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A B S T R A C T

Accurate quantification of iceberg populations is essential to inform estimates of Southern Ocean freshwater
and heat balances as well as shipping hazards. The automated operational monitoring of icebergs remains
challenging, largely due to a lack of generality in existing approaches. Previous efforts to map icebergs have
often exploited synthetic aperture radar (SAR) data but the majority are designed for open water situations,
require significant operator input, and are susceptible to the substantial spatial and temporal variability in
backscatter that characterises SAR time-series. We propose an adaptive unsupervised classification procedure
based on Sentinel 1 SAR data and a recursive Dirichlet Process implementation of Bayesian Gaussian Mixture
Model. The approach is robust to inter-scene variability and can identify icebergs even within complex
environments containing mixtures of open water, sea ice and icebergs of various sizes. For the study area
in the Amundsen Sea Embayment, close to the calving front of Thwaites Glacier, our classifier achieved a
mean pixel-wise F1 score against manual iceberg delineations from the SAR scenes of 0.960 ± 0.018 with a
corresponding object-level F1 score of 0.729 ± 0.086. The method provides an excellent basis for estimation of
total near-shore iceberg populations and has inherent potential for scalability that other approaches lack.
1. Introduction

1.1. Context

The calving of icebergs to the Southern Ocean is a principal mode
through which mass is lost from the Antarctic ice sheet (Depoorter
et al., 2013; Liu et al., 2015). An increase in iceberg calving may
herald an accelerating contribution to global sea level rise (Slater et al.,
2020; Bamber et al., 2009). The calving, fragmentation and melting of
icebergs contribute freshwater and nutrients directly to the ocean (Silva
et al., 2006) with resulting changes to primary productivity (Duprat
et al., 2016). They can alter the local ocean circulation (Robinson and
Williams, 2012) by influencing temperature and salinity distributions,
influence the formation and breakup of sea ice with consequences for
phytoplankton and wildlife (Arrigo et al., 2002), and directly scour
benthic communities (Barnes, 2017). Icebergs have also been shown to
be vectors for nutrients and thereby to influence spatial distributions
of, for example, primary productivity (Biddle et al., 2015; Lancelot
et al., 2009; Raiswell et al., 2008; Smith et al., 2007), supporting
localised ecosystems and nutrient cycles (Vernet et al., 2012). They
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therefore represent a key component of the bio-physical coupling be-
tween continental and ocean systems that must be better resolved
in order to meet the nascent ambitions for digital twinning of the
natural environment (Blair, 2021; Bauer et al., 2021). In addition,
including more realistic iceberg distributions, trajectories, and volumes
will improve climate models and understanding of Antarctic iceberg
impact on the future Southern Hemisphere climate (Schloesser et al.,
2019; Stern et al., 2016).

Icebergs also represent a hazard to commercial and research ves-
sels (Bigg et al., 2018). Accurate and timely monitoring of iceberg
populations, size distribution, and projected trajectories can therefore
contribute to numerous scientific and operational objectives. Such mon-
itoring remains challenging because of a lack of fully automated and
scalable methods for iceberg identification and tracking (Barbat et al.,
2021; Koo et al., 2021).

SAR is an active sensing technique which offers many opportunities
for operational monitoring of icebergs, although low resolution radars
such as satellite scatterometers have also been effective in tracking
large Antarctic icebergs (Budge and Long, 2018). Icebergs are com-
posed of fresh water and, in frozen conditions, are often covered in
snow or firn. These attributes mean that both surface and volume
vailable online 1 September 2023
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scattering coefficients tend to be higher for icebergs than for saline
sea ice or open water, and consequently they usually present as rel-
atively bright objects within C-band SAR imagery, particularly at high
latitudes (Wesche and Dierking, 2012). SAR is capable of penetrating
cloud cover, which is common over the Southern Ocean, and operates
effectively throughout the year even during the polar night. It has long
been recognised as a promising data source (Parashar et al., 1980;
Young et al., 1998; Power et al., 2001) and many approaches have been
deployed in attempts to exploit it. The majority have been based on
variations of the Constant False Alarm Rate (CFAR) algorithm (Marino
et al., 2016; Gill, 2001; Song et al., 2021; Karvonen et al., 2021),
an approach that seeks to detect local anomalies based on contrast
between intensities of pixels in a target window and a larger back-
ground window by applying a threshold for the acceptable probability
of false alarm based on the background intensity distribution. This
method is therefore best suited to sparse icebergs in open water settings
where contrast between icebergs and background is high. If we are to
understand the provenance of icebergs we need methods capable of
identifying them at or near the point of calving. The CFAR approach has
fundamental limitations for use-cases within sea ice, close to the land
margin and where iceberg density is high. It is these environments that
form the focus of this study. Soldal et al. (2019) demonstrated very poor
performance of a modified CFAR algorithm within arctic sea ice, with
true positive rates between 8 and 22 percent and over 90 percent of
‘detections’ being false. Sea ice normally has higher backscatter intensi-
ties than open water and therefore provides lower contrast to icebergs,
reducing the effectiveness of the CFAR approach. This typically results
in low sensitivity of the classifier or in high false alarm rates (Soldal
et al., 2019). Likewise, a complex scene with densely packed icebergs
will result in high background intensities, thereby precluding detection.
When in proximity to land the CFAR windows may be incomplete due
to masking of the land and their statistics unreliable. Furthermore, the
window sizes used place a limit on the size of the icebergs that are
detectable and larger windows become computationally expensive. Ice-
bergs around Antarctica have been shown to vary in size by six orders
of magnitude (Wesche and Dierking, 2015). This would imply the use of
prohibitively large windows to detect larger icebergs, both in terms of
computation but also the increased backscatter variability incorporated
within the background window which would compromise detection of
smaller icebergs. The thresholds used also require careful determination
on a per-scene basis in order to account for the particular backscatter
characteristics of that scene that arise from variable conditions and
geometries. This latter obstacle was recently addressed by Karvonen
et al. (2021), who proposed a non-parametric implementation which
demonstrated advantages over existing operational methods for open
water arctic settings, reporting a precision (true positives/prediction
positives) of 0.72 and recall (true positives/manually-derived posi-
tives) of 0.92. Both Soldal et al. (2019) and Karvonen et al. (2021)
recognised the potential for using the additional information available
within dual-polarised SAR images to improve detection. Soldal et al.
(2019) used the iDPolRad filter (Marino et al., 2016) and Karvonen
et al. (2021) used channel cross-correlation to integrate information
from both polarisations. Both studies showed improved detection when
cross-polarised data were used.

There have recently been a number of alternative approaches pro-
posed to the problem of iceberg detection in the Southern Ocean and,
in particular, within sea ice. Mazur et al. (2017) used an object-based
segmentation algorithm followed by a manually calibrated thresholding
of object statistics to produce average object recall rates of 96.2%,
equating to 93.2% of iceberg area for icebergs exceeding 0.625 km2.

his compares favourably to Williams et al. (1999) who detected 84%
ith a modal area of 0.15 km2 using 100 m pixels, Silva and Bigg

2005) (70% and 70% of area for objects over 0.015 km2) and Wesche
nd Dierking (2015) (46% of objects between 0.3 km2 and 5 km2

nd 86.7% of the area of those detected objects). These performance
2

tatistics were all computed against icebergs derived manually from f
AR data rather than complementary datasets. The method of Mazur
t al. (2017), however, required operator input for each scene in
erms of threshold determination and, given the variable nature of
AR imagery it would not be suitable for automated deployment. To
ontextualise amount of imagery available and the need for methods
hat do not require operator input, Liang et al. (2021) collated 69586
oastal scenes across Antarctica between 2014 and 2020.

Supervised classification approaches do not attract much research
nterest for the purposes of iceberg detection since they would probably
e unsuitable because of inter-scene variability and the difficulty of
stablishing a sufficient labelled dataset for training purposes.

Barbat et al. (2019) also identified the need for iceberg detection
ethods that do not rely on significant operator input if they are to

e widely applied either in time or space. They therefore proposed an
daptive approach using a random forests committee which seeks gen-
rality by integrating predictions across heterogeneous models. Their
ethod required small numbers of training labels and limited operator

nput during training as a consequence of their use of incremental
earning (Impoco and Tuminello, 2015). In adopting an adaptive and
argely unsupervised approach they provided a potential basis for a
calable, automated monitoring system and they reported excellent
erformance with an average classification accuracy of 97.5 ± 0.06%.
hey did, however, base their performance statistics on a post-hoc
alidation using an unspecified visual evaluation method for false
ositive predictions and obvious misses, which, based on application
o our own classifications, could potentially have inflated their model’s
pparent capabilities. Further, their initial superpixel segmentation
equired optimal parameter determination and may limit the general-
ty of the methodology. When applied to our test scenes using their
arameters the method failed to identify superpixels associated with
ome of the larger icebergs, including the largest one central to the
cene (B-22A), instead conflating these with the background object.
xperiments with the scale and sigma parameters also showed potential
or superpixels to have poorly defined boundaries relative to the true
ceberg objects. Mazur et al. (2017) also recognised this limitation with
heir superpixel method. The determination of the optimal parameters
herefore represents a requirement for scene-specific knowledge or
uning which we seek to avoid. We therefore question the robustness
nd generality of superpixel methods in congested near-calving-front
nvironments that form the focus of this study.

.2. Adaptive non-parametric clustering

The objective of this study is to provide a viable basis of ongoing
ear-real-time monitoring and tracking of iceberg populations in the
mundsen Sea Embayment to support efforts to better understand the
ynamics and future, in particular, of the Thwaites Glacier. Under-
tanding how the West Antarctic Ice sheet will change, in particular
he Thwaites Glacier and the adjacent Amundsen Sea, is of high prior-
ty (Scambos et al., 2017) and requires better understanding of iceberg
rocesses and observations to improve regional ice-ocean models. Fur-
hermore, grounded icebergs in the study area play an important role
n sea ice and ocean dynamics by forming the eastern boundary of the
mundsen Sea Polynya (Fig. 1) and influence its dynamics by becoming
rounded within the polynya (Stammerjohn et al., 2015; Macdonald
t al., 2023). A secondary objective is to develop an algorithm with
he potential to be applied at scale for monitoring iceberg populations
cross the Southern Ocean. In order to achieve this we propose a recur-
ive implementation of a pixel-based Dirichlet Process mixture model
DPMM) classifier (Faul, 2019) which removes any need for knowledge
f scene backscatter characteristics or composition and eliminates re-
uirements for fixed thresholds. The method does not require a priori
etermination of the classes to be identified, nor a labelled training
ataset. It does not involve any kernel operations during clustering,
hereby overcoming many of the fundamental limitations identified

or the CFAR approach in proximity to land. The pixel-based method,
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Fig. 1. Example of cross-polarised Sentinel 1 scene from 3rd October 2019 (Spring) for Amundsen Sea embayment (black outline on inset map). HH intensity rendered in red,
HV intensity rendered in green (blue channel = 0). Central subset used for independent validation outlined in blue and various surface types labelled Land extent data from the
SCAR Antarctic Digital Database, accessed 2021. Inset generated using Quantarctica (Matsuoka et al., 2021). Contains Copernicus Sentinel data 2019. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
unlike semantic segmentation approaches, is also insensitive to the high
variability in the size of target iceberg features.

DPMMs initially assume the data are explained by the simplest pos-
sible model, a single gaussian distribution, but incorporate the option
to increase the complexity by creating a new cluster if the data is not
adequately explained by the model so far. While in a model with a fixed
number of clusters the total probability mass is distributed between
clusters, DPMMs hold back a proportion of the probability mass for
the possibility of encountering data which cannot be explained with
the current model. DPMMS are known as non-parametric, since the
number of clusters is no longer a parameter to the model. In contrast
to DPMM methods, traditional finite mixture models would require
model averaging or selection procedures to determine the optimal
number of components to model. DPMMs have unbounded complexity
and therefore guard against underfitting while the estimation of full
posteriors over the parameters mitigates overfitting. In brief, DPMMs
consider each observation in turn in a random order in several epochs.
First the observation is removed from the data in order to treat it like
previously unseen data. If it is the only one in a cluster, that cluster
gets removed. The probability distributions for all clusters are updated
as well as the probability of unseen data. This means that their mean
and variation are adjusted. Next it is assessed via the likelihoods which
cluster the observation under consideration should be assigned to if at
all. If none of the current clusters explains the observation well a new
cluster is created.

DPMMs have been applied to image classification and segmentation
tasks, although more commonly in medical rather than environmental
imaging contexts (Castro and Glocker, 2016; Ferreira da Silva, 2007,
2009; Derraz et al., 2010; Cheng et al., 2016; Orbanz and Buhmann,
2006). Given the potential advantages that the DPMM method offers
over parametric models when considering remotely-sensed data sources
3

with high spatio-temporal variability, it is perhaps surprising that the
approach has not attracted more attention. A few applications to SAR
imagery have been attempted, though none have focused on iceberg
detection, and they focus on the general methodological aspects rather
than application to specific scientific domains or questions (Sun et al.,
2009; Song et al., 2017). A recent attempt has also been made to apply
DPMMs to classification of hyperspectral satellite imagery (Mantripra-
gada and Qureshi, 2022), in which the authors observed robustness
of the DPMM to noisy data that may otherwise have required pre-
processing for noise reduction, another advantageous attribute for our
proposed application to SAR imagery.

2. Data and methods

2.1. Data

The method presented here uses C-band SAR data from the Coperni-
cus Sentinel 1 mission. This data source was selected because of its high
temporal availability and cross-polarisation capability, which should
allow for high frequency monitoring and additional detection capability
compared to single polarisation platforms. Sentinel 1A launched on 3rd
April 2014 and is still operational, providing approximately weekly
overpass. Sentinel 1B launched on 25th April 2016, increasing over-
pass frequency to approximately 3 days, but failed on 23rd December
2021. Sentinel 1 data are freely available and therefore appropriate to
support an open-source operational method. Extra Wide Swath (EW)
mode data were used, downloaded in dual-polarisation Ground Range
Detected (GRD) format from. This provides 40 m pixels across a swath
width of 410 km acquired as five sub-swaths and at incidence angles
ranging between 18.9 and 47.0 degrees. Pre-processing was conducted
in Python using the ‘snappy’ module to interface with the European
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Fig. 2. Schematic of workflow separated into preprocessing, recursive DPMM and ensembling stages. Inset A shows an example histogram of object solidity with strongly negative
skewness, representing the optimal stopping point, while inset B shows the subsequent iteration with higher skewness representing proliferation of false positives. Bin width 0.01.
Inset C shows example progression of mean object skewness during threshold determination for frequency raster. Bin width 0.02.
Space Agency’s (ESA) Sentinel Applications (SNAP) Toolbox. In this
study we focus on the area around Thwaites and Pine Island glaciers
(red box on inset to Fig. 1) in order to demonstrate the applicability of
the proposed method within a mixture of sea ice and open water, and
in settings with high iceberg density and a large range of iceberg sizes.
This is an area of recent rapid glacial change, and has been said to be
close to a transition in its calving regime.

A standard pre-processing workflow was used to apply orbit files
(Fig. 2, ORB), conduct thermal noise removal (TNR) and calibration
(CAL) using the SNAP tools provided for these purposes. Supplementary
material S1 provides details of the parameters used. Subsequent to
calibration, a range-normalisation process was conducted to account
for the cross-scene variability in backscatter intensity that arises from
the sideways look-angle of the satellite and resulting differences in
path distance and incidence angle between near-scene and far-scene
locations. This tends to lead to higher intensities closer to the sensor
and lower intensities further away (e.g., Topouzelis and Singha, 2016).
Range-normalisation was conducted by fitting a linear breakpoint al-
gorithm to the median pixel values in individual columns across the
scene, with one breakpoint allowing for some degree of nonlinearity to
be accounted for. The coefficients of this fit were inverted and used to
4

adjust all pixel values in each column in order to remove the cross-scene
trends. The process was conducted separately for HH and HV bands of
each scene. This process helped to reduce confusion between icebergs
and sea ice arising from their position within the scene and its effect
on their apparent relative backscatter intensities.

Subsequent to the range-normalisation process, scenes were further
processed using the SNAP range-doppler terrain correction (TC) algo-
rithm, parameters for which are detailed in S1. Scenes were reprojected
to the WGS84/Antarctic Polar Stereographic Projection (EPSG:3031)
and a land mask (Gerrish et al., 2021) applied to exclude grounded
ice areas. Areas outside the minimum bounding box of the remaining
valid pixels were cropped to minimise file sizes. The resulting images
contained 𝜎0 bands for both HH and HV, with NoData being given a
value of zero and masked out during subsequent analysis.

2.2. Iceberg detection

HH and HV bands of the scene were converted from linear to
decibel scales and scaled to the range 0-1 prior to principal components
analysis. The sign of components was checked for consistency and
inverted, if necessary, such that higher values expressed in the first
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Fig. 3. Example of connected components identified from SAR DP clustering, with holes up to 500 pixels filled. Contrasting geometries of icebergs (white), sea ice (grey) and
incomplete icebergs (green) are highlighted. Extent of figure marked in red on Fig. 1. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
principal component reflected higher 𝜎0 intensities. The first principal
component was then used as the basis for univariate Dirichlet Process
clustering (selected as preferable to multivariate clustering for com-
putational reasons). Training was conducted on an approximate 0.1%
of the pixels, achieved by regular sampling over the flattened array
at a step of 1024 pixels. This sampling was found to be sufficient
to represent the structure within the overall pixel population while
minimising computation time and resulted in training sets in the initial
iteration in the order of 115,000 pixels for a scene containing no
land mask. DP clustering was implemented using the scikit-learn (Pe-
dregosa et al., 2011) Bayesian Gaussian Mixture algorithm ‘bgm’ with
a dirichlet process weight concentration prior type. Given the problem
of inter-scene variability, priors were as weak as possible. Mean and
covariance priors were determined by the mean and variance of the
sample data respectively. This reflects the initial belief that the data
can be explained as being generated by one stochastic process. Weight
concentration and mean precision priors were both set to 1. Initially the
probability of another cluster existing is 1∕(1+𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛). Initialising
the concentration to 1 means that we have equal probabilities of 0.5
whether data belongs to the first and only cluster or a new cluster which
is uninformed. The mean precision, the inverse of the mean fraction,
controls the spacing between clusters. A value of 1 allows overlap
which is the initial uninformed state. These priors are appropriate
because we have no a priori knowledge of scene composition. There was
only one dimension so the degrees of freedom prior was also set to 1.
We tested various limits to the number of clusters. Fewer clusters lead
to larger class memberships, more accepted pixels in each iteration,
and a less precise stopping point. Conversely, more clusters lead to
the algorithm running for more iterations, which is resource intensive.
A maximum permitted number of clusters of 5 was found to be an
appropriate compromise.

The trained model was used to predict class allocations to all pixels
in the scene and those with assignment probabilities exceeding the final
peak in the histogram (of assignment probabilities) were accepted as
valid cluster assignments. These pixels were labelled and stored. The
class with the highest mean intensity values in PCA1, which implies
5

the highest backscatter intensity, was assumed to represent icebergs.
Subsequent classes were considered to be sea ice, water or ambiguous
(e.g., shadows). For the purposes of this study the class label of these
other classes is unimportant except in that they do not constitute
icebergs. If there are no icebergs present in the scene then the algorithm
mis-classifies areas of sea ice as icebergs.

All remaining pixels were passed back to the principal components
analysis stage and the subsampling and clustering repeated on the
reduced set. This iterative process had the effect of removing those
pixels that clearly belong to distinct real-world classes early on, allow-
ing for greater discrimination in later iterations where class separation
was more challenging. The iterative approach further ensures that
icebergs are identified even in scenes where they are very rare, since
the scene pixel count declines to a point at which even scarce iceberg
pixels represent a significant cluster within an iterative subsample. The
method does, however, make the tacit assumption that at least one
iceberg is present within the scene. Furthermore, the recursive PCA
dimensionality reduction stage means that, since the dataset changes
between iterations as a result of pixel cluster acceptance, the orienta-
tion of the principal component axes also changes, providing a new
‘perspective’ on the data in each subsequent iteration.

Icebergs, when correctly identified, are relatively geometric shapes
with distinct edges and high solidity (defined as the proportion of pixels
within the convex hull of the shape that are also within the shape
itself). In contrast, those sea ice features with the highest backscatter
intensities that initially become allocated to the iceberg class once the
recursive algorithm approaches the interface between classes produce
strikingly different geometries. This contrast in the morphology of
classified features arises because the structure and spatial variability in
backscatter of sea ice does not tend to produce distinct edges around
the ‘brightest’ areas as it does for icebergs. Clusters of sea ice pixels
therefore tend to have more tortuous perimeters, and consequently
more background space within the convex hull, and lower solidity
than true icebergs. Poorly resolved or incomplete icebergs, which are
common in early iterations, also have low solidity (Fig. 3). Mazur
et al. (2017) also observe and exploit this geometric contrast between
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icebergs and background objects, although they employ the shape
parameters of area, border index, compactness and roundness.

Subsequent to each clustering iteration, connected components (CC)
analysis (Shapiro, 1996), using 8-connectivity (whereby iceberg pixels
are considered part of the same object if they are adjacent either at their
edge or diagonally at a vertex), was conducted on all pixels accepted
to the iceberg class in all preceding iterations. A subsequent hole-filling
operation removed holes within CCs that were less than 500 pixels in
size. A minimum area filter was applied to remove CCs with a total area
less than or equal to 62 pixels (0.0992 km2), effectively eliminating the
A0 (<0.1 km2) class proposed by Wesche and Dierking (2015). This
smallest class was excluded because it is difficult for a human expert
to reliably separate icebergs from noise when they become small. This,
coupled with increasing iceberg numbers as size decreases, would have
made human labelling of the scenes for validation purposes impractical
and unreliable. The solidity of the remaining connected components
was computed as the ratio of the pixels in the component to the pixels
in the convex hull of the component.

Iterations were repeated until iceberg false positives began to pro-
liferate as a consequence of inclusion of sea ice features in the iceberg
class. This stopping point was identified by an increase in the skewness
of the distribution of connected component solidity values (Insets A
and B, Fig. 2). Once such an increase was observed, the results of the
preceding iteration were taken to be the optimal clustering, having the
most negatively skewed (i.e., most ‘solid’ population of geometries).
A minimum of the skewness indicates that features with high solidity
dominate the population. Alternative shape metrics (Euler number,
Hu moments, perimeter-area ratio) were trialled, as were alternative
stopping criteria (maximum mean solidity, maximum median solidity,
maximum solidity). The skewness of the solidity distribution was found
to be the most robust indicator of the optimal stopping point. The
shape metrics trialled are, however, sensitive to the representation of
objects as connected pixels. This approach has the potential to represent
adjacent icebergs as a single object or single icebergs as multiple
objects. If the pixel-level classification is good, these situations are rare,
becoming more common as pixel-level classification quality declines.
Consideration of the distribution of the metric and its evolution through
algorithm iterations rather than as individual or absolute values miti-
gates this issue somewhat. It is possible that using multiple geometric
descriptors beyond just solidity could reduce the sensitivity of the
method to connected component object representations but would
require more complex heuristics around deciding which combination
of those descriptors represents the optimal solution and is beyond the
scope of the current study.

The algorithm is stochastic, so initialisations and data subsamples
vary randomly between runs and iterations within runs, leading to non-
deterministic results. This attribute was exploited through deployment
as an ensemble of runs. This further increased the number of viewpoints
on the dataset, with the commonalities between runs indicating where
the algorithm is most confident in its identification of iceberg pixels.
The algorithm was run 50 times (potentially parallelised) for each scene
and the proportion of runs in which each pixel was allocated to the
iceberg class computed, resulting in a map of classification frequency
(Fig. 4)

In order to convert these frequencies into a binary classification of
icebergs a similar logic to that used in determining the optimal stopping
criterion was applied. The frequencies were thresholded at 0.02 incre-
ments between 0.16 and 0.84 and all pixels exceeding the threshold
were retained. Connected components were computed and those less
than 62 pixels were discarded. The skewness of the distribution of
solidity for the remaining CCs was calculated. The optimal threshold
for the scene was determined as the point at which the global minimum
of skewness was achieved across all thresholds (Inset C, Fig. 2). Within
the broad region of low skewness in inset C the classification results
change very little (hence skewness is stable), and the final performance
6

is minimally sensitive to threshold variations within this region. This
broad minimum also implies that it may be possible to achieve the
same results with fewer runs in the ensemble, although optimising
the number of runs to minimise computational expense remains for
future work. The full 0–1 range of thresholds was not used because
very occasionally the clustering algorithm, being stochastic, produces
outlier predictions of either near-complete iceberg coverage or very
sparse iceberg coverage. These result in small numbers of either very
large or very small objects with high solidity being identified leading
to unrepresentative global skewness minima at the extremes of the
frequency range. The selected 0.16–0.84 frequency interval effectively
mitigates for the effects of these edge-cases and reduces the sensitivity
of results to the stochasticity of individual runs by requiring agreement
between at least eight ensemble members to determine a pixel as being
either iceberg or not iceberg.

2.3. Validation

An independent validation was conducted against a subset repre-
senting the central portion of eight scenes of the Thwaites glacier area
(outlined in blue on Fig. 1). Scenes were spaced throughout one calen-
dar year from October 2019 to September 2020 in order to represent
seasonal variability and to allow for assessment of performance across
contrasting surface temperature and melt state conditions. All icebergs
above 0.1 km2 were manually vectorised from the SAR scenes while
they were displayed at a consistent scale of 1:25000. A combined
total of 4106 icebergs were identified across the eight scene subsets.
Manually vectorised maps were rasterised and compared to predictions.

Pixel-wise validation statistics were computed as producer’s (re-
call) and user’s (precision) accuracies alongside the F1 score (the
harmonic mean of precision and recall) and overall accuracy. These
statistics are valid within the SAR domain since complementary data
sources (e.g., optical) were not used. Connected components were again
computed for manually-derived rasters and predictions compared to
provide precision, recall and F1 score at an intersection over union
(IOU, based on bounding boxes) of 0.5. IOU is the ratio of the over-
lap between bounding boxes (intersection) and their combined extent
(union), with a value of 1 implying perfect alignment of size and
position. IOU = 0.5 is a widely used threshold for evaluating object
detection methods. Object-based validation metrics were calculated for
all objects and within each size class A1, A2 and A3 (Wesche and
Dierking, 2015). Manually-derived and prediction objects were also
assessed for one-to-many mappings with their counterparts.

A post-hoc validation procedure was also used for four of the scene
subsets. This was somewhat analogous to the Barbat et al. (2019)
assessment for false positives. Outlines of each predicted iceberg object
were overlaid on the original cross-polarised SAR scene and manually
allocated to one of five categories, as follows: Category 1 - correctly
identified iceberg; Category 2 - Not iceberg or part of iceberg; Category
3 - Iceberg containing holes; Category 4 - Icebergs that need splitting
into multiple objects; Category 5 - part of an iceberg.

3. Results

3.1. Classifier outputs

The DP clustering algorithm, run 50 times on each of eight scenes,
produced maps of frequency with which pixels were identified as
iceberg. The distribution of values within the frequency rasters varies
between scenes on a seasonal basis (Fig. 4).

Dynamic thresholding of these rasters based on the skewness of the
solidity distribution for connected components produced binary rasters
of icebergs. The resulting iceberg classification for a Spring scene is
illustrated in Fig. 5 (other scenes in supplementary material S2)
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Fig. 4. Frequencies of iceberg prediction within 50 run ensembles for four austral seasons. Note contrasting ranges of values. Contains modified Copernicus Sentinel data 2019–2020.
3.2. Classifier performance

Classifier performance, assessed against independently manually
vectorised iceberg outlines, is detailed for both pixel-level and object-
level in Table 1. The post-hoc validation method, when applied to the
same subsets, furnished precision values. We report a ‘strict’ precision
which counts only category 1 allocations as true positives, and a ‘le-
nient’ precision, which counts all but category 2 as true positives since
these are all valid detections of current or former land ice even if the
object representation is imperfect. Performance varies between austral
seasons, as does the nature of the errors. Pixel-level user accuracy
across all seasons is 0.981 ± 0.015, producer accuracy is 0.939 ± 0.032,
F1 score is 0.960 ± 0.018. Object-level performance is somewhat lower
and more variable with average precision of 0.694 ± 0.146, recall of
7

0.783 ± 0.040 and F1 of 0.729 ± 0.086. This is largely driven by errors
of commission for small objects in Autumn and Winter and errors of
omission in Summer, particularly for intermediate-sized objects (A2).
In some cases, the three large A3 class objects were predicted as being a
number of smaller objects (see Table 2). Post-hoc precision, particularly
if considering the ‘lenient’ interpretation, tends to be somewhat higher
than derived from the independent validation (0.81 ± 0.13).

3.3. Nature of errors

The counts of intersecting objects for both manually-derived (MD)
and predicted (Pred.) maps illustrate the occurrence of false negatives
(misses, 0), but also several one-to-many object mappings where one
MD object is represented by multiple predicted objects or vice versa.
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Fig. 5. Thresholded, binary map of iceberg detections for austral Spring scene (3rd Oct 2019). Red outlines indicate location of tabular iceberg B-22A and the rubble of small
icebergs adjacent to the Thwaites calving tongue referred to in the text. Green line denotes extent common to all scenes. Contains modified Copernicus Sentinel data 2019. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
One-to-one mappings, however, dominate. While predicted objects tend
to conflate relatively small numbers of manually-derived objects (max-
imum of 4), manually-derived objects may contain large numbers of
predicted objects (up to 55 in March 2020) (Table 2). Within the
independent validation metrics (Table 1) these one-to-many mappings
will be represented as false positives in the case of manually-derived
objects and false negatives in the case of predicted objects and conse-
quently account, in large part, for the relatively low precision values
in March and April 2020. A total of 4773 icebergs were detected by
the classifier in the eight subset scenes compared to 4106 validation
objects, indicating a tendency to overestimate the number of icebergs.

For four example scenes spaced throughout the year, the intensity
values associated with True Positive (TP), False Negative (FN), False
Positive (FP) and True Negative (TN) are illustrated in Fig. 6. Most
striking is the substantial overlap in both HH and HV channels between
8

the TN and FN pixels in summer, and the greater separability of FN and
FP distributions in HV than HH polarisation.

3.4. Post-hoc validation

Mean and standard deviation of size (pixels) for objects within
each post-hoc category illustrate that false positives (category 2) across
all scenes are overwhelmingly dominated by small objects (Table 3).
The lower size limit for objects assessed was 63 pixels (approximately
0.1 km2)

3.5. Seasonality of performance

The performance of our classifier can be seen to vary seasonally
(Fig. 7). The higher variability seen in the object-level classifications
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Table 1
Summary of validation performance of classifier across eight dates. Top: Object level performance resolved by object size classes A1–A3 following Wesche and Dierking (2015) and
aggregated across all objects. Middle: Equivalent overall object-level precision from ‘strict’ (S) and ‘lenient’ (L) post-hoc validation. Bottom: Independent pixel-level performance.
User accuracy equates to precision while producer accuracy equates to recall.

Object-level

Date (dd/mm/yyyy) 03/10/2019 27/11/2019 19/01/2020 14/03/2020 19/04/2020 11/06/2020 17/08/2020 15/09/2020 Mean SD

A1 precision 0.788 0.795 0.728 0.479 0.379 0.509 0.543 0.730 0.619 0.160
A1 recall 0.748 0.795 0.745 0.780 0.760 0.784 0.851 0.762 0.778 0.034
A1 F1 score 0.768 0.795 0.736 0.594 0.505 0.617 0.663 0.746 0.678 0.101
A2 Precision 0.836 0.908 0.933 0.798 0.744 0.832 0.878 0.922 0.856 0.066
A2 Recall 0.764 0.857 0.554 0.632 0.702 0.662 0.783 0.787 0.718 0.099
A2 F1 Score 0.798 0.882 0.695 0.705 0.722 0.737 0.828 0.849 0.777 0.071
A3 Precision 0.000 1.000 1.000 1.000 1.000 0.667 1.000 1.000 0.833 0.356
A3 Recall 0.000 0.667 0.333 0.500 1.000 1.000 1.000 1.000 0.688 0.383
A3 F1 Score 0.000 0.800 0.500 0.667 1.000 0.800 1.000 1.000 0.721 0.342
Overall Precision 0.831 0.840 0.825 0.589 0.459 0.601 0.630 0.810 0.698 0.146
Overall Recall 0.779 0.829 0.692 0.790 0.788 0.800 0.777 0.806 0.783 0.040
Overall F1 Score 0.804 0.834 0.753 0.675 0.580 0.686 0.695 0.808 0.729 0.086
Post-hoc
Precision (S) 0.767 0.796 0.508 0.673 0.686 0.130
Precision (L) 0.918 0.931 0.650 0.748 0.812 0.136
Pixel-level
User Accuracy 0.995 0.988 0.996 0.986 0.955 0.972 0.968 0.991 0.981 0.015
Producer Accuracy 0.935 0.972 0.918 0.884 0.912 0.956 0.971 0.964 0.939 0.032
Overall Accuracy 0.992 0.996 0.991 0.985 0.985 0.991 0.993 0.994 0.991 0.004
F1 Score 0.964 0.980 0.956 0.933 0.933 0.964 0.969 0.977 0.960 0.018
Table 2
Numbers of objects intersecting each manually-derived (MD) and predicted (Pred.) object for eight validation dates.

Date (dd/mm/yyyy) 03/10/2019 27/11/2019 19/01/2020 14/03/2020 19/04/2020 11/06/2020 17/08/2020 15/09/2020

MD objects 664 432 436 448 443 521 622 540

Intersecting objects

0 108 31 87 41 32 40 88 54
1 545 396 340 384 402 467 528 477
2 9 4 5 14 6 12 5 8
3 1 1 4 1 2 1 1
4 2 3
5 1 1
6 1
11 1
37 1
42 1
55 1

Pred. objects 622 426 366 601 760 694 767 537

Intersecting objects

0 22 33 5 119 309 226 249 60
1 589 381 356 469 441 449 498 461
2 11 10 5 12 7 12 17 13
3 2 1 2 5 3 3
4 1 1
5 1
c
s
o

4

p
p
P
e
S
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combined with the validation set that spans only a single year make
assessing this seasonality difficult. At a pixel level, however, classifier
performance is consistent enough to provide an initial demonstration
of how performance varies on a seasonal basis. A sine function fitted
to the pixel-level F1 scores estimated the period to be 1.41 years, with
an RMSE of 0.005. This predicts the best classifier performance during
the austral winter, and worst classifier performance around February.
We consider the seasonality in more detail in the discussion.

3.6. Iceberg statistics

For the intersection of all eight scenes covering the Amundsen Sea
embayment (see Fig. 4), the total annual mean area of icebergs was
estimated as 7263 ± 861 km2, with an average of 3722 ± 872 individual
icebergs detected. Iceberg area is dominated by large icebergs (A5), of
which one is identified in the majority of classifications (B-22A, see
Fig. 5). In October and November 2019, and June 2020 the rubble of
icebergs adjacent to the Thwaites glacier calving front are not separable
into individual objects and become classified as a second class A5
9

I

iceberg (see Fig. 5). Small icebergs in classes A1 and A2 account for
approximately 32% of the iceberg surface area and 99% of the number
of detections. Intermediate icebergs in classes A3 and A4 account for
only about 19% of the total area. A small number and area of A0 class
(<0.1 km2) were identified, resulting from bisection when scenes were
lipped to the intersection area (Table 4). No clear secular trend or
easonal pattern has been observed in the time-series of iceberg areas
r numbers (Fig. 8)

. Discussion

Iceberg detection from remotely sensed imagery is a long-standing
roblem that has attracted considerable attention over several decades,
articularly in an Arctic context (Rawson et al., 1979; Wadhams, 1988;
artington et al., 1994; Sephton and Partington, 1998; Heiselberg
t al., 2022; Xiao et al., 2020) with applications to Antarctica and the
outhern Ocean proliferating relatively recently (Wesche and Dierking,
015; Mazur et al., 2017; Barbat et al., 2019; Koo et al., 2021, 2023).
f the provenance of icebergs is to be properly constrained, then it is
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Fig. 6. Histograms of intensity values in HH (left) and HV (right) channels for True Positive (TP), False Negative (FN), False Positive (FP) and True Negative (TN) observations
from four validation subsets.
necessary to identify them as close to their source as possible, however
we are not aware of any previous studies seeking to detect and segment
icebergs within a mixture of sea ice and open water and in locations
that include major glacier calving fronts. Furthermore, all previous
attempts to develop algorithms for iceberg detection of which we are
10
aware require a greater or lesser degree of operator involvement either
in threshold determination or provision of training data. In contrast,
we have presented a novel approach based on non-parametric Dirichlet
Process clustering that is conceptually distinct from previous methods
in that it is inherently adaptive to scene composition and structure and
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Fig. 7. Seasonality of pixel-level F1 scores derived from validation (red), sine function (dashed). Zero point for time axis is 3rd Oct 2019.
Fig. 8. Time-series of iceberg area (A) and numbers of icebergs (B) from equal-area scenes for five size classes (after Wesche and Dierking, 2015) commencing on 3rd Oct 2019.
requires no a priori training data or threshold determination. As such,
our approach represents the basis of a fully automatable, and therefore
scalable, method for iceberg detection and monitoring in an operational
context.

4.1. Classifier performance

The method presented here demonstrates excellent performance
when validated for eight scenes of the Amundsen Sea embayment, with
mean F1 score of 0.960 ± 0.018 when considering pixels and therefore
the total area of icebergs. User accuracy (equivalent to precision) tends
to exceed producer accuracy (recall), suggesting that false positive
detections are few, while false negatives are somewhat more prevalent,
although still typically rare (Table 1). Our mean producer accuracy of
93.9% is slightly higher than that reported by Mazur et al. (2017) of
93.2 and exceeds the proportion of area correctly identified by Karvo-
nen et al. (2021) (92%), Williams et al. (1999) (84%), Silva and Bigg
11
(2005) (70%) and Wesche and Dierking (2015) (86.7% for the 46% of
icebergs < 5 km2 that were detected), all of whom employ methods
requiring manual intervention. Our validation approach of comparison
against icebergs manually delineated from the underlying SAR data is
common to these previous studies. Our method does exhibit sensitivity
to seasonal effects, with a minimum producer accuracy of 84.4% during
the austral Summer, which is comparable to existing approaches, but
with a maximum of 97.2% in late Spring. Our method is comparable
with the best-performing algorithm of which we are aware, that of Bar-
bat et al. (2019), although we argue that our validation approach is
more robust and less likely to overestimate performance. Barbat et al.
(2019) report a false positive rate of 2.3 +−0.4% compared to our
mean pixel-wise equivalent of 1.9 +−0.15%. Their miss rate of 3.3
+−0.4% however compares favourably to the 6.1 +−0.32% reported
here. The Barbat et al. (2019) approach also represents the most fully
automated alternative method available although it does still require
some initial training data, although much of the information gain is
achieved through their incremental learning approach.
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Table 3
Proportions of objects allocated to the five post-hoc categories. Category 1 - correctly
identified iceberg; Category 2 - Not iceberg or part of iceberg; Category 3 - Iceberg
containing holes; Category 4 - Icebergs that need splitting into multiple objects;
Category 5 - part of an iceberg. Mean and SD values are provided to illustrate the
distribution of object sizes that are correctly or incorrectly classified in different ways.
Units are in pixels with 625 pixels per km2. Where fewer than three objects contribute
o the calculation SD is reported as N/A.

Category 1 2 3 4 5

3rd Oct 2019 Proportion 0.77 0.08 0.00 0.06 0.08
Mean 431 112 986910 1026 358
SD 545 68 N/A 971 404

19th Jan 2020 Proportion 0.80 0.07 0.02 0.03 0.09
Mean 4074 158 483 769 326
SD 60800 104 383 792 427

19th Apr 2020 Proportion 0.51 0.35 0.00 0.02 0.12
Mean 529 175 964804 1193 340
SD 828 247 N/A 722 507

17th Aug 2020 Proportion 0.67 0.25 0.01 0.04 0.03
Mean 468 139 257297 2010 358
SD 758 109 442821 1932 636

Table 4
Annual Iceberg area and count across eight equal-area scenes for five size classes (after
Wesche and Dierking, 2015). SD = standard deviation.

Mean area (km2) SD area (km2) Mean count SD count

Total 7263.41 860.89 3721.9 872.4
Class A0 0.14 0.15 4.5 5.3
Class A1 1049.51 229.92 3047.5 834.8
Class A2 1446.51 224.75 638.3 87.9
Class A3 771.20 187.36 27.6 7.0
Class A4 607.64 250.46 2.6 1.4
Class A5 3388.42 840.99 1.4 0.5

When considering objects detected we applied an intersection over
nion of bounding boxes of 0.5 to define a correct detection. Object-
evel performance is worse than when considered at pixel level, with
verage precision of 0.698 ± 0.146. As with the pixel-level perfor-
ance a seasonal effect is observable. Precision tends to be low in

ate Summer and Autumn, reflecting a proliferation of typically very
mall (<0.2 km2) iceberg objects (Table 1). Many of these, however, fall
ithin areas of the large, tabular B22A that are not identified as a single

ontiguous iceberg object as a result of the considerable surface texture.
he fact that most false-positive objects represent portions of larger
bjects is reflected in the excellent pixel-level performance. Peak pre-
ision occurs in November, at 0.840. Our object-level precision, while
emporally variable, is comparable to the 0.72 reported by Karvonen
t al. (2021).

Object-level recall is typically higher than precision and much less
easonally variable at 0.783 ± 0.040. Our results are comparable to
hose of Williams et al. (1999) (0.84), while comparing favourably
o Silva and Bigg (2005) (0.70) and Wesche and Dierking (2015)
0.46). Mazur et al. (2017), however report considerably higher object-
evel recall of 0.96, although their method included a manual step for
he detection of missed icebergs and false alarm reduction. Karvonen
t al. (2021), working in the Northern hemisphere, report recall of 0.92.

Our validation shows that precision is lowest for the smallest ob-
ects, reflecting false positives primarily in the A1 class, while recall
ends to diminish with larger objects, since these often have con-
iderable surface texture that results in them not being detected as
ontiguous regions of pixels. This aligns to the behaviour of the Mazur
t al. (2017) method in the Amundsen Sea, which they note contrasts
ith the other studies (Silva and Bigg, 2005; Wesche and Dierking,
015; Williams et al., 1999) where recall tends to improve with in-
reasing iceberg size. Barbat et al. (2019) report exceptional precision
nd recall (0.977 and 0.967), as the complements of their false alarm
nd miss parameters respectively. As previously noted, however, they
12
employ a post hoc validation approach of visually assessing results
for false alarms and obvious misses. As we demonstrate by applying
an analogous procedure to our data (Table 3), this tends to result
in overestimates of performance relative to the method we employ.
Nevertheless, their approach appears to outperform ours in terms of
representation of individual objects. It is important to note, however,
that previous methods have been developed and validated on scenes
and regions with less challenging conditions for object delineation. The
ambition of this study is to provide a method that works in congested
near-calving-front areas where icebergs may be touching or embedded
in fast ice. Both Barbat et al. (2019) and Mazur et al. (2017, 2019)
recognised the challenges associated with such regions.

Fig. 6 illustrates the intensity values associated with true positive,
false positive, true negative and false negative pixels in the original
HH and HV bands of the SAR image. The overlap between these
distributions highlights the value that the recursive DPMM imple-
mentation adds to the procedure since a single-stage classifier, once
membership probability thresholds had been applied, would result in
abrupt transitions in the intensity domain. These histograms also pro-
vide insight to the performance of the classifier and potential avenues
for improvement. Notably, in Summer, there is considerable overlap
for both HH and HV channels between the TN and FN distributions,
suggesting that the FN pixels will be very challenging to separate from
TN pixels using intensity information alone. Any attempt to do so may
result in improved recall but probably at substantial expense in terms
of precision (false positives will proliferate). For the other seasons there
is substantial overlap in the distributions of FN and FP pixel values in
the HH channel, suggesting that there is little information remaining
there for discrimination. In contrast, however, FN and FP distributions
tend to be highly distinct in the HV channel, with FP pixel values being
considerably higher than FN ones and often higher even than TP values
(Spring, Autumn, Winter). This could arise from high-backscatter from
snow cover on areas of sea ice outside the summer season and suggests
that it may be challenging to reduce the FP rate further based on the
HV channel but that some information remains there that may reduce
FNs and thereby improve recall/producer accuracy. This is, however,
beyond the scope of this study and Fig. 6 illustrates that the ensembled,
recursive DPMM classification that we present here efficiently exploits
the attributes of dual-polarisation SAR imagery.

Classifier performance varies on a seasonal basis being best in
Winter and Spring and worst in Summer and Autumn. Producer and
user accuracy do not, however, vary in phase with each other. The
seasonal variability is systematic. The sine function (Fig. 7) shows
a promising goodness of fit for a single year and relatively small
number of data points. The systematically seasonal nature of classifier
performance implies robustness of the approach. Furthermore, in future
work applying our method to a longer, denser time series of images,
more robust performance functions will be developed to inform the
estimation and communication of temporally varying uncertainties.

4.2. Iceberg populations

Our classifier identified a total of 29739 icebergs between 0.1 km2

and approximately 2800 km2 across an annual time-series of eight
scenes covering the Amundsen Sea Embayment between 2019 and
2020. The iceberg population is dominated by smaller icebergs, with
class A1 representing 81% of all observations. Iceberg area, however, is
dominated by the large tabular iceberg B22A, which persists in almost
the same location throughout the observation period. This iceberg
accounts for approximately 30% of the total iceberg area of the embay-
ment. There is no obvious seasonal pattern, nor secular trend within the
time-series observations overall, or for any of the individual size classes,
either in terms of iceberg count or area (Fig. 8). This remains the same
if B22A (size class A5) is excluded from consideration. It should be
noted, however, that indicators of a ‘state change’ in calving regime

would probably only be detectable over a longer (decadal) period.
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This will be the focus of future work. We have not attempted any
statistical analysis of the dataset as it is limited in scope and intended
for demonstration purposes only. Nevertheless, the data illustrate the
potential utility of the method and may yield interesting observations
when applied more extensively.

4.3. Future work

While the object-level performance of our classifier is good and
exceeds the capabilities of some of the existing studies, it is not as good
as might be expected from the pixel-level performance which improves
upon that of other methods. This points to a direction for improvement
in further work. Markov Random Fields are often used in conjunction
with DPMMs to improve prediction smoothness in image segmentation
tasks in other domains such as medical imaging (e.g. Albughdadi
et al., 2017; Balafar, 2012; Forbes et al., 2018; Song et al., 2017).
Such an approach, given the high pixel-level accuracy of our method,
could considerably improve object-level representations but is beyond
the scope of the current study. Similarly, it may be possible to use
more sophisticated pixel-to-object aggregation methods than connected
components labelling, which has been shown here to have limitations.
It should also be noted that previous methods for iceberg detection,
with the exception of Koo et al. (2023), have relied upon coarser 75 m
Envisat Advanced Synthetic Aperture Radar or 100 m RAMP AMM-1
data. The 40 m Sentinel 1 data we use here provides opportunities for
detection of smaller objects (in our case down to 0.1 km2), but the
increased resolution implies a reduced smoothness, which may exacer-
bate the challenge of object delineation somewhat. Notwithstanding the
influences of spatial resolution, the clustering method that we employ,
because of its adaptive nature, should be agnostic to the SAR sensor
producing the images. Future work will therefore apply this approach
to existing (e.g. Envisat ASAR, AMM-1, SAOCOM, NiSAR, TerraSAR-
X, NovaSAR, RadarSat etc.) and forthcoming (e.g. Rose-L, Harmony)
radar missions with different wavelengths, revisit schedules and spatial
resolutions to develop near-real-time monitoring across a multi-sensor
array of data streams using a consistent methodology. The DPMM that
we present is univariate, since we use PCA to condense the information
from the HH and HV channels to a single dimension prior to clustering.
We do this for computational reasons but, in theory, the DPMM cluster-
ing is extensible to an arbitrary number of dimensions simultaneously.
Improvements to the classifier may therefore be possible by incorpo-
rating additional information, such as the Gray-Level Co-occurrence
Matrix (Haralick et al., 1973) textures that Barbat et al. (2019) found
improved their segmentation. Further improvements to object-level
representations may be achieved through morphological operations to,
for example, separate touching icebergs that are currently treated as
a single object, and connect multiple objects that actually represent a
single, larger iceberg. There is also substantial, unexploited information
within the frequency rasters developed at the ensembling stage that
may improve object discrimination. Such post-processing would add
particular value in the most congested areas closest to calving fronts.

5. Conclusions

We have presented a novel, fully unsupervised approach to iceberg
detection that outperforms most existing methods despite being applied
to a spatial context in which iceberg discrimination is likely to be more
challenging than those hitherto addressed. Average classifier perfor-
mance is high, with pixel-level false alarms at 1.9% and misses at 6.1%.
The method overcomes the problem of high backscatter variability
between SAR scenes by its use of a non-parametric Dirichlet Process
clustering algorithm. We will upscale the application in future work.
Classifier training is conducted automatically within the workflow on
a per-scene basis. The unsupervised nature of the algorithm, which
does not require any operator input except for validation purposes,
theoretically makes it ideally suited to deployment at scale. The method
13
is also applicable close to calving fronts, which enables determination
of iceberg provenance, and thereby glacier contributions to iceberg and
associated meltwater dynamics. Future work will develop automated
tracking algorithms exploiting the ability to track individual icebergs
and their lineages from calving, through fragmentation events, to their
disappearance below classifier resolution, thereby informing multiple
scientific priorities.
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