 22 100 0.17  

* Not Applicable, ** average time for the SBO methods. 

Fig. 5. Mean of the relative improvement ratio r1 out of 30 optimization trials 
for Nmax = 22. Notice that plotting starts at a different number of HF points for 
AROMS and ConstrLMSRBF frameworks due to the different requirements for 
initial HF design points. 
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fast to a value of r1 = 0.8 in about 18 HF model runs (Fig. 5), which is a 
promising performance that justifies AROMS application to optimiza
tion problems of quite small HF training datasets. On the other hand, 
ConstrLMSRBF stays on much lower r1 values but shows a marked po
tential of improvement given that more HF points can be added. As 
AROMS borrows the main sampling strategy from ConstrLMSRBF it is 
indicative that such an approach binds well with coKRG surrogate 
models and offers a computationally efficient method to deal with 
pumping optimization problems of certain type. 

Table 2 and Fig. 6 present the results for NL = 100 and Nmax = 50. As 
expected, the addition of more HF infill points improved the perfor
mance of all SBO methods with mean values even closer to the 

benchmark global optimum. Again, AROMScu appears to outperform the 
other frameworks with a p-value in the order of 10− 4 against standard 
ConstrLMSRBF and 10− 3 against ConstrLMSRBFLF. There was no sta
tistically significant difference between AROMSd and AROMScu and 
neither between ConstrLMSRBF and ConstrLMSRBFLF, but this time the 
latter provided better sample statistics, which might indicate that the 
information from the LF runs is useful for improving ConstrLMSRBF 
when more HF points are available. Also, this time there was no statis
tically significant difference among AROMSd, ConstrLMSRBF and 
ConstrLMSRBFLF, which implies that the prediction uncertainty option 
might be more suitable for the AROMS implementation as it improves its 
performance. In terms of the relative improvement ratio, the perfor
mance of the multi-fidelity SBO methods approaches a value of r1 = 0.9 
while for the single-fidelity ConstrLMSRBF and ConstrLMSRBFLF is now 
close to r1 = 0.8 as the HF computational budget of Nmax = 50 is 
exhausted. It should be noted here that while ConstrLMSRBF takes half 
the average time to run than the multi-fidelity approach, for a real-world 
VDST model that might run for hours this difference becomes insignif
icant. In other words, the higher the computational cost for a single run 
of the HF model the larger the benefit from the multi-fidelity approach 
given its strong performance, particularly regarding AROMScu 

framework. 
It is interesting to compare the performance of AROMScu and 

ConstrLMSRBFLF for Nmax = 100, which represents, as an empirical rule 
of Nmax = 10k, a reasonable training size of HF points in SBO applica
tions (Jones et al., 1998). Of course, this empirical rule might be pro
hibitive when k ≫ 10 (it is reminded that k = 10 for our hypothetical 
model) and the HF model is extremely time-consuming. As shown in 
Table 3 and Fig. 7, the multi-fidelity AROMScu framework still out
performs ConstrLMSRBFLF and their sample means are statistically 
significantly different with a p-value of 0.0051 while at the end of 100 
HF simulations the mean relative improvement ratio is r1 = 0.96 for 
AROMScu and r1 = 0.83 for ConstrLMSRBFLF. Those results are partic
ularly promising for the performance of AROMScu showing global search 
capabilities on a rather small total HF computational budget which is the 
order of Nmax = 10k, at least for the case study examined here. There
fore, with a computational gain of almost 95% compared to the global 
search with the EAS_HF approach, AROMScu already provided an effi
cient and effective method to approximate the benchmark optimum 
using only 100 HF and 100 LF model runs. 

Table 2 
Optimal solutions from the HF VDST and LF sharp interface models along with summary of sample statistics for the SBO frameworks using 50 HF model runs and 100 LF 
model runs. Best values for the SBO methods are in bold and the benchmark HF near global optimum is underlined.  

Optimization method Total maximum pumping (m3/day) VDST model runs Sharp interface model runs Time*** (hr) 

EAS-HF 5.1101e±03 4700 NA* 36.18 
EAS-LF 3.9665e+03 NA* 7000 0.61  

Worst (m3/day) Best (m3/day) Mean (m3/day) Standard error (mean) VDST model runs Sharp interface model runs  
AROMSd 4.7942eþ03 4.9773e+03 4.8869e+03 10.4816 50 100 0.67 
AROMScu 4.7861e+03 5.0520eþ03 4.9232eþ03 10.9812 50 100 0.68 
ConstrLMSRBF 4.5281e+03 4.9454e+03 4.8582e+03 13.5015 50 NA* 0.33 
ConstrLMSRBFLF 4.7715e+03 5.0202e+03 4.8741e+03 10.8416 50 100 0.34  

* Not Applicable, ** average time for the SBO methods. 

Fig. 6. Mean of the relative improvement ratio r1 out of 30 optimization trials 
for Nmax = 50. Notice that plotting starts at a different number of HF points for 
AROMS and ConstrLMSRBF frameworks due to the different requirements for 
initial HF design points. 

Table 3 
Optimal solutions from the HF VDST and LF sharp interface models along with summary of sample statistics for the SBO frameworks using 100 HF model runs and 100 
LF model runs. Best values for the SBO methods are in bold and the benchmark HF near global optimum is underlined.  

Optimization method Total maximum pumping (m3/day) VDST model runs Sharp interface model runs Time*** (hr) 

EAS-HF 5.1101e±03 4700 NA* 36.18 
EAS-LF 3.9665e+03 NA* 7000 0.61  

Worst (m3/day) Best (m3/day) Mean (m3/day) Standard error (mean) VDST model runs Sharp interface model runs  
AROMScu 5.0147e+03 5.0952eþ03 5.0325þ03 6.3525 100 100 1.56 
ConstrLMSRBFLF 4.8557e+03 5.0171e+03 4.9333e+03 8.9628 100 100 0.8  
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As a last case for comparison, based on the hypothetical VDST model, 
we investigated the impact of adding more LF points to the AROMScu 

framework (Table 4 and Fig. 8). Therefore, we compare the multi- 
fidelity framework performance for NL = 100 and NL = 200 for the 
extreme scenario of only 22 HF model runs. While the ANOVA test 
returned a p-value of 0.088 indicating that the sample means do not 
show a statistically significant difference it is also evident that using 
additional LF points has improved the sample statistics of AROMScu. 
However, the computational cost of implementing AROMScu with 200 
LF points is now higher due to the construction of coKRG surrogate 
models for the constraint functions based also on a larger LF sample. It is 
reminded that the implementation of AROMS in this study is based on a 
LF sharp interface model which is computationally cheap but might not 
correlate well with the VDST model, particularly for larger pumping 
rates. Therefore the benefit of adding more LF points in some cases 
might be less significant. 

4.2. Results from the real -world model 

Figure 9 presents the 3D visualization of the salinity front based on 
the application of the optimal pumping rates calculated with EAS-HF 
while Table 5 summarizes the results from the various optimization 
frameworks. It is noted that for the real-world case a single run was 
conducted for the SBO methods to test their applicability in a more 
realistic scenario where more trials might add undesired computational 
burden. Interestingly, AROMScu using only 24 HF runs and 100 LF runs 
at a computational cost of 1.3 h, provided an optimal solution which 
approximates well the global optimum found by EAS-HF. The latter 
converged to the optimal solution approximately after 15 days. This is a 
very promising result for the multi-fidelity method developed in this 
work and demonstrates AROMS potential to dramatically reduce the 
computational burden and identify very good solutions within restricted 
computational budgets. 

Fig. 7. Mean of the relative improvement ratio r1 out of 30 optimization trials 
for Nmax = 100. Notice that plotting starts at a different number of HF points for 
AROMS and ConstrLMSRBF frameworks due to the different requirements for 
initial HF design points. 

Table 4 
Optimal solutions from the HF VDST and LF sharp interface models along with summary of sample statistics for the SBO frameworks using 22 HF model runs and two 
cases for AROMS. One with 100 LF and the other with 200 LF model runs, respectively. Best values for the SBO methods are in bold and the benchmark HF near global 
optimum is underlined.  

Optimization method Total maximum pumping (m3/day) VDST model runs Sharp interface model runs Time*** (hr) 

EAS-HF 5.1101e±03 4700 NA* 36.18 
EAS-LF 3.9665e+03 NA* 7000 0.61  

Worst (m3/day) Best (m3/day) Mean (m3/day) Standard error (mean) VDST model runs Sharp interface model runs  
AROMScu (100) 4.6364e+03 4.9770e+03 4.8396e+03 13.3537 22 100 0.33 
AROMScu (200) 4.6933eþ03 4.9894eþ03 4.8703eþ03 11.6034 22 200 0.76  

Fig. 8. Mean of the relative improvement ratio r1 out of 30 optimization trials 
for two implementations of the AROMScu framework. That is,NL = 100 
(AROMScu (100)) and NL = 200 (AROMScu (200)) whileNmax = 22. 
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As the results from both SBO methods show a very good performance 
with a very small HF training sample, we further discuss the specifica
tions related to this real-world example. Based on our previous experi
ence with this specific coastal aquifer model, there are some unique 
features related to the optimization problem defined here. The shape of 
the coastline, the geographical location of the pumping wells and the 
strict constraint functions, which include both salinity and hydraulic 
heads, do not allow abrupt inland movement of the salinity front even 
for larger pumping rates. This situation holds for both direct optimiza
tion frameworks, that is, using the VDST or the sharp interface model 
alone. As a result, the constraints related to salinity (or interface toe for 
the LF case), which inherently present a stronger non-linear response to 
pumping compared to the hydraulic head constraints, are less active 
during optimization. Therefore, the constraints related to hydraulic 
heads are those that mainly determine the feasibility of the candidate 
solutions. This specific condition facilitates the notable improvement of 
the surrogate models of the constraint functions in the region of the 
current best solution without the requirement for large HF training 
samples. In other words, it is an easier task for the SBO frameworks 
given that the stronger non-linear constraints have a smoother response 
which also explains the good performance of the ConstrLMSRBF algo
rithm based on only 24 HF simulations. Therefore, the results obtained 
for the Vathi aquifer in Kalymnos Island, demonstrate that AROMS and 
ConstrLMSRBF frameworks, which share a similar sampling strategy, 
are capable of a steep improvement of the objective function within very 
limited HF computational budgets for an optimization problem with less 
non-linear constraints. It is noted that this is not the case for the hypo
thetical coastal aquifer model where the salinity constraints are the ones 
that determine the feasibility of solutions which shows the capability of 
AROMS to approximate the HF optimum under more challenging opti
mization settings. 

5. Discussion 

Results showed that the proposed multi-fidelity framework has the 
potential to address satisfactorily pumping optimization problems in 
coastal aquifer management that involve only a small number of runs 
with the VDST models. AROMS approximated well the HF optimal so
lutions and outperformed the corresponding single-fidelity approach. 
Nevertheless, there are a few points that are worthy of further 
discussion. 

One point pertains to the selection of the surrogate models for 
running the SBO frameworks. Regarding the comparisons with the 
single-fidelity ConstrLMSRBF algorithm, it could be argued that its 
performance might be improved if instead of RBF models the framework 
would be implemented based on Kriging models for the constraint 
functions. In that case, a similar merit function to AROMS can be derived 
which utilizes the uncertainty prediction capabilities of Kriging surro
gate models. However, this is mainly a hypothesis as previous studies in 
water resources optimization have shown that more complex surrogate 
models do not necessarily ensure a better performance for a single- 
fidelity SBO framework (e.g., Babaei and Pan, 2016; Christelis et al., 
2019). Here, given the previous robust performance of ConstrLMSRBF 
on similar problems (Christelis et al., 2018), it was considered as a 
baseline method to compare with AROMS which also utilizes a similar 
sampling strategy. Future studies might further explore the capabilities 
of these two SBO frameworks using different selection of surrogate 
modelling techniques either for single- or multi-fidelity implementa
tions. It is noted that the present study is, to the best of our knowledge, 
the first that examines in detail multi-fidelity optimization schemes that 
balance exploration with exploitation under restricted HF computa
tional budgets for coastal aquifer management. 

Another point of interest is the selection of an appropriate LF model 
for implementing AROMS framework. Further studies should focus on 
the impact of using more accurate LF models and what is their impact on 
the overall computational cost. In general, other computationally faster 
approaches that better approximate the response of VDST models (e.g., 
Mazi and Koussis 2021; Coulon et al., 2022; Park et al., 2023) should 
improve the performance of AROMS, but it remains to be seen if the 
enhanced accuracy justifies the anticipated increase in the computa
tional cost for running the multi-fidelity framework. It is noted that the 
optimization problems tested here involved about 20 constraint func
tions and a moderate number of decision variables (10 for the hypo
thetical and 11 for the real-world case). Whether it is beneficial to use 
AROMS for larger dimensionalities and many constraint functions 
should be further investigated given the computational complexity and 
cost of coKRG models. It might be the case that other approaches of 
building multi-fidelity surrogates are a better choice for different 
problem settings. A more challenging situation is also to examine 
multi-fidelity optimization methods on transient pumping stresses 
and/or recharge variations, but thus far this largely remains an unex
plored research area in coastal aquifer management even for 
single-fidelity SBO methods. Also, it should be noted that at this stage 
the AROMS framework has been developed on the basis that a deter
ministic simulation of seawater intrusion is sufficient for calculating 
optimal pumping rates. Thus, the uncertainty in the prediction of 
seawater intrusion extent is not considered and this is an aspect that 
could be further explored in future implementations of AROMS. 

In overall, AROMS framework appears to have a consistent perfor
mance and can be easily tailored to the needs of different formulations of 
the optimization problem while it can be adjusted according to the type 
of the LF model that is employed for the problem at hand. Based on 
preliminary runs with AROMS, which were not shown here for brevity, 
the choice of the initial HF points for building the coKRG models has a 
significant role on its performance. As the method focuses on quite small 
number of runs with the HF model, the inclusion of feasible HF points at 
the beginning is essential, particularly if the LF model strongly deviates 
from the response of the HF model for various sets of pumping rates. 

Fig. 9. Salinity distribution for the Vathi Aquifer of Kalymnos Island based on 
the optimal pumping rates obtained from EAS-HF. The imposed constraints 
keep the salinity front mostly seaward and the salinity threshold of Ct =

0.1kg /m3marginally reaches but does not intersect the three pumping wells 
which are closer to the coast. 

Table 5 
Optimal solutions for the real-world optimization problem. Best values for the 
SBO methods are in bold and the benchmark HF near global optimum is 
underlined.  

Optimization 
method 

Total maximum 
pumping (m3/day) 

VDST 
model 
runs 

Sharp 
interface 
model runs 

Time*** 
(hr) 

EAS-HF 7.4869e±03 8800 NA* 367 
EAS-LF 5.8288e+03 NA* 5774 2.52 
ConstrLMSRBF 6.9758e+03 24 NA 1.09 
AROMScu 7.3870eþ03 24 100 1.30  
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Here, we aim to overcome this problem through the adaptive correction 
of the buoyancy ratio but different model parametrizations, boundary 
conditions or coastal aquifer flow conceptualizations might also require 
a different handling. 

6. Conclusions 

The high runtime of a VDST numerical model might be computa
tionally prohibitive to solve pumping optimization problems of coastal 
aquifers. In some cases, the computational cost might also hinder the 
implementation of SBO methods that rely on single-fidelity surrogate 
models. To address this case, we proposed a multi-fidelity SBO frame
work which utilizes co-Kriging surrogate models and multiple simula
tions from LF sharp interface models. The multi-fidelity SBO method, 
called AROMS, successfully locates good local optima using only a few 
VDST model runs with substantial savings in the computational cost. 
The proposed method demonstrated a competitive performance to also 
locate solutions near the global optimum when larger HF training 
datasets were utilized, and it outperformed a corresponding single- 
fidelity SBO method. 

This is, to the best of our knowledge, the first work to develop a 
multi-fidelity optimization scheme for costal aquifer management that 
balances exploration with exploitation for restricted computational 
budgets. The promising performance of the proposed method implies 
that it could be potentially used for other groundwater management 
problems by modifying it accordingly. We anticipate that the method 
developed in this work can offer a useful computational tool for real- 
world pumping optimization problems with complex and computa
tionally expensive VDST models. Furthermore, we believe that the 
promising results of the present work highlight the need for additional 
research on multi-fidelity optimization for coastal aquifer management 
to confront the computational challenges associated with complex VDST 
models. Future work would seek to explore the incorporation of other 
lower fidelity models of seawater intrusion for transient flow stresses 
and pumping and investigate the capabilities of the proposed method
ology for high-dimensional optimization problems. 
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