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Tan et al. (2021) analysed 1 year of continuous data  from the Central Italy 2016-2017 seismic sequence. They 
used the deep-neural-network phase picker PhaseNet to analyse waveforms from 139 seismic stations and build 
an enhanced seismic catalogue with over 900 000 earthquakes with moment magnitudes ranging from 0.5 to 6.2 
(of which 72 000 contain focal mechanism information) and a magnitude of completeness of 0.5.

Figure 2. Comparison of the non-cumulative frequency-
magnitude distribution of earthquakes in the catalogue 
used in this study and the one elaborated by the INGV. 
Modified from Tan et al. (2021).

Figure 1. Map view of 
the area of the 2016-
2017 Central Italy 
seismic sequence. 
Dark blue dots mark
the location of the
earthquakes included
in the catalogue used
in this study, dates ran-
ging from 15 August
2016 to 15 August 
2017. Light blue dots 
show the location of 
the three largest
earthquakes in the
sequence. 
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• Minimum cluster size (mcs): smallest group of earthquakes that are considered a 
individual cluster.

• Minimum number of samples (msam): number of earthquakes in the 
neighbourhood for a data point to be considered a core point.

• Relative Validity (RV): relative score that allows comparing clustering results from 
different combinations of hyperparameters. It is an approximation to the Density 
Based Cluster Validity (DBCV) score. 

Figure 3. Diagram describing the step-by-step workflow followed in this study.

Our work is based on the assumption that seismicity is clustered at, or near, faults. This led us towards density-
based clustering methods such as HDBSCAN, DBSCAN, or OPTICS, since earthquakes would tend to cluster 
tightly around fault planes. Therefore, by applying these methods to our enhanced catalogue, and extracting 
clusters that represent areas of high density of earthquakes, we can try to relate them to individual active faults.

As the diagram below illustrates, we do this by combining HDBSCAN (McInnes et al., 2017) with our automatic 
parameter selection algorithm and Principal Component Analysis (PCA). The PCA of individual clusters allows us 
to define their Principal Plane (PP), which is the surface which explains the most variance of our data (depth and 
geographical coordinates of the earthquakes in the cluster, in our case) and would be analogous to the fault plane 
outlined by each cluster. From the PP, we can also obtain an equivalent to the fault’s strike and dip that we can 
compare with the focal mechanisms in our catalogue. 

In this work, we investigate a rich deep learning seismic catalogue from the Central Italy 2016-2017 seismic 
sequence (Tan et al., 2021) with the aim of identifying and tracing active and potentially hazardous faults, as well 
as studying their distribution and evolution over the duration of the sequence.

To do this, we tested a variety of unsupervised ML algorithms such as HDBSCAN, DBSCAN, SOM or OPTICS, 
which we used to design a completely automatic algorithm to identify clustered seismicity. We then combined it 
with Principal Component Analysis to analyse resulting clusters and relate them to active faults.

Here, we present some of preliminary results from our preferred approach, which highlight the complexity of the 
fault system, as well as the potential of this method to successfully trace active faults using exclusively seismic 
catalogue information. 

Figure 7. Summary of 
clustering results 
obtained for the full 
catalogue, when split 
into calendar weeks, 
showing: (a) RV score 
for the final parameter 
combination obtained 
from the automatic 
selection algorithm 
described in Fig. 3, as 
well as the range of 
values included 
within the top 2% of 
RV scores; (b) total 
number of clusters; (c) 
mean cluster size and 
range of cluster sizes 
for each week 
catalogue; (d) 
percentage of 
clusters with 
differences below 30 
degrees between 
strike and dip from 
available focal 
mechanism 
information and 
equivalents from PCA.

Figure 6. Location of clustering centroids for some of the weeks included in the enhanced catalogue. Colors represent the difference between the strike of the largest earthquake 
in the cluster with available focal mechanism information and the first strike equivalent obtained from our PCA analysis. Panels (a) and(b) further illustrate these differences by 
showing the earthquakes contained in clusters 3 and 5 obtained for Week 33 in 2016 (first week in the catalogue), together with their centroids, PC1 vector and strike value and 
uncertainty from available FMs. It is convenient to note that PCA obtained strike values are affected by an ambiguity, since it is not possible to distinguish between the shortest and 
longest angles (shown in the legends in panels (a) and (b)) without knowing which side the Principal Plane dips to. 

Our preliminary clustering results of the full, year-long, catalogue, as well as extracted month-, and week-long catalogues, obtained using the algorithm described in Fig. 3, reveal the presence of high-density clusters of earthquakes of 
varying extent and density within a cloud of diffuse seismicity. PCA then allows us to obtain a Principal Plane for each cluster, from which we can calculate an equivalent to strike and dip that can be compared with the available focal 
mechanisms for earthquakes within the cluster. This allows us to relate these clusters to individual faults. 

Figure 4. Summary of the main characteristics of catalogue for week 34 of 2016, the 
second week in the catalogue (panels (a) to (i)). Panels (a) to (c) show the hypocenter 
density for this week when including unclustered earthquakes from the previous 
week. Panels (d) to (i) on the right summarize some of the main characteristics of the 
earthquakes in the week catalogue, including number of earthquakes and 
magnitudes per day ((d) and (f), respectively), frequency-magnitude distribution (h), as 
well as available focal mechanism information ((e), (g) and (i)).

Figure 5. Clustering results for week 
34 of 2016, obtained using the 
algorithm described in Fig. 3. (a) RV 
score matrix, with blue dots pointing 
to parameter combinations with an 
RV within the top 2% of values, and 
the red square showing the final 
values used in the clustering. (b) 
Spatial distribution of clusters 
obtained for this week catalogue, 
excluding noise. 

21273 events
50 clusters

55.5% noise

The preliminary results shown here point to the potential of our method to help us take full advantage of deep 
learning, enhanced, catalogues by allowing us to trace and study active faults, as well as their evolution over the 
duration of the seismic sequence, using exclusively seismic catalogue information. 

Future improvements will include synthetic tests, resolving the ambiguity in the PCA obtained strike values 
mentioned in Fig. 6, and continuing to refine our method to improve our ability to trace individual faults. 
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