1	RRH: OCEAN-SCALE SPECIES DIVERSITY
2	LRH: BUZAS AND OTHERS
3	
4	OCEANIC-SCALE SPECIES DIVERSITY OF LIVING BENTHIC FORAMINIFERA:
5	INSIGHTS INTO NEOGENE DIVERSITY, COMMUNITY STRUCTURE, SPECIES
6	DURATION, AND BIOGEOGRAPHY
7	MARTIN A. BUZAS ^{1#} , LEE-ANN C. HAYEK ² , STEPHEN J. CULVER ³ , JOHN W. MURRAY ^{4#} ,
8	DANIEL O.B. JONES ⁵
9	
10	¹ Department of Paleobiology, Smithsonian Institution, Washington, D. C. 20012-7012 USA
11	² Mathematics and Statistics, Smithsonian Institution, Washington, D. C. 20012-7012 USA
12	³ Department of Geological Sciences, East Carolina University, Greenville, North Carolina 27858
13	USA
14	⁴ Ocean and Earth Science, National Oceanography Centre, Southampton, SO14 3ZH UK
15	⁵ National Oceanography Centre, European Way, Southampton, SO14 3ZH UK
16	
17	#deceased
18	
19	*Correspondence: <u>culvers@ecu.edu</u>
20	

ABSTRACT

22	Within-habitat (α) diversity of living benthic foraminifera in the Atlantic Basin increases
23	as latitude decreases and generally increases with depth from shelf to abyss. Total populations
24	(live + dead) show the same pattern and indicate that species are become more widespread with
25	increasing water depth. Thus, within-habitat diversity increases with depth while regional (or γ)
26	diversity is greater on the shelf (more communities). Community structure analysis indicates
27	stasis and growth in shallower areas with stasis or decline in the abyss. The latitudinal gradient
28	has existed for ca. 34 Ma; lower latitude deeper habitats have the longest species durations. For
29	living populations an inverse relationship between density and diversity suggests scarcity of food
30	is not sufficient to decrease diversity through extinction. For shallower-dwelling species,
31	variability of solar energy can explain the latitudinal gradient. For deep-sea species, energy
32	transfer from the surface, along with environmental stability over vast expanses, are plausible
33	explanations for high diversity.
34	
35	
36	
37	
38	
39	
40	
41	

INTRODUCTION

42 43

Benthic foraminifera are abundant and speciose members of the meiofauna in all marine
environments from marshes and bays to abyssal depths and are important in marine ecosystem
functioning. Moreover, they have been so for millions of years. Consequently, they are ideally
suited to record diversity patterns of modern oceans as well as those of the past.

When an individual of the living benthic foraminiferal population dies or reproduces the empty test is often preserved in the sediment and becomes part of the dead population. Because the dead population is more abundant, the total population (live + dead) usually resembles the dead population. Over time the dead population becomes the fossil population. Researchers, of course, hope that the transition from living to dead to fossil population faithfully records the structure and composition of formerly living foraminiferal communities.

Hessler & Sanders (1967) demonstrated that within-habitat (α) diversity of the 54 macrofauna in the deep-sea was as high as in the shallower depths of the tropics. Buzas & 55 Gibson (1969) also found high within-habitat (α) diversity for the total population of meiofaunal 56 foraminifera at abyssal depths along the Gay Head to Bermuda transect in the North Atlantic. A 57 related finding is that the latitudinal diversity gradient, the trend of increasing diversity with 58 decreasing latitude (Fisher, 1960), is apparent not only on the shelf (e.g., Culver & Buzas, 1998, 59 60 Dorst & Schönfeld, 2013, Jablonski et al., 2017) but also in certain deep-sea benthic macrofaunal groups (e.g., Rex et al., 1993, 1997) including the benthic foraminifera (Culver & Buzas, 2000, 61 Dorst & Schönfeld, 2013). 62

63 The patterns noted above for benthic foraminifera were based on dead or total
64 populations in the Atlantic Ocean basin (Buzas & Gibson, 1969; Culver & Buzas, 2000). The

present study examines benthic foraminiferal diversity gradients in the Atlantic Ocean basin, 65 from shelf, slope and abyssal depths, using data sets of living populations (rose Bengal-stained; 66 Walton, 1952) from an extensive compilation by Murray (2015) that was used by Jones & 67 Murray (2017) in their analyses of standing crop (density) of benthic foraminifera on an oceanic 68 scale. If the same patterns are found for the living population as formerly found for the total 69 70 population, then we can be confident of our diversity assessment throughout the Neogene (Miocene, Pliocene) and Quaternary to the present (e.g., Thomas & Gooday, 1996; Culver & 71 Buzas, 2000). 72

In this article, we: 1) investigate whether a latitudinal species diversity gradient exists at shelf, slope and abyssal depths for within-habitat living populations of benthic foraminifera; 2) analyze differences in within-habitat diversity over shelf, slope and abyssal depths for the living population; 3) compare the within-habitat diversity patterns exhibited by living and dead or total populations; and 4) integrate these data with previous studies of benthic foraminiferal community structure, species durations and biogeography.

- 79
- 80

MATERIALS: NATURE AND ACQUISITION OF DATA

81

This study uses a subset of the data used most recently by Jones & Murray (2017) in their analysis of standing crop (density) values from the Atlantic basin. Jones & Murray (2017) extracted density data from a larger dataset compiled by Murray. This larger dataset was published in full in the electronic supplement to a book (Murray, 2006) and summarized in Murray (2015). This dataset included 2423 samples grouped by study (Murray, 2015) of which 1167 included counts of live specimens for each species encountered. The data from the Murray (2006) supplement (presented as multiple Excel workbooks) were collated into a single species

89	by sample matrix (of count data) using the R programming environment (R Core Team, 2020).
90	Each study encountered different species and in some cases used differing species names, either
91	as a result of taxonomic revision or use of grouped species names (e.g., Ammonia group) or
92	various taxonomic qualifiers (e.g., aff., spp., ?). As such, a manual quality control of the species
93	names was undertaken by Murray to ensure that each species was represented by a single name
94	in the final matrix. The cleaned dataset included a total of 1227 distinct "species". Grouped
95	species counts (e.g., unidentified agglutinated), if used, were counted as a single species in
96	analysis, potentially leading to some underestimation of species totals.
97	The metric chosen for analysis of diversity is the Shannon (1948) information function,
98	because this function includes not only species richness, but also species proportions. Single
99	samples of sediment, each normalized to 10 ml, were analyzed and each is considered to
100	represent a foraminiferal habitat. Consequently, this study is about within-habitat or α diversity
101	and not of regional or γ diversity or between-habitat or β diversity (Whitaker, 1972). For a
102	summary of the geologic, paleoceanographic and paleoclimatic utility of benthic foraminifera,
103	their important role in marine ecosystem functioning, see Gooday et al. (2008), and for detail on
104	the dataset analyzed as part of this paper, see Murray (2015) and Jones & Murray (2017).
105	The information function (Shannon, 1948) has distributional properties amenable for
106	parametric statistical analysis. This well-known diversity measure is

- 108
 S

 109
 $H = -\sum p_i lnp_i$

 110
 i=1

111	where p_i is the proportion of the ith species. Reasonable estimates of species richness (S) as well
112	as species proportions (p_i) are required for the calculation of H. In temperate areas about 200 to
113	500 individuals are required for the species effort curve (plot of accumulated S vs accumulated
114	N) to become asymptotic (Hayek & Buzas, 2010). In tropical shelf areas, the species effort curve
115	shows no sign of abatement even when thousands of individuals are accumulated (Buzas et al.,
116	1977), but a representative estimate of species proportions (p_i) is obtained by using 200 to 400
117	individuals (Hayek & Buzas, 2010). Consequently, we chose $N = 200$ as a minimum number of
118	specimens counted in a sample as the criterion for inclusion in this study. Of the 1167 samples in
119	the compiled matrix, 411 met this criterion (Fig. 1).
120	Like Jones & Murray (2017), we divided the data into the depth categories: 1) shelf, <200
121	m water depth; 2) slope, 200 to 2000 m water depth; 3) abyss, >2000 m water depth. For
122	examination of latitudinal gradient of within-habitat diversity within each of these depth
123	categories, we performed a linear least squares regression using SYSTAT 13. While the entire
124	data set ranges from high latitudes in both hemispheres (Jones & Murray, 2017), for counts >200
125	individuals, the data become partially restricted. For shelf data, counts >200 are restricted to
126	stations from the northern hemisphere. For slope data, counts >200 are from stations in both
127	hemispheres. For abyssal data, counts >200 are from stations in the southern hemisphere. For
128	analysis of the diversity data in the three depth categories, the null hypothesis is that the means
129	μ (shelf) = μ (slope) = μ (abyss). To compare means we used the Analysis of Variance (ANOVA). We
130	choose to reject the null hypothesis when $p < 0.05$. Levene's test for homogeneity of variance
131	was applied in each case where relevant and each was non-significant.

Murray (2007) estimated that the number of hard-shelled modern species of benthic
foraminifera to be ~3,200 to 4,200. However, this number ignored the many rare species. The

WoRMS database (https://www.marinespecies.org) currently lists 8,953 recognized and named 134 Recent species. Further, Gooday (2019) noted that Murray's estimates do not include the many 135 undescribed, single-chambered, soft-bodied (monothalamous) forms nor the "huge diversity" of 136 unknown phylotypes (Lecroq et al., 2011). Delicate, loosely agglutinated tests are 137 underrepresented in typical samples of benthic foraminifera owing to destruction during 138 139 sampling and processing (Gooday et al., 1998) and, of course, below the calcium carbonate compensation depth (CCD), hard-shelled populations are dominated by agglutinated species 140 (Gooday et al., 2008). Therefore, the benthic foraminifera investigated in the present study are 141 142 hard-shelled fossilizable species from, in large part, the continental shelf and slope and the immediately adjacent abyssal plain (above the CCD) of the Atlantic Ocean basin. These are the 143 taxa preserved in the fossil record and, consequently, their patterns of species diversity are of 144 importance for understanding both modern ecosystem (Gooday et al., 1992) and paleoecosystem 145 (Thomas & Gooday, 1996) functioning. The samples utilized in this study are derived from many 146 147 data sets collected over six decades using several sieve sizes (>63 microns, >106 microns, >125 microns and > 150 microns). Jones & Murray (2017) discussed at length the potential influence 148 of this methodological variation on standing crop. When size-fraction was included in statistical 149 150 models as a covariate, it was not significant in explaining the standing crop. They concluded that between sample density variation is a result of environmental variation rather than the size-151 152 fraction used. Density variation due to the former is orders of magnitude larger than density 153 variation due to the latter.

- 154
- 155

RESULTS

DIVERSITY PATTERN WITH LATITUDE

159	For depths < 200 m (continental shelf) in the northern hemisphere 158 samples met the
160	criterion of counts >200 individuals (Table 1). Results of a least squares regression analysis are
161	shown in Table 2. In the 200 – 2000 m depth category (continental slope), 171 samples with N $>$
162	200 are distributed over both the northern and southern hemispheres (Table 3). Results of two
163	least squares regression analyses are shown in Tables 4 and 5. For the > 2000 m category
164	(abyssal plain) in the southern hemisphere, 82 samples met the criterion of counts >200 (Table
165	6). Regression analysis results are shown in Table 7. In all depth zones and hemispheres
166	assessed, there was widespread variability but an overall significant trend of decreasing within-
167	habitat diversity of live foraminiferal populations with increasing latitude (Tables 2, 4, 5 and 7;
168	Fig. 2).
169	The relationships are not as clear in the southern hemisphere slope (Table 5) and the
170	abyss (Table 7) as in other areas. Mean values for H indicate the shelf (Table 1; Fig. 2) and slope
171	(Table 3; Fig 2) have more variability along the latitudinal gradient than the abyss (Table 6; Fig
172	2). Difference between maximum and minimum values (the range) of H on the shelf is 2.59
173	(Table 1), on the slope the range is 1.59 (Table 3) while for the abyss the range is 0.25 (Table 6).
174	
175	DIVERSITY PATTERN WITH DEPTH
176	
177	The samples analyzed in this study are arranged into three depth categories - shelf, slope
178	and abyss (Table 8). Figure 3 indicates a significant and striking increase in mean H with depth

(Tables 8, 9) with mean values of H for <200 m, 200 – 2000 m and >2000 m of 1.94, 2.40, and
3.13, respectively).

- 181
- 182

DISCUSSION

183

Live, total and fossil populations exhibit the same patterns of within-habitat benthic 184 foraminiferal diversity despite seasonality and relative rarity of live specimens and differences in 185 population density or even presence of individual species in live populations owing to a variety 186 of taphonomic circumstances (Murray, 1982, Mackensen et al., 1990). This characteristic of 187 populations encourages the following discussion where we integrate the new data of this paper 188 189 with published results of studies based on total and fossil populations. In this way, we can address the relevance and significance of oceanic-scale within-habitat diversity to biogeography, 190 species durations and community structure. 191

- 192
- 193

DIVERSITY AND DEPTH

194

The live foraminiferal data of this paper indicate a significant increase in mean H with
depth (Fig. 3). For the same depth categories, Jones & Murray (2017) obtained mean density
values of 237.4, 199.3 and 64.2 foraminifera per 10 ml, respectively, for live populations.
Different sieve sizes were used by researchers and may have introduced bias into the results.
However, as Tables 1 and 6 indicate, most of the shelf sieve sizes were 63 µm and all from the
abyss were 125 µm. Consequently, any bias would result in underestimating the difference in
values of H between depths. The increase in within-habitat diversity with depth in live

202	populations agrees with the pattern of increasing diversity with depth in total populations from
203	350 samples ranging in depth from 29 m to 5,001 m and extending from the Arctic to the Gulf of
204	Mexico (Buzas & Gibson, 1969; Gibson & Buzas, 1973). In that survey, maximum values of H
205	occurred in samples from abyssal depths. Culver & Buzas (2000) demonstrated a latitudinal
206	diversity gradient for the total population at abyssal depth in both hemispheres of the Atlantic
207	while Dorst & Schönfeld (2013) noted a similar pattern of diversity increase on the Atlantic shelf
208	and slope off western Europe.
209	
210	BIOGEOGRAPHY
211	
212	The number of benthic foraminiferal biogeographic entities, provinces and their
213	component communities, recognized by numerical and statistical analyses decreases with depth.
214	This pattern has been observed in the western Atlantic Margin of North America (Buzas &
215	Culver, 1980), the Gulf of Mexico (Culver & Buzas, 1981), the Pacific continental margin of
216	North America (Buzas & Culver, 1990) and New Zealand (Hayward et al., 2010). This is
217	because deeper-dwelling species are more widespread and, hence, although the within-habitat
218	diversity may be greater in the abyss, the total number of species is smaller than in shallower
219	areas (Buzas et al., 2014).
220	The widespread distribution of deep-dwelling versus shallow-dwelling species is also
221	supported by molecular studies. Hayward et al. (2021) showed that the three species of the
222	shallow water genus Ammonia thought to be world-wide in their distribution actually belong to
223	60 species each with a limited distribution. In marked contrast, molecular studies on a
224	cosmopolitan abyssal-dwelling species (Epistominella exigua) indicate genetic homogeneity

225	across regions of the Arctic, Atlantic, Pacific and Antarctic Oceans (Lecroq et al., 2009). The
226	widespread abyssal species, Cibicidoides wuellerstorfi, does, however, exhibit some genetic
227	differentiation between different areas (Burkett et al., 2020).
228	We noted earlier that shelf diversity data are from the northern hemisphere, abyssal data
229	are from the southern hemisphere and slope data are from both hemispheres. Thus, we can
230	compare hemispheres for the latter data only. The latitudinal diversity gradient is greater in the
231	northern hemisphere (Fig. 2B) than the southern (Fig. 2C). A weaker southern hemisphere
232	latitudinal gradient also characterizes the deep-sea macrofauna, reflecting a higher degree of
233	regional variation in the south (Rex & Etter, 2010).
234	
235	DURATION OF LATITUDINAL DIVERSITY GRADIENT
236	
237	The latitudinal gradient in within-habitat diversity that we see today at all ocean depths
238	has a long history. For abyssal depths, Thomas & Gooday (1996) suggested the pattern for
239	increasing diversity with decreasing latitude in benthic foraminifera originated at the Eocene-
240	Oligocene boundary ~34 Ma when the Earth transitioned from "greenhouse" to "ice-house"
241	conditions. Neogene to modern
242	benthic foraminiferal populations from shelf environments of the temperate Atlantic Coastal
243	Plain and the tropical Central American Isthmus indicate that not only has a latitudinal gradient
244	of diversity (measured by Fisher's alpha) been present for at least 10 Ma, but also that it has been
245	increasing over time (Buzas et al., 2002a), by 40% at the temperate region and by 106% at the
246	tropical region.

SPECIES DURATION

249

266

245	
250	Species durations of benthic foraminifera (Buzas & Culver, 1984) show the same depth
251	and latitudinal patterns as species diversity. Off the Atlantic coast of North America both partial
252	durations (of living species) and species diversity are greater at lower latitudes and increased
253	water depth: compare 16 Ma for <200 m (shelf) with 26 Ma for >200m (slope and abyss), and
254	compare 7 Ma for <200 m Cape Hatteras to Newfoundland with 20 Ma for <200 m Florida to
255	Cape Hatteras (Buzas & Culver, 1984). Similar patterns of durations and diversity were
256	documented around New Zealand (Hayward et al., 2010)
257	
258	COMMUNITY STRUCTURE
259	
260	Also relatable to depth (shelf, slope, abyss) and, hence, diversity, is community structure,
261	defined quantitatively by Buzas & Hayek (2011) and Hayek et al. (2019) as the mathematical
262	statistical distribution fit to the observed relative abundance vector. Consideration of the
263	decomposition equation for species richness, S, evenness, E, and H, plus their respective
264	regressions on the accumulation of the number of individuals, N , leads to the establishment of

three structural types of community. The types can be identified by a measure composed of the 265

slope (β_{1H}) of the regression of accumulated H vs N within a community. A positive measure denotes community growth, zero denotes the existence of stasis, and a negative measure denotes 267

the existence of a declining community. Global analysis of 72 communities with living and total 268

populations were surveyed (Buzas & Hayek, 2011). For shelf and slope communities the 269

270	measure is either mostly $+$ or 0 while in the abyss either 0 or $-$. The average measure for the
271	shelf is 0.13, slope 0.14 and abyss -0.06 (table 21 in Buzas & Hayek, 2011).
272	In summary, the variables considered above and their relative values (extracted from the
273	new data of the current study and from related earlier studies on benthic foraminiferal
274	distribution and diversity through time) are shown in the contrast between shallow (<200 m) and
275	deep (> 200 m) categories presented in Table 10. The tabulation demonstrates that shallow and
276	deep dwelling benthic foraminiferal communities are easily discriminated.
277	
278	EXPLANATIONS FOR OCEANIC-SCALE DIVERSITY PATTERNS OF BENTHIC FORAMINIFERA
279	
280	Within-habitat diversity is achieved through the interplay of species origination and
281	immigration and species extinction and emigration over time (Buzas & Culver, 1998). To
282	achieve high diversity, a community must maintain a relatively low extinction rate. Species
283	density and the plethora of abiotic and biotic variables that determine its value (Jones & Murray,
284	2017) are important only as end values. Very low population densities may lead to extinction of
285	species, thereby lowering diversity. Very high densities of organisms may lead to competition
286	among species, and if there is competition among community members for a limited resource,
287	then competitive exclusion demands a reduction in diversity. Relatively low extinction rates,
288	then, suggest low overall ecological extinction from changes in abiotic and biotic variables and
289	low competition among community members to ensure high diversities over time. The time
290	component may require millions of years, fostering longer species durations in high diversity
291	areas (Buzas & Culver, 1984).

Researchers have offered a variety of explanations for observed patterns of the latitudinal 292 and depth diversity gradients (e.g., Pianka, 1966, Rohde, 1992, Rex & Etter, 2010; Jablonski et 293 al., 2017, Gagne et al., 2020), and many of them are not mutually exclusive. Pontarp et al. (2019) 294 have argued that the lack of consensus regarding the underlying causes for a latitudinal diversity 295 gradient is due to the "verbal nature" of hypotheses and the fact that observed patterns can have 296 297 multiple explanations. They proposed mechanistic linking of eco-evolutionary processes (selection, dispersal, ecological drift, and speciation) to the diversity gradient to better 298 299 understand the contributions of these processes.

300 The great variability in values of H with latitude in shallower (< 200 m) areas shown in this study suggests a variety of drivers are likely responsible for individual values. Nevertheless, 301 there is a significant trend of decreasing diversity with increasing latitude. Gagne et al. (2020) 302 modeled global diversity for terrestrial and marine species. Their analysis for marine organisms 303 (44,575 species) indicated maximum diversity in the tropics. Depth, water temperature and 304 305 sunlight were the principal drivers. Curiously, their data set showed a decrease in diversity with depth, a reflection, perhaps, of the many organisms involved or just a consideration of gamma 306 diversity. We do not consider depth as an environmental variable but, along with latitude and 307 308 longitude, an attribute that locates a sample in space. It is the change in environmental variables associated with depth that is of primary interest. The variables water temperature and sunlight 309 310 are reasonable and in accordance with advocates of solar energy or primary production as the 311 principal driver of diversity (e.g., Rohde, 1992). Our data are not extensive enough to address the question of whether there is a decrease in species richness in the marine realm near the equator 312 313 (Chaudhary et al., 2016; Woolley at al., 2016) or whether this is due to a knowledge gap 314 (Menegotto & Rangel, 2018).

While Jones & Murray (2017) found an overall positive relationship between benthic 315 foraminiferal density and particulate organic carbon (POC), on the shelf it was negative, 316 prompting them to suggest predation not food was limiting density on the shelf. If predation on 317 foraminifera (Culver & Lipps, 2003) affects all members of the community equally then, 318 effectively, it limits density so that there is no species competition among community members. 319 320 The lack of competition as judged by foraminiferal species with a community reacting in concert (pulsating patches) in shallow water was noted by Buzas et al. (2002b). However, for a 321 latitudinal gradient, predation would have to be more severe at high latitudes to obtain the 322 323 observed pattern. The presence of the gradient on the slope and in the abyss suggests a "trickledown" ecologic economy where shallower vicissitudes are transferred to the deep ocean. The 324 decreasing difference between maximum and minimum values of H from shelf to slope to abyss 325 support this idea. The suggestion that the larger variability of environmental variables at the 326 higher latitudes (particularly particulate organic matter flux to the sea floor) is responsible for the 327 328 pattern is attractive (Hessler & Sanders, 1967; Thomas & Gooday, 1996; Rex & Etter, 2010; Cordier et al., 2022). Relative lack of variability explains why diversity is high in shallow 329 tropical settings and nearly uniformly high in the abyss. 330 331 Numerous authors of research on benthic foraminifera (e.g., Gooday, 1988; Jorissen et al., 1995; Schmiedl et al., 1997), and on deep-sea communities in general (e.g., Smith et al., 332 333 2008), agree that food is an important limiting variable in the deep-sea (Buessler et al., 2007).). 334 As might be expected, the density of foraminifera in the deep-sea is much lower than on the shelf and slope (Jones & Murray, 2017). Although we hypothesized that predation reduced densities 335 336 so that competition was not important in shallower waters, the greater reduction of abyssal

densities is evidently still not great enough to cause extinction (but see below the mid-

Pleistocene extinction event of elongate benthic species; Hayward et al., 2012). The low abyssal 338 densities have not resulted in competition for food. Perhaps, the inputs from the surface water are 339 so irregular in time and space (Gooday, 1988) that no one community member can have an 340 advantage, allowing many species to cohabit within a community. However, recall that the status 341 of abyssal community structures is at stasis or in decline so that abyssal communities are 342 343 continually on the brink of extinction. The long species durations of abyssal communities, however, indicate extinctions are rare (background rate of $\sim 2\%$ myr¹ during the Cenozoic in 344 benthic foraminifera; Hayward et al., 2012) but extinction events occur. For example, the 345 346 extinction event in the abyssal foraminiferal biota at the Paleocene-Eocene Thermal Maximum (PETM), at 55.5 Ma (Bowen et al., 2015) was accompanied by a negative value signifying a 347 declining community (Hayek et al., 2019). The extinction of many elongate benthic species (25% 348 loss of deep-sea benthic diversity) in the late Pliocene to middle Pleistocene, mostly between 1.2 349 and 0.55 myrs ago, was likely caused by decrease of specific phytoplankton food flux during 350 global cooling leading up to the mid-Pleistocene Climate Transition (Hayward et al., 2012). 351 Foraminiferal species confined to the abyss have long species durations and many abyssal 352 species are also distributed on the slope suggesting migration into the abyss from shallower 353 354 depths (Hayward et al., 2010; Buzas et al., 2014). Such migration occurs with the macrofauna (Rex et al., 2005) and at shallower depths with the foraminifera (Buzas & Culver, 2009). 355

- 356
- 357

CONCLUSIONS

359	New data on shelf, slope and abyssal living benthic foraminifera in the Atlantic Ocean
360	basin demonstrate a latitudinal gradient of within-habitat diversity with increase toward lower
361	latitudes in all depth categories and an increase in diversity with depth regardless of latitude.
362	Similar patterns are seen for dead and total (live plus dead) foraminiferal populations allowing
363	integration of the new data with diversity, community structure, species duration, and
364	biogeographic patterns of Neogene fossil benthic foraminifera. Surprisingly, while density at
365	abyssal depths decreases owing to decreased food supply compared to the shelf and slope,
366	within-habitat diversity is not affected and is high in the abyss.
367	
269	A CUNOWI EDGEMENTS
308	ACKNOW LEDGEMENTS
369	
370	We acknowledge the many authors who provided data to Professor John W. Murray.
371	Dave Mallinson, Seth Sutton and Laura de Sousa kindly provided technical support. Reviews by
372	Andrew Gooday and Bruce Hayward were very useful and much appreciated. This work was
373	supported by the NERC National Capability funding to the National Oceanography Centre, as
374	part of the Climate Linked Atlantic Section Science (CLASS) program (Grant Reference
375	NE/R015953/1).
376	
	DEFENENCES
377	REFERENCES
378	
379	Ahrens, M. J., Graf, G., and Altenbach, A. V., 1997, Spatial and temporal distribution of

380	benthic foraminifera in the Northeast Water Polynya, Greenland: Journal of Marine
381	Systems, v. 10, p. 445–465.
382	Alve, E., and Murray J. W., 1995, Benthic foraminiferal distributions and abundance changes
383	in Skagerrak surface sediments: 1937 (Höglund) and 1992/1993 data compared: Marine
384	Micropaleontology, v. 25, p. 269–288.
385	Bowen G., Maibauer, B., Kraus, M., and Rohl, U., 2015, Two massive, rapid releases of carbon
386	during the onset of the Palaeocene–Eocene thermal maximum: Nature GeoScience, v. 8,
387	p. 44–47.
388	Buessler, K. O., Lamborg, C. H., Boyd, P. W., Lam, P. J., Trull, T. W., Bidigare, R. R., Bishop,
389	J. K. B., Casciotti, K., L., Dehairs, F., Elskens, M., Honda, M., Karl, D. M., Siegel, D. A.,
390	Silver, M. W., Steinberg, D. K., Valdes, J., Van Mooy, B., and Wilson, S., 2007,
391	Revisiting carbon flux through the ocean's twilight zone: Science, v. 316, p. 567–570.
392	Burkett, A., Rathburn, A., Pratt, R.B., and Holzmann, M., 2020, Insights into the ecology of
393	epibenthic calcareous foraminifera from a colonization study at 4000 m (Station M) in
394	the NE Pacific Ocean: Deep-Sea Research Part II: Topical Studies in Oceanography, v.
395	173, https://doi.org/10.1016/j.dsr2.2019.104709
396	Buzas, M. A., and Culver, S. J., 1980, Foraminifera: distribution of provinces in the Western
397	North Atlantic: Science, v. 209, p. 687–689.
398	Buzas, M. A., and Culver, S. J., 1984, Species duration and evolution: benthic foraminifera on
399	the Atlantic continental margin of North America: Science, v. 225, p. 829-830.
400	Buzas, M. A., and Culver, S. J., 1990, Recent benthic foraminiferal provinces on the Pacific

- 401 continental margin of North and Central America: Journal of Foraminiferal Research, v.
 402 20, p. 326–335.
- Buzas, M. A., and Culver, S. J., 1998, Assembly, disassembly, and balance in marine
 paleocommunities: Palaios, v. 13, p. 263–275.
- Buzas, M. A., and Culver, S. J., 2009, Geographic origin of species: the temperate-tropical
 interchange: Geology, v. 37, p. 879–881.
- Buzas, M. A., and Gibson, T. G., 1969, Species diversity: benthonic foraminifera in western
 North Atlantic: Science, v.163, p. 72–75.
- Buzas, M. A., and Hayek, L. C., 2011, Community structure: global evaluation and the role of
 within community beta-diversity: Journal of Foraminiferal Research, v. 41, p. 138–154.
- 411 Buzas, M. A., Collins, L. S., and Culver, S. J., 2002a, Latitudinal difference in biodiversity
- 412 caused by higher tropical rate of increase: Proceedings of the National Academy of
 413 Science, USA, v. 99, p. 7841–7843.
- 414 Buzas, M. A., Hayek, L. C., Reed, S. A., and Jett, J. A., 2002b, Foraminiferal densities over five
- 415 years in the Indian River Lagoon, Florida: a model of pulsating patches: Journal of
 416 Foraminiferal Research, v. 32, p. 68–92.
- 417 Buzas, M. A., Hayek, L. C., Culver, S. J., Hayward, B. W., and Osterman, L. E., 2014,
- Ecological and evolutionary consequences of benthic community stasis in the very deep
 sea (>1500 m): Paleobiology, v. 40, p. 102–112.
- 420 Buzas, M. A., Smith, R. K., and Beem, K. A., 1977, Ecology and Systematics of Foraminifera in
- 421 Two *Thalassia* Habitats, Jamaica, West Indies: Smithsonian Contributions to
- 422 Paleobiology, no. 31, 139 p.

423	Chaudhary, C., Saeedi, H., and Costello, M.J., 2016, Bimodality of latitudinal gradients in
424	marine species richness: Trends in Ecology and Evolution, v. 31, p. 670-676.
425	Culver, S. J., and Buzas, M. A., 1981, Foraminifers: distribution of provinces in the Gulf of
426	Mexico: Nature, v. 290, p. 328–329.
427	Culver, S.J., and Buzas, M. A., 1998, Patterns of occurrence of benthic foraminifera in time and
428	Space, in Donovan, S. K. and Paul, C. R. C. (eds.), The Adequacy of the Fossil Record:
429	Wiley, Chichester, p. 207–226.
430	Culver, S. J., and Buzas, M. A., 2000, Global latitudinal species diversity gradient in deep-sea
431	Foraminifera: Deep-Sea Research I, v. 147, p. 259–275.
432	Culver, S. J., and Lipps, J. H., 2003, Predation on and by Foraminifera, in Kelley, P., et al.
433	(eds.), Predation in the Fossil Record: Kluwer Academic/Plenum, New York, p. 7-32.
434	Diz P., Frances, G., Costas, S., Souto, C., and Allejo, I., 2004, Distribution of benthic
435	foraminifera in coarse sediments, Ria de Vigo, NW Iberian margin: Journal of
436	Foraminiferal Research, v. 34, p. 258–275.
437	Dorst, S., and Schönfeld, J., 2013, Diversity of benthic foraminifera on the shelf and slope of the
438	NE Atlantic: analysis of datasets: Journal of Foraminiferal Research, v. 43, p. 238–254.
439	Fisher, G., 1960, Latitudinal variations in organic diversity: Evolution, v. 14, p. 64-81.
440	Gagne, T. O., Reygondeau, G., Jenkins, C. N., Sexton, J. O., Bograd, S. J., Hazen, E. L., and
441	Van Houtan. K. S., 2020, Towards a global understanding of the drivers of marine and
442	terrestrial biodiversity. PLOS ONE 15: e0228065, doi: 10.1371/journal.pone.0228065
443	Gibson, T. G., and Buzas, M. A., 1973, Species diversity: patterns in modern and Miocene

т т

1.

•

1 1.

01 ... 1. 1

444	foraminifera of the eastern margin of North America: Geological Society of America
445	Bulletin, v. 84, p. 217–238.
446	Gooday, A. J., 1988, A response by the benthic foraminifera to the deposition of phytodetritus
447	in the deep sea: Nature, v. 332, p. 70–73.
448	Gooday, A. J., 2003, Benthic foraminifera (Protista) as tools in deep-water paleoceanography:
449	environmental influences on faunal characteristics: Advances in Marine Biology, v. 46, p.
450	1–90.
451	Gooday, A. J., 2019, Deep-sea benthic foraminifera, in Steele, J. H. (ed.), Encyclopedia of
452	Ocean Sciences, Elsevier, p. 684–705.
453	Gooday, A. J., Bett, B. J., Shires, R., and Lambshead, P. J. F., 1998, Deep-sea benthic
454	foraminiferal species diversity in the N.E. Atlantic and N.W. Arabian sea: a synthesis:
455	Deep-Sea Research II, v. 45, p. 165–201.
456	Gooday, A. J., Levin, L., Linke, P., and Heeger, T., 1992, The role of benthic foraminifera in
457	deep-sea food webs and carbon cycles, in Rowe, G. T. and Pariente, V. (eds.), Deep-
458	Sea Food Chains and the Global Cycle: Kluwer, p. 63–91.
459	Gooday, A. J., Nomaki, H., and Kitazato, H., 2008, Modern deep-sea benthic foraminifera: a
460	brief review of their morphology-based biodiversity and trophic diversity, in Austen, W.
461	E. H., and James, R. H. (eds.), Biogeochemical Controls on Paleoceanographic
462	Environmental Proxies: Geological Society of London Special Publication 303, p. 97-
463	119.
464	Harloff, J., and Mackensen, A., 1997, Recent benthic foraminiferal associations and ecology of
465	the Scotia Sea and Argentine Basin: Marine Micropaleontology, v. 31, p. 1–29.

466	Hayek, L. C., and Buzas, M. A., 2010, Surveying Natural Populations: Quantitative Tools for
467	Assessing biodiversity: Columbia University Press, New York, 590 p.
468	Hayek, L. C., Buzas, M. A., and Thomas, E., 2019, Identifying disruptions to the ecological
469	balance of nature: a foraminiferal example across the initiation of the Paleocene-Eocene
470	thermal maximum: Paleobiology, v. 45, p. 98–113.
471	Hayward, B. W., Grenfell, H. R., Sabaa, A., Neil, H., and Buzas, M. A., 2010, Recent New
472	Zealand deep-water benthic foraminifera - their taxonomy, ecologic distribution
473	biogeography and use in paleoenvironmental assessments: Geological and Nuclear
474	Sciences, monograph 26, Lower Hutt, New Zealand, 363 p.
475	Hayward, B. W., Kawagata, S., Sabaa, A., Grenfell, H., Van Kerckhoven, L., Johnson, K., and
476	Thomas, E., 2012, The last global extinction (mid-Pleistocene) of deep-sea benthic
477	Foraminifera (Chrysalogoniidae, Ellopsoidinidae, Glandulonodosariidae,
478	Plectofrondiculariidae, Pleurostomellidae., Stilostomellidae), their Late Cretaceous-
479	Cenozoic history and taxonomy: Cushman Foundation for Foraminiferal Research,
480	Special Publication 43, 408 p.
481	Hayward, B. W., Holzmann, M., Pawlowski, J., Parker, J. H., Kaushik, T., Toyofuku, M. S., and
482	Tsuchiya, M., 2021, Molecular and morphological taxonomy of living Ammonia and
483	related taxa (foraminifera) and their biogeography: Micropaleontology, v. 67, p. 109-313.
484	Hess, S., and Jorissen, F. J., 2009, Distribution patterns of living benthic foraminifera from Cape
485	Breton Canyon, Bay of Biscay: faunal response to sediment instability: Deep-Sea
486	Research, v. 56, p. 1555–1578.
487	Hessler R R and Sanders H I 1967 Faunal diversity in the deep sea: Deep-Sea Research

Hessler, R. R., and Sanders, H. L., 1967, Faunal diversity in the deep sea: Deep-Sea Research,
v. 14, p. 65-78.

489	Jablonski, D., Huang, S., Roy, K., and Valentine, J. W., 2017, Shaping the latitudinal diversity
490	gradient: new perspectives from a synthesis of paleobiology and biogeography: American
491	Naturalist, v. 189, p. 1–12.
492	Jones, D. O. B., and Murray, J. W., 2017, Controls on standing crop of benthic foraminifera at an
493	oceanic scale: Marine Ecology Progress Series, v. 581, p. 71-83.
494	Jorissen, F. J., de Stigter, H. C., and Widmark, J. G. V., 1995, A conceptual model explaining
495	benthic foraminiferal microhabitats: Marine Micropaleontology, v. 26, p. 3-15.
496	Lecroq, B., Gooday, A. J., and Pawlowski, J., 2009, Global genetic homogeneity in the deep sea
497	foraminiferan Epistominella exigua (Rotaliida: Pseudoparrelidae): Zootaxa, v. 2096, p.
498	23–32.
499	Lecroq, B., Lejzerowicz, F., Bacher, D., Christen, R., Esling, P., Baerlocher, L., Østerås, M.,
500	Farnelli, L., and Pawlowski, J., 2011, Ultra-deep sequencing of foraminiferal
501	microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea
502	sediments: Proceedings of the National Academy of Science, USA, v. 108, p. 13177-
503	13182.
504	Lueck, K. L. O., and Snyder, S. W., 1997, Lateral variations among populations of stained
505	benthic foraminifera in surface sediments of the North Carolina continental shelf (USA):
506	Journal of Foraminiferal Research, v. 27, p. 20-41.
507	Mackensen, A., Futterer, D. K., Grobe, H., and Schmiedl, G., 1993, Benthic foraminiferal
508	assemblages from the eastern South Atlantic polar front region between 35 $^{\circ}$ and 57 $^{\circ}$ S:
509	distribution, ecology and fossilization potential: Marine Micropaleontology, v. 22, p. 33-
510	69.

511	Mackensen, A., Grobe, H., Kuhn, G., and Futterer, D. K., 1990, Benthic foraminiferal
512	assemblages from the eastern Weddell Sea between 68 and 73° S: distribution, ecology
513	and fossilization potential. Marine Micropaleontology, v.16, p. 241-283.
514	Mackensen, A., Sejrup, H. P., and Jansen, E., 1985, The distribution of living benthic
515	foraminifera on the continental slope and rise off southwest Norway: Marine
516	Micropaleontology, v. 9, p. 275–306.
517	Menegotto, A., and Rangel, T. F., 2018, Mapping knowledge gaps in marine diversity reveals a
518	latitudinal gradient of missing species richness: Nature Communications, doi:
519	10.1038/s41467-018-07217-7.
520	Murosky, M. W., and Snyder, S. W., 1994, Vertical distribution of stained benthic foraminifera
521	in sediments of southern Onslow Bay, North Carolina continental shelf: Journal of
522	Foraminiferal Research, v. 24, p. 158–170.
523	Murray, J. W., 1969, Recent foraminifers of the Atlantic continental margin of the United States:
524	Micropaleontology, v. 15, p. 401-409.
525	Murray, J. W., 1979, Recent benthic foraminiferids of the Celtic Sea: Journal of Foraminiferal
526	Research, v. 9, p. 193–209.
527	Murray, J. W., 1982, Benthic foraminifera: the validity of living dead or total assemblages for
528	the interpretation of palaeoecology: Journal of Micropalaeontology, v. 1, p .137-140.
529	Murray, J. W., 1985, Recent foraminifera from the North Sea (Forties and Ekofisk areas) and
530	the continental shelf west of Scotland: Journal of Micropalaeontology, v. 4, p. 117-125.
531	Murray, J. W., 2006, Ecology and Applications of Benthic Foraminifera: Cambridge University
532	Press, Cambridge, 426 p.

- Murray, J. W., 2007, Diversity of living benthic foraminifers: how many species are there?:
 Marine Micropaleontology, v. 64, 163–176.
- 535 Murray, J. W., 2015, Some trends in sampling modern living (stained) benthic foraminifera in
- 536 fjord, shelf and deep sea: Atlantic Ocean and adjacent seas. Journal of
- 537 Micropalaeontology, v. 34, p. 101–104.
- Murray, J. W., and Pudsey. C. J., 2004, Living (stained) and dead foraminifera from the newly
 ice-free Larsen shelf, Weddell Sea: Antarctica ecology and taphonomy: Marine
- 540 Micropaleontology, v. 53, p. 67–81.
- 541 Phleger F. B, 1956, Significance of living foraminiferal populations along the central Texas
 542 Coast: Contributions from the Cushman Foundation for Foraminiferal Research, v. 7, p.
 543 106–151.
- Pianka, E. R., 1966, Latitudinal gradients in species diversity: a review of concepts: American
 Naturalist, v. 100, p. 33–46.
- Poag, C. W., Knebel, H. J., and Todd, R., 1980, Distribution of modern benthic foraminifers on
 the New Jersey outer continental shelf: Marine Micropaleontology, v. 5, p. 43–69.
- 548 Pontarp, M., Bunnefeld, L., Cabral, J. S., Etienne, R. S., Fritz, S. A., Gillespie, R., Graham, C.
- 549 H., Hagen, O., Hartig, F., Huang, S., Jansson, R., Maliet, O., Munkemuller, T., Pellissier,
- 550 L., Rangel, T. F., Storch, D., Wiegand, T., and Hurlbert, A.H., 2019, The latitudinal
- 551 gradient: novel understanding through mechanistic eco-evolutionary models: Trends in
- 552 Ecology and Evolution, v. 34, no. 3, doi.org/10.1016/j.tree.2018.11.009.
- 553 R Core Team., 2020, R: A language and environment for statistical computing. R Foundation for
- 554 Statistical Computing: Vienna, Austria. URL https://www.R-project.org/.

Rex M. A., and Etter. R. J., 2010, Deep-Sea Diversity: Pattern and Scale: Harvard University,
Press, Cambridge, MA, 368 p.

557	Rex, M. A., Etter, R. J., and Stuart, C. T., 1997, Large-scale patterns of species diversity in the
558	deep-sea Benthos, in Ormond, R. F. G., Gage, J. D., and Angel, M. V. (eds.), Marine

- 559 Biodiversity: Patterns and Process: Cambridge University Press, Cambridge, p. 94–121.
- 560 Rex, M. A., McClain, C. R., Johnson, N. A., Etter, R. J., Allen, J. A., Bouchet, P., and Waren.
- A., 2005, A source-sink hypothesis for abyssal diversity: American Naturalist, v. 165, p.
 163–178.
- Rex, M. A., Stuart, C. T., Hessler, R. R., Allen, J. A., Sanders, H. L., and Wilson, G. D. F., 1993,
 Global-scale latitudinal patterns of species diversity in the deep-sea benthos: Nature, v.
 365, p. 636–639.
- Rohde, K., 1992, Latitudinal gradients in species diversity: the search for the primary cause:
 Oikos, v. 65, p. 514–527.
- 568 Schiebel, R., 1992, Rezente benthische foraminiferan in sedimenten des schelfes und oberen
- kontintentalhanges im Golf von Guinea (Westafrika): Berichte-Reports, GeologischPaleontologisches Institut und Museum, Universitat Kiel, v. 51 p. 1–179.
- Schmiedl G., Mackensen, A., and Muller, P. J., 1997, Recent benthic foraminifera from the
 eastern South Atlantic Ocean: dependance on food supply and water masses: Marine
 Micropaleontology, v. 32, p. 249–287.
- 574 Scott, G. A., Scourse, J. D., and Austin, W. E. N., 2003, The distribution of benthic foraminifera
- 575 in the Celtic Sea: the significance of seasonal stratification: Journal of Foraminiferal
- 576 Research, v. 33, p. 32–61.

577	Seiler, W. C., 1975, Tiefenverteilung benthischer foraminiferan am portugieischen
578	Kontinentalhang: "Meteor" Forschungergebnisse, Reihe C., v. 23, p. 47-94.
579	Shannon, C. E., 1948, A mathematical theory of communication: Bell System
580	Technical Journal, v. 27, p. 379–423, p. 623–656.
581	Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K., and Arbizu, P. M., 2020,
582	Abyssal food limitation, ecosystem structure and climate change: Rends in Ecology and
583	Evolution, v. 23, p. 518–528.
584	Thomas, E., and Gooday, A. J., 1996, Cenozoic deep-sea benthic foraminifers: tracers for
585	changes in oceanic productivity: Geology, v. 24, p. 355-358.
586	Walton, W. R., 1952, Techniques for the recognition of living foraminifera: Contributions from
587	the Cushman Foundation for Foraminiferal Research, v. 3, p. 39-60.
588	Whitaker, R. H., 1972, Evolution and measurement of species diversity: Taxon, v. 21, p. 213-
589	251.
590	Woolley, S. N. C., Tittensor, D. P., Dunstan, P. K., Guillera-Arroita, G., Lahoz, J. J., Wintle, B.
591	A., Worm, B., and O'Hara, T. D., 2016, Deep-sea diversity patterns are shaped by
592	energy availability: Nature, v. 533, p. 393–396.
593	
594	
595	
596	
597	

598	
599	
600	
601	
602	
603	
604	TABLE CAPTIONS
605	TABLE 1. Foraminifera diversity (H) data for the shelf, <200 m depth. Note four cases include
606	data from two publications. N = number of samples; H = Shannon's information function; S.D.
607	= standard deviation.
608	TABLE 2. Results of regression on H vs latitude for <200 m depth.
609	TABLE 3. For a miniferal diversity (H) data for the slope, $200 - 2000$ m depth. N = number of
610	samples; H = Shannon's information function; S.D. = standard deviation
611	TABLE 4. Results of regression on H vs latitude on the northern hemisphere slope, 200–2000 m
612	depth.
613	TABLE 5. Results of regression on H vs latitude on the southern hemisphere slope, 200–2000 m
614	depth.
615	TABLE 6. For aminiferal diversity (H) data for the abyss, >2000 m depth. N = number of
616	samples; H = Shannon's information function; S.D. = standard deviation.
617	TABLE 7. Results of regression of H vs latitude on the abyss, >2000 m depth.

TABLE 8. Mean values of H and standard deviations for samples at three depth categories. N =
number of samples.

620 TABLE 9. Results of one-way ANOVA on depth categories: shelf, slope, abyss.

- 621 TABLE 10. Contrast of benthic foraminiferal diversity variables with depth: shallow = <200 m; 622 deep = >200 m).
- 623
- 624

625

FIGURE CAPTIONS

FIGURE 1. Location of 411 samples (selected from 1167 used by Jones and Murray, 2017, in their

study of foraminiferal density) with >200 individuals that were used for an examination of

diversity using the information function (H). Modified from Jones and Murray (2017).

629 FIGURE 2. A, Plot of H versus northern degrees of latitude for shelf samples (<200 m). B, Plot of

630 H versus northern degrees of latitude for slope samples (200–2000 m). C, Plot of H versus

631 southern degrees of latitude for slope samples (200–2000 m). D, Plot of H versus southern

632 degrees of latitude for abyssal samples (>2000 m).

633 FIGURE 3. Plot of mean H versus depth, 1.0 = shelf (<200 m), 2.0 = slope (200-2000 m), 3.0 =

634 abyss (>2000 m).

635

636

638			
639			
640			
641			
642			
643			

Author	Locality	Latitude	Ν	Mean H	S.D.
1. Mackensen et al. 1985	Norwegian Sea	60 °N	17	1.24	0.484
2. Alve and Murray 1995	Skagerrak	52 °N	5	1.48	0.483
3. Murray 1985	North Sea	52 to 57 $^{\circ}N$	29	0.88	0.457
4. Murray 1979	Celtic Sea	52 °N	50	2.02	0.734
Scott et al. 2003					
5. Murray 1979	English Channel	50 °N	9	2.28	0.526
6. Diz et al. 2004	Spain, Portugal	42 to 48 $^{\circ}N$	11	3.34	0.57
Seiler 1975					
7. Murray 1969	East USA	39 to 41 $^{\circ}N$	14	2.19	0.258
Poag et al. 1980					
8. Murray 1969	Cape Hatteras	35 °N	6	2.52	0.258
9. Lueck and Snyder	North Carolina	34 °N	10	3.44	0.098
Murosky and Snyder 1994					
10. Phleger 1956	Gulf of Mexico	28 °N	7	2.18	0.318

Sieve size (µm)
125
63
63
63
63
63
63
05
63
63
63

Effect	Coefficient	Standard error	\mathbf{R}^2	_		
Constant	4.442	0.309	0.304			
Latitude	-0.051	0.0006		_		
		Analysis of Varian	ce			
Source	Ν	SS	df	MS	F	р
Regression	158	41.196	1	41.196	68.293	0.000
Residual		94.102	156	0.603		

Author	Locality	Latitude	Ν	Mean H	S.D.
1. Ahrens et al. 1997	Greenland	80 °N	6	2.54	0.185
2. Mackensen et al. 1985	Norwegian Sea	62 to 71 $^{\circ}$ N	39	2	0.441
3. Alve and Murray 1995	Skaggerak	52 to 58 $^{\circ}$ N	50	2.45	0.57
4. Hess and Jorissen 2009	Biscay	43 to 44 $^{\circ}N$	11	1.89	0.812
5. Seiler 1975	Portugal	32 to 40 $^{\circ}N$	8	3.26	0.162
6. Schiebel 1992	Gulf of Guinea	3 to 5 $^{\circ}N$	5	3.48	0.248
7. Schmiedl et al. 1997	East S. Atlantic	11 to 29 °S	15	2.93	0.475
8. Harloff and Mackensen 1997	Argentine Basin	37 to 49 $^{\circ}$ S	6	2.17	0.645
9. Mackensen et al. 1993	South Atlantic	46 to 55 $^{\circ}$ S	11	2.47	0.594
10. Murray and Pudsey 2004	Larsen Shelf	64 °S	8	2.26	0.209
11. Mackensen et al. 1990	Weddell Sea	70 to 72 $^{\circ}$ S	12	2.66	0.341

Sieve size (µm)
63
125
63
150
63
63
125
125
125
63
125

Effect	Coefficient	Standard error	\mathbf{R}^2	_		
Constant	3.335	0.228	0.114			
Latitude	-0.017	0.0004		-		
		Analysis of Varian	ce			
Source	Ν	SS	df	MS	F	р
Regression	119	7.39	1	7.39	14.599	0.000
Residual		43.831	117	0.375		

Effect	Coefficient	Standard error	\mathbf{R}^2	_		
Constant	2.931	0.183	0.082			
Latitude	-0.007	0.004		_		
		Analysis of Varian	ice			
Source	Ν	SS	df	MS	F	р
Regression	52	1.173	1	1.174	4.44	0.039
Residual		43.831	117	0.375		

Author	Locality	Latitude	Ν	Mean H	S.D.
1. Schmiedl et al. 1997	East S. Atlantic	11 to 29 °S	19	3.27	0.183
2. Harloff and Mackensen 1997	Argentine Sea	39 to 48 $^{\circ}$ S	11	3.03	0.311
3. Mackensen et al. 1993	S. Atlantic	35 to 55 $^{\circ}$ S	28	3.07	0.248
4. Harloff and Mackensen 1997	Scotia Sea	50 to 57 $^{\circ}$ S	17	3.16	0.329
5. Mackensen et al. 1990	Weddell Sea	69 to 70 $^{\circ}$ S	7	3.02	0.268

Sieve size (µm)	
125	
125	
125	
125	
125	

Effect	Coefficient	Standard error	\mathbf{R}^2	_		
Constant	3.313	0.093	0.052			
Latitude	-0.004	0.002		-		
		Analysis of Varian	ce			
Source	Ν	SS	df	MS	F	р
Regression	82	0.317	1	0.317	4.41	0.039
Residual		5.753	80	0.072		

Area	Depth	Ν	Mean H	S.D.
Shelf	<200 m	158	1.94	0.928
Slope	200–2000 m	180	2.4	0.636
Abyss	>2000 m	82	3.13	0.274

Source	Ν	SS	df	MS	F	р
Н	420	76.589	2	38.294	74.719	0.000
Error		213.716	417	0.513		

Variable	Shallow	Deep
Density	high	low
Diversity with increasing latitude	decrease	decrease
Diversity with depth	low	high
Species distribution	narrow	widespread
Communities	many	few
Community structure	stasis, positive	stasis, negative
Species duration	low	high
Duration of current latitudinal gradient	at least 10 Ma	34 Ma