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Abyssal seafloor communities cover more than 60% of Earth’s surface. 
Despite their great size, abyssal plains extend across modest environmental 
gradients compared to other marine ecosystems. However, little is known 
about the patterns and processes regulating biodiversity or potentially 
delimiting biogeographical boundaries at regional scales in the abyss. 
Improved macroecological understanding of remote abyssal environments 
is urgent as threats of widespread anthropogenic disturbance grow in the 
deep ocean. Here, we use a new, basin-scale dataset to show the existence 
of clear regional zonation in abyssal communities across the 5,000 km 
span of the Clarion–Clipperton Zone (northeast Pacific), an area targeted 
for deep-sea mining. We found two pronounced biogeographic provinces, 
deep and shallow-abyssal, separated by a transition zone between 4,300 
and 4,800 m depth. Surprisingly, species richness was maintained across 
this boundary by phylum-level taxonomic replacements. These regional 
transitions are probably related to calcium carbonate saturation boundaries 
as taxa dependent on calcium carbonate structures, such as shelled 
molluscs, appear restricted to the shallower province. Our results suggest 
geochemical and climatic forcing on distributions of abyssal populations 
over large spatial scales and provide a potential paradigm for deep-sea 
macroecology, opening a new basis for regional-scale biodiversity research 
and conservation strategies in Earth’s largest biome.

The abyssal seabed lies between water depths of 3,000 and 6,000 m 
(ref. 1), representing most of the Earth’s surface and harbouring some 
of its most extensive but least explored ecosystems. This abyssal 
seabed consists of plains and hills that extend across ocean basins, 

interspersed with seamounts and subdivided by mid-ocean ridges, 
ocean trenches and fracture zones1. Lacking sunlight, energy in this 
environment is highly limited, with detrital particles sinking from 
surface waters providing the main source of food2, while temperatures 
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Results and discussion
Macroecological patterns in the northeast Pacific abyss
Our analyses reveal the existence of a clear depth zonation demark-
ing an evident boundary between biogeographic provinces across 
the northeast Pacific, with distinct shallow and deep-abyssal faunas 
and an intermediate transition zone. Regional benthic community 
structure at higher taxonomic levels exhibited a more pronounced 
relationship to depth (Fig. 2b) than other environmental gradients (for 
example, Supplementary Fig. 1) while food particle supply appears to 
be important at more intermediate, sub-regional, spatial scales (see 
below). Our results show distinct communities but incomplete taxo-
nomic replacement in the presence and relative abundance of seabed 
taxa across the depth range studied, both within and between phyla. 
The most remarkable shifts were as follows: (1) soft corals (Alcyona-
cea) numerically dominated at shallow-abyssal depths (mean density 
~2,500 individuals ha−1) but decreased in abundance by over an order 
of magnitude below 4,300 m (mean density ~100 ind ha−1), becoming 
virtually absent below 4,800 m (mean density <10 ind ha−1); (2) brittle 
stars (Ophiuroidea) were most abundant at shallow-abyssal depths 
(mean density ~2,000 ind ha−1), numerically dominated assemblages 
at intermediate depths (4,300–4,800 m; mean density ~1,500 ind ha−1) 
but decreased to low abundances below 4,800 m (mean density 
<40 ind ha−1); (3) anemones (Actiniaria) consistently increased in rela-
tive abundance with depth, first replacing soft corals as the dominant 
Cnidaria group below 4,300 m and then replacing brittle stars as the 
most dominant group in assemblages below 4,800 m (Fig. 2d); (4) sea 
cucumbers (Holothuroidea) largely increased in relative abundance 
with depth, replacing brittle stars as the most abundant Echinoder-
mata group below 4,800 m (Fig. 2d); (5) shelled molluscs (for example, 
Bivalvia, Gastropoda and Polyplacophora), relatively abundant above 
4,400 m (mean density ~300 ind ha−1), were absent below 4,400 m, 
where cirrate octopuses (Cephalopoda) became the only molluscan 
group in megabenthic assemblages. Changes in dominant taxa at the 
class or phylum level (Fig. 2c) clearly delimited two distinct abyssal 
assemblages (Fig. 2d): a shallow community (3,800–4,300 m) and a 
deep community (4,800–5,300 m). These were separated by an inter-
mediate or transitional assemblage (4,300–4,800 m), which contained 
elements of both communities. No major taxonomic groups were 
restricted to the transitional zone (Fig. 2c).

The zonation pattern was also evident at lower taxonomic levels in 
the 411 invertebrate morphotypes recognized in the data. For example, 
from the 277 morphotypes found in the deep province, 60 (41 rare, that 
is <5 occurrences) were found exclusively in this deep zone, while 64 
morphotypes (45 rare) out of a total of 283 were found exclusively in 
the shallow province. However, only 25 morphotypes (23 rare) from a 
total of 264 were found exclusively in the transitional zone. From the 
total of 175 (14 rare) morphotypes that were found in both shallow and 
deep communities, only two were within the ten most dominant taxa 
in both the shallow province (first- and third-most abundant) and in 
the deep province (nineth- and tenth-most abundant; Supplementary 
Table 2): the brittle star Ophiosphalma glabrum (Fig. 1h; well-studied 
in the eastern CCZ34) and Thenea sp. indet. (Fig. 1g), an undescribed 
species of nodule-dwelling sponge.

The nature of the taxonomic shifts between provinces and the 
depth range at which these occur suggests that the carbonate com-
pensation depth (CCD) plays a key role in the depth zonation we 
encountered. The CCD lies close to the seafloor depth in the northeast 
Pacific35, deepening north to south from ∼4,400 to ∼4,800 m (ref. 36). 
Below the CCD, calcium carbonate (CaCO3) is undersaturated, which 
can energetically constrain the development and distribution of spe-
cies highly dependent on carbonate structures such as in calcareous 
Foraminifera, a ubiquitous protozoan group showing clear depth 
zonation at intermediate scales in the abyss37,38. It is these groups, 
probably depending on CaCO3 structures, that exhibit the greatest 
variation in relative abundance or even presence with depth in our 

are steady at 0.5–3.0 °C (ref. 3) and bottom currents are generally low 
(0–0.25 m s−1) (ref. 4). As a result, abyssal benthic communities typi-
cally exhibit low abundance and biomass compared with other marine 
environments5 but they support high species richness at regional to 
landscape scales6,7 and play an active role in the cycling of carbon8. 
Abyssal habitats are therefore considered to be reservoirs for bio-
diversity7,9 and sources of important ecosystem services2,10. Despite 
their remoteness and as a consequence of being energy-restricted 
and environmentally stable, abyssal habitats are also expected to be 
highly vulnerable to anthropogenic disturbances including climate 
change11,12 and emerging industrial activities such as polymetallic nod-
ule mining13,14. To adequately conserve the biodiversity and services of 
abyssal seabed ecosystems, it is critical to consider and protect their 
full range of habitats and communities, which requires elucidating 
the patterns and processes controlling the distribution of abyssal 
populations over large, regional scales.

Macroecological studies assessing spatial variation on regional 
to global scales in the deep ocean15–18 have revealed that faunal body 
size and abundance gradually decline with decreasing energy avail-
ability along gradients such as increasing depth5,19 or latitude16,20. 
These relationships are thought to constrain higher-order com-
munity structure and function21, for example, reducing the diver-
sity of larger-sized taxa with depth22. Predicted declines in species 
richness with depth are consistent with checklist-based analyses 
of large marine databases23. Overall, results from large-scale stud-
ies in the deep ocean confirm clear variation between abyssal and 
(shallower) bathyal seafloor ecosystems16,19,22, which encompass a 
variety of relatively well-known habitats, between 1,000 and 3,000 m 
depth, including continental slopes, submarine canyons and coral 
mounds. Consequently, while biogeographic provinces proposed 
for the deep ocean readily distinguish bathyal and abyssal provinces 
within oceanic basins24, potential variation within abyssal regions 
remains largely unresolved a decade after provincial boundaries 
based on surrogate environmental data were postulated24, since 
large-scale empirical studies (for example, bottom-up assessments) 
are lacking for remote abyssal ecosystems. As such, the processes 
regulating alpha- and beta-diversity across the scale of a seemingly 
connected abyssal plain remain unclear, particularly for the largest 
size-class of seafloor organisms, megafauna (animals >10 mm in 
maximum dimension). Megafauna are a conspicuous component 
of the abyssal benthos and a common target for investigation in 
deep-sea spatial ecology13,25–27 because occurrences of these taxa 
can be determined across large spatial scales from seabed imagery28 
collected by deep-sea robots29.

To address these knowledge gaps, we compiled a new basin-scale 
standardized dataset to investigate patterns of abundance and diver-
sity in benthic megafaunal communities across the Clarion–Clipperton 
Zone (CCZ, northeast Pacific). The CCZ spans ~6 million km2 of abys-
sal plain in areas beyond national jurisdiction between the Exclusive 
Economic Zones of Kiribati and Mexico (Fig. 1a) and is the largest area 
in the world currently in exploration phase for mineral mining30,31. We 
selected data from 12 expeditions using comparable seabed imag-
ing approaches to study invertebrate benthic megafauna distribu-
tion patterns across the CCZ. We collated, reanalysed, aligned and 
taxonomically standardized seabed imagery data from these studies 
including three new sites covering a total of >150,000 m2 of seabed, 
which represents an area two orders of magnitude greater than that 
commonly assessed in studies of abyssal megafauna (for example, 
ref. 27,32, <5,000 m2). Our dataset spans 5,000 km across the CCZ  
(28 geographical locations) encompassing >50,000 megafaunal speci-
mens from 411 morphotypes (morphologically identifiable taxonomic 
units33) in 13 phyla, enabling investigation of ecological gradients (for 
example, with latitude, depth or food supply) in seabed communities 
across the region to develop key understanding of macroecological 
patterns in Earth’s largest biome.
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analysis and thereby contribute most to regional beta-diversity. For 
example, shelled molluscs (requiring biomineralization of CaCO3 for 
shell development39) were absent below 4,400 m and soft corals (with 
scleroblast cells requiring CaCO3 to produce sclerites40) and bryozoans 
(most species dependent on CaCO3 exoskeletons41) were replaced by 
‘soft’ anemones (Actiniaria) below 4,300 m. The echinoderm transi-
tion from ophiuroids to holothurians below 4,800 m, yielding the 
dominant taxon of the deep province, could be related to either differ-
ing CaCO3 requirements or metabolic efficiency, documented across 
echinoderms42. All of these shifts were observed within the depth range 
(4,400–4,800 m) of the CCD in the northeast Pacific35,36. However, our 
understanding of biogeochemical and metabolic cycles in abyssal 
ecosystems is still too limited to fully comprehend the specific role of 
the CCD and calcium calcite saturation, as a biogeographical driver in 
abyssal metazoans.

Remarkably, despite the shifts in benthic community structure 
between provinces, diversity rates were relatively similar across bio-
geographic boundaries (Fig. 3c). Richness (Hill’s q = 0) ranged between 
32 and 62 morphotypes per 200 specimens in the shallow-abyssal prov-
ince and between 48 and 63 in the deep one but we found no evidence of 
a difference in richness across the three depth ranges (overlapping 95% 
confidence intervals; Fig. 3c). We also found little evidence of variations 
between deep, transition and shallow assemblages in Shannon diversity 
(Hill’s q = 1; Fig. 3e), a metric more sensitive to species evenness43. How-
ever, we found very strong evidence of an increase in both taxa richness 
(F1,159 = 115.4, P < 0.001) and Shannon diversity (F1,159 = 94.09, P < 0.001) 
with increasing depth (Fig. 3d,f). This reflects a higher evenness of taxa 
in the deep province. For instance, the ten most abundant morphotypes 
in the shallow and intermediate depth ranges encompassed ~60% of 
the total abundance sampled in these areas, whereas below 4,800 m, 
the ten most abundant taxa represented only ~40% of all fauna (Sup-
plementary Table 2). An increase in evenness across ecological com-
munities is often related to a decrease in surface productivity44 and, in 
abyssal areas, greater flux of sinking food is usually found in shallower 
locations nearer to surface primary production2,8. This is generally the 
case in the northeast Pacific region45 and seems a plausible driver for 
the higher evenness observed at regional scale in the deep province, 
particularly as our sampling approach was specimen-rarefied. The 
higher evenness of the deep community was also evident in species 
accumulation patterns (that is, steeper initial accumulation; Fig. 3g). 
However, with increasing sampling effort, estimated total richness of 
the deep province remained consistently higher than the shallower 
communities, suggesting that both biodiversity components (richness 

and evenness) were not only maintained but slightly enhanced, with 
increasing depth.

Our results distinguish two abyssal biogeographic provinces with 
remarkably distinct benthic community features within a region (north-
east Pacific) where a previous top-down environmental assessment 
identified the potential for two abyssal provinces24. We found very 
strong evidence of different faunal densities between the deep and the 
shallow provinces (Fig. 3a), with megabenthic standing stocks largely 
decreasing with depth (F1,82 = 51.61, P < 0.001, Fig. 3b). As was expected 
from local megafaunal studies25–27, density (range 0.06–1.46 ind m−2) 
was up to an order of magnitude larger in the shallow than in the deep 
province (Fig. 3a). Nonetheless, regional patterns of density within 
provinces appeared more related to variations in food supply, that 
is particulate organic carbon (POC) flux, to the seabed (Supplemen-
tary Fig. 3a) than depth (Fig. 3b), especially in deposit-feeding fauna 
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Fig. 1 | Study region in the northeast Pacific basin and examples of abyssal 
benthic megafauna typically encountered at different depth ranges.  
a, Map of study locations surveyed using deep-sea robots (ROVs and AUVs). 
Points indicate locations (depths 3,900–5,300 m) where data from seabed 
imagery studies were collated from, aligned and reanalysed using standardized 
methodology for homogenous detectability and taxonomic identification of 
invertebrate benthic megafauna (animals >10 mm). The colour of the points 
follows a consistent scheme used to differentiate each site in the other figures. 
b–p, Examples of abyssal Pacific metazoan megafauna morphotypes (including 
depth, site and code in standardized catalogue), ordered by depth. b, Relicanthus 
daphneae sp. inc. (3,914 m, APEI-12, REL_001). c, Bathystylodactylus echninus 
(4,005 m, APEI-6. DEC_009). d, Leptochiton sp. indet. (4,205 m, NORI-D, 
MOL_002). e, Bathygorgia profunda sp. inc. (4,050 m, APEI-6, ALC_004), growing 
attached to a fossilized Otodus megalodon shark tooth. f, Sicyonidae gen. indet. 
(4,247 m, BGR-E, ACT_002). g, Thenea sp. indet. (4,190 m, NORI-D, DES_021).  
h, Ophiosphalma glabrum sp. inc. (4,621 m, TOML-D, OPH_010). i, Bifaxariidae 
gen. indet. (4,210 m. BGR-E, BRY_012). j, Hyalonema clarioni sp. inc. (4,848 m, 
TOML-C, HEX_002). k, Grimpoteuthis sp. indet. (4,959 m, TOML-C, MOL_008). 
l, Abyssopathes lyra (4,770 m, TOML-B, ANT_002). m, Tergivelum sp. indet. 
(5,019 m, KODOS, HEM_005). n, Psychropotes sp. indet. (5,007 m, APEI-4, 
HOL_047). o, Kamptosoma abyssale sp. inc. (5,240 m. APEI-1, URC_010).  
p, Actinostolidae gen. indet. (4,620 m, APEI-9, ACT_088).
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(Supplementary Fig. 3b). In particular, the high variability in faunal den-
sity across the shallow province (Fig. 3a) probably reflects a latitudinal 
gradient in POC flux at intermediate scales, with lowest faunal densities 
in the northern sector (for example, range APEI-6 site: 0.3–0.4 ind m−2), 
increasing towards southeast locations (for example, ranges NORI-D, 
0.9–1.2 ind m−2; APEI-12, 1.3–1.5 ind m−2) in closer proximity to the high 
primary productivity related to equatorial upwelling8, with known 
capacity to regulate abyssal benthic processes46. Similarly, the benthic 
communities surveyed in northeasternmost locations (for example, 
APEI-6; ref. 47)—for instance, with the largest densities we observed in 
scavenging megafauna (mostly decapods and isopods; Supplementary 
Fig. 3d) and an evidently lower total taxonomic richness (Fig. 3h)—were 
markedly distinct from those in the southeast locations of the shal-
low province (such as BGR-E, UK-1, APEI-12 and NORI-D; Fig. 2a and 
Supplementary Fig. 2). These differences could be driven by altered 
oceanographic conditions over the northeast CCZ, potentially related 
to the influence of the North Pacific Equatorial Current48 and the closer 
proximity to the continental shelf, which may transport pelagic food 
falls49 more commonly into this sector. Hence, while regional patterns 
across provinces in abundance, diversity and community composition 

were clearly zoned by depth over scales of thousands of kilometres, 
variations at intermediate scales within provinces, over hundreds of 
kilometres, might be more related to surface productivity gradients32 
(also at the deep province; for example, Supplementary Fig. 2c) and 
other environmental (hydrographical) variation between sectors. Over-
all, this reflects a much higher ecological heterogeneity, at multiple 
scales, than was previously expected for benthic assemblages across 
the northeast Pacific abyssal seabed. This overlooked heterogeneity, 
stemming from geochemical and climatic forcing, has crucial implica-
tions for future ecological and macroecological research in abyssal 
communities and for the success of regional-scale conservation strate-
gies implemented to protect biodiversity in the CCZ50 and probably in 
other abyssal areas targeted by deep-sea mining worldwide31.

Conclusions
The results of this study represent the largest multiphylum assess-
ment of beta-diversity patterns to date conducted across such a vast 
abyssal seabed extension (>5,000 km span), provide key insights to 
our view of abyssal ecosystems and biodiversity and challenge some 
current paradigms in deep-sea macroecology. The maintenance 
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of high taxonomic richness with increasing depth by phylum-level 
replacements (in presence or dominance) was surprising. Diversity, 
especially that of the largest-sized fauna, is commonly expected to 
decrease with depth and nutrient flux in the deep sea5,19,21,22, a reduc-
tion that is thought to reflect the wider geographic ranges of deep-sea 
species23. But our results suggest that more complex processes may 
control diversity in the abyss, helping maintain community richness 
with depth. These interpretations could be affected by the histori-
cal unbalance in the sampling conducted in abyssal ecosystems (for 
example, ~90% of the species living at the CCZ remain undescribed51) 
compared to shallower deep-sea environments52. In turn, our results 
add to the existing evidence53 against a source–sink dependency from 
bathyal to abyssal communities in the Pacific54 and stress that, given 
the wealth of between-phylum species replacement we encountered 
with increasing depth, assessments including multiple phyla might be 
best suited to investigate biodiversity and macroecological patterns 
in abyssal regions.

The presence of such a clear and unexpected boundary zone 
demarking the limits of provinces has not been previously docu-
mented in abyssal metazoans, opening questions for further mac-
roecological research in the deep ocean. We suggest that the CCD 
may control the location of the environmental boundaries between 
shallow and deep-abyssal provinces for megafauna, as appears to 
occur in protozoans (for example, Foraminifera37,38), although more 
physiological research is needed to better understand how CaCO3 
saturation affects different phyla. Greater understanding of CaCO3 
saturation as a biodiversity driver is especially important as the CCD 
is expected to shoal with increased CO2 levels in the ocean associated 
with climate change55. In the light of our results, shoaling of the CCD 
could have much larger implications for abyssal biodiversity than previ-
ously expected, especially in regions like the northeast Pacific where 
the seafloor depths transcend the current CCD11. A CCD shoaling of 
tens of metres in abyssal ecosystems, given their vast area, could lead 
to shifts in the environmental conditions (for example, from CaCO3 
saturation to undersaturation) across thousands of km2 of seabed 
worldwide. This could trigger large shifts in community structure and 
species distributions or even extinctions of highly specialized abyssal 
taxa, adding to the cumulative impacts of deep-sea mining and other 
emerging anthropogenic disturbances56 that might concur on Earth’s 
largest biome in the coming years.

Methods
Study area
The CCZ is an extensive abyssal plain and hill ecosystem, interspersed 
by seamount areas26,57, covering approximately 6 million km2 of sea-
floor stretching from 5° to 20° N and 115° to 160° W in the northeast 
Pacific basin (Fig. 1). Important abiotic factors are broadly similar 
across the northeast Pacific abyssal seafloor, such as low currents, 
constant bottom-water salinity and temperature45. In contrast, there 
is a gradual increase in water depth from east to west (from 3,700 
to 5,500 m; Fig. 1a) resulting from the contraction of older oceanic 
crust to the west58 and a gradient in POC flux to the seabed, generally 
diminished with depth but largely enhanced towards more productive 
southeastern waters59 (Supplementary Methods). In turn, the CCD (the 
depth below which the rate of supply of calcium carbonate from the 

D
en

si
ty

 (i
nd

 m
–2

)

0

0.5

1.0

APEI-1
a b

c d

e f

g h

APEI-4
APEI-7
TOML-B
KODOS
TOML-C
APEI-9
TOML-D
GSR
APEI-6
BGR-E
NORI-D
UK-1
APEI-12

Depth range (m)
>4,800 4,800–4,300 <4,300

Shallow
Transition
Deep

TOML-B
KODOS
TOML-C
TOML-D
APEI-6
BGR-E
NORI-D
UK-1
APEI-12

Shallow
Transition
Deep

Depth (m)
5,200 4,800 4,400 4,000

60

40

20

0

Ri
ch

ne
ss

 (S
)

Sh
an

no
n 

(e
xp

H
’)

To
ta

l r
ic

hn
es

s 
(S

)

40

30

20

10

0

0

200

150

100

50

0

300

200

100

Specimens (n)
2,500 5,000 7,500 10,000 1,000 3,000 5,000

ŷ = –0.25 + 68.48 eX/–1,000

R2 = 0.38; P < 0.0001

ŷ = 64.99 — 1120.85 eX/–1,000

R2 = 0.42; P < 0.0001

ŷ = 37.27 — 1016.55 eX/–1,000

R2 = 0.37; P < 0.0001

Fig. 3 | Standing stocks were substantially larger in the shallow than  
in the deep-abyssal province while biodiversity rates were similar,  
although slightly increasing with depth, across the northeast Pacific 
abyss. a,b, Faunal densities calculated in 84 independent community samples 
(containing 400–500 specimens) extending across 23 geographical locations. 
a,b, Variations in faunal density: between abyssal provinces (n = 41 samples in 
shallow, 27 in transition and 16 in the deep province) (a); and across the depth 
range (F1,82 = 51.61, P = 0.001, 2.81 × 10−10) (b). c–f, Diversity estimates calculated 
in 161 independent community samples (containing 200 specimens identified 
to morphotype level per sample) extending across 28 geographical locations. 
c,d, Variations in morphotype richness (S): between abyssal provinces (n = 81 
samples in shallow, 39 in transition and 41 in the deep province) (c); and across 
the depth range (F1,159 = 115.4, P = 2.2 × 10−16) (d). e,f, Variations in the exponential 
form of Shannon’s diversity index (expH’): between abyssal provinces (n = 81 
samples in shallow, 39 in transition and 41 in the deep province) (e); and across 
the depth range (F1,159 = 94.09, P = 2.2 × 10−16) (f). g,h, Morphotype accumulation 
curves, showing variations in the total richness sampled: between provinces 
(dash-line: all data combined) (g); and between different sites (including only 
sites with more than three community samples) (h). a,d,e, Mean values (bars) 
and 95% confidence intervals (error bars) across all the samples in each province. 
b,d,f, Values calculated for each independent sample (points) and results of 
linear regression; mean (dashed-line) and 95% confidence intervals (shallowing). 
g,h, Mean values across 100 randomizations (lines) and 95% confidence intervals 
(shallowing). Note depth was plotted throughout decreasing from left to right, 
west to east, to mirror the approximate spatial pattern across the CCZ.
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surface is equal to the rate of dissolution60) lies close to the seafloor in 
the northeast Pacific35, deepening north to south between 4,400 and 
4,800 m (ref. 36). Surface sediments in the northeast Pacific are rela-
tively well-oxygenated and generally dominated by either siliciclastic 
clay and radiolarian ooze in the northern and central parts of the CCZ, 
or by biogenic calcareous oozes and fine-grained sediments in south-
ern sites45. These are supplied by extremely low sedimentation rates, 
regionally varying between 0.2 and 1.15 cm per 1,000 years61. These 
conditions are thought to promote the (extremely slow) formation of 
polymetallic nodules35, yielding growth rates of ∼1–12 mm per million 
years in the abyssal Pacific31. Nodules can vary in size, shape and abun-
dance61 and are extensively distributed across the northeast Pacific31 
but are not exclusively found there. Vast abyssal nodule field areas are 
present in the southeast Pacific (for example, Peru Basin), the south-
west Pacific (for example, Penrhyn Basin) and in the Central Indian 
Ocean Basin31. Nodule fields form an unusual mosaic habitat, where 
the hard substratum provided by nodules acts as keystone structure 
increasing local seabed complexity62,63, promoting the occurrence of 
some of some of the most biodiverse benthic assemblages surveyed 
in the abyss25,27. But the biodiversity of the CCZ is poorly known, for 
example 90% of the species identified in the region are thought to be 
new to science51 and substantial levels of dark biodiversity have been 
predicted34. In addition, a general lack of standardization of intercali-
brated taxonomic standards for the identification of benthic fauna50 
has historically hampered comparability between biological studies64 
and thereby the assessment of regional, macroecological patterns 
across the northeast Pacific basin.

Data processing
Occurrences of benthic invertebrate metazoans were collated from a 
range of seabed image surveys collected using comparable sampling 
methodology across the northeast Pacific (Table 1). To ensure homog-
enous animal detectability and a minimum sample size per study loca-
tion, we selected only available imagery obtained using deep-sea robots 
(remotely operated vehicles, ROVs; and autonomous underwater vehi-
cles, AUVs; and towed-camera platforms) that fulfilled the following 
criteria: (1) collected between 1 and 4 m above the seabed; (2) well-lit 
and high resolution (that is, minimum resolution at 2 m above-seabed, 
1,280 × 720 pixels); (3) total seabed survey area imaged per location 
>2,000 m2; (4) no overlapping frames included in image-based studies; 
(5) scalable stills collected vertically facing the seabed (only in data 
used for density analysis, see below). Imagery data were collected 
within 14 sites managed by the International Seabed Authority across 
the CCZ (Table 1 and Fig. 1a); eight mining exploration-licenced sites 
and six APEIs.

Megafauna specimens >10 mm were detected and counted in 
imagery reanalysed from the selected surveys (Table 1). Using BIIGLE 
2.0 software65, animals were identified to the lowest taxonomic level 
possible (morphotype, typically genus or family level in undescribed 
species; for example, Fig. 1b–p) in accordance with an abyssal-Pacific 
standardized megafauna catalogue66 developed during a range of 
scientific workshops, in collaboration with taxonomic experts (see 
Acknowledgements), and by reference to existing literature67–69—
though developed before the major higher taxonomic revision 
recently undergone by Octocorallia70. The catalogue follows the  
ref. 33 open nomenclature to report the taxonomic resolution 
reached in each morphotype but all taxa identified from the catalogue  
(411 morphotypes in this study) were deemed as sufficiently different 
morphologically by taxonomic experts to be confidently considered 
separate species. Specimens with uncertain classification at the mor-
photype level (~30% of all records) but identifiable to a certain higher 
taxonomical level (like phylum or class) were retained only for density 
analyses. Taxa living in a closed shell or tube (for example, most poly-
chaetes) were excluded from analysis as it is not possible to determine 
whether these are alive in images. Several spatially blind reviews were 

conducted to the whole dataset to ensure a robust taxonomic align-
ment between sites, consisting in side-by side visualization of all 
specimens classified under the same catalogue label using the ‘Label 
Review Grid Overview’ tool in BIIGLE65; a process that was repeated 
many times by the same group of expert seabed image scientists, to 
minimize potential bias28. In addition, the likely feeding behaviour 
(suspension, deposit and scavenger or predator feeding) of each 
morphotype was inferred from observational knowledge and by refer-
ence to similar organisms described in the literature. With a total of 
53,512 megafaunal specimens in 13 phyla, our biodiversity dataset was 
compiled across a wide geographical span (>5,000 km) at the abyss 
and is of comparable magnitude to the largest datasets that have 
been used to underpin our theoretical understanding in the deep-sea  
(for example, refs. 71,72).

Survey design
We compiled invertebrate megafauna occurrences into two different 
subsets to investigate variations across space in different parameters. 
These were (1) standing stocks subset (SSdat): containing faunal count 
data at all taxonomical levels obtained only from scalable still images 
and thereby associated with a precise measure of the seabed surface 
area (47,087 specimens); and (2) biodiversity subset (BDdat): contain-
ing faunal count data obtained from both image and video surveys but 
including only specimens identified up to morphotype level (36,432 
specimens). Using ArcMap v.6.10 software, we interpolated each 
specimen across a 10 × 10 km2 regional grid to assign and constrain 
occurrence data to different geographical locations (units of 100 km2) 
within sites. This process divided the SSdat into 23 locations and 
the BDdat into 28 locations (Fig. 1 and Table 1). Faunal occurrences 
(or image units, in SSdat) within each geographical location were 
then randomly resampled without replacement to generate equally 
sized (in terms of number of specimens encountered) replicate 
sample units, characterizing the community at each location while 

Table 1 | Seabed imagery data collected across northeast 
Pacific basin (order west to east) and selected for 
standardized analysis in the present study. Note that 
video datasets with high uncertainty of the estimated 
area surveyed were not used in density analyses and ‘Area 
sampled’ provided as approximate total linear length of 
survey transects

Site 
(locations)

Depth 
minimum to 
maximum 
(m)

Images 
(n)

Area 
surveyed 
(m2)

Specimens 
(n) 

Source

APEI-1 (1) 5,198–5,252 1,250 6,767 457 26

APEI-4 (1) 4,999–5,039 1,706 9,529 603 26

APEI-7 (1)a 4,855–4,873 1,347 7,277 266 26

TOML-B (2) 4,419–5,175 6,939 24,980 3,571 25

KODOS (2)a 4,887–5,065 (video) > 20 km 4,493 This studyb

TOML-C (2) 4,817–5,063 8,132 29,275 3,386 25

APEI-9 (1)a 4,627–4,693 (video) >8 km 1,057 This studyb

TOML-D (3) 4,345–4,750 5,612 20,203 8,889 25

GSR (1)a 4,455–4,480 (video) >1.2 km 875 57

APEI-6 (3) 3,985–4,263 11,555 21,582 7,773 47,62,63

BGR-E (6) 4,024–4,423 6,046 15,626 12,910 86

NORI-D (3) 4,170–4,320 2,500 5,067 5,160 This studyb

UK-1 (1) 4,015–4,033 1,355 2,178 1,371 27,87

APEI-12 (1) 3,905–3,952 1,102 2,035 2,702 27,87
aDatasets excluded from density analyses. bCollection methodology provided in 
Supplementary Methods.
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minimizing potential spatial autocorrelation biases (for example, 
ref. 73). In locations where surveys covered a large depth spectrum, 
data were further constrained to 200 m depth bins during replicate 
sample generation. Following recommendations of minimum sample 
size for accurate and precise estimation of local megabenthic com-
munity features47 and to minimize the potential effect of regional 
gradients in faunal abundance on diversity measures (for example, 
ref. 25), we generated SSdat samples containing 450–500 specimens 
(taxonomic resolution including specimens identified to morphotype 
and to higher taxonomical levels) and BDdat samples containing an 
exact number of 200 specimens (taxonomic resolution including 
only specimens identified to morphotype level). This process yielded 
a total of 84 samples standardized for density analyses (standing 
stocks) and 161 samples standardized for biodiversity analyses (rich-
ness and beta-diversity).

Data analysis
Depth and position (latitude and longitude) of specimens (or images) 
were averaged within each sample to investigate variations in com-
munities across space and environmental gradients. Sample positions 
were interpolated with predictions of yearly POC flux (gCorg m−2 yr−1) 
to the seabed derived by applying vertical flux attenuation59 to 
satellite-derived export flux data (Supplementary Methods). Differ-
ent ecological metrics were calculated for each sample: (1) standing 
stocks were assessed as the total numerical abundance of specimens 
per total unit (m2) of seabed surveyed in each SSdat sample; that is, 
for the whole assemblage, specific populations or faunal groups of 
interest (taxonomic or functional) and (2) to examine the range of 
diversity characteristics, Hill’s diversity numbers of order 0 and 1  
(ref. 43) were calculated in each BDdat sample as morphotype richness 
(S), the exponential form of the Shannon diversity index (expH’), for 
the whole assemblage.

Preliminary exploration of the interaction between different envi-
ronmental factors (depth, latitude, longitude and POC flux) across 
study locations revealed substantial correlations between depth and 
longitude and also between POC flux and latitude (see Supplementary 
Fig. 1). Consequently, we choose to investigate only potential interac-
tions between ecological metrics (y, that is standing stock and diversity 
indices) and two main environmental factors (x, that is water depth and 
POC flux, as these were not significantly correlated; see Supplementary 
Fig. 1). We used the Akaike information criterion 74 to select the best 
fitting linear regression across a range of data transformation types 
(where ‘exp’ consistently outperformed ‘linear’ and ‘log’).

We followed a simple, data-driven, bottom-up approach to inves-
tigate the potential existence of biogeographic boundaries across the 
depth spectrum of the north Pacific abyss. First, using the whole data-
set, we generated ridgeline plots depicting within-group geometric 
distributions of the total abundance sampled in the most dominant 
high taxonomic groups (>50 occurrences, minimum taxonomic rank: 
order). On the basis of the results of this analysis, we assessed the poten-
tial variability within and between the megabenthic communities in 
tentative biogeographical provinces, by grouping samples in three dif-
ferent depth bins: shallow <4,300 m; transition 4,300–4,800 m; deep 
>4,800 m). Mean values and 95% confidence intervals were calculated 
for different ecological parameters (faunal density based on SSdat 
samples and both diversity indices based on BDdat samples) within 
each tentative province. To contextualize patterns in morphotype 
richness and the representability of the sampling conducted within 
each depth range, morphotype accumulation curves were calculated 
following ref. 75, by random resampling of BDdat samples in each depth 
category 100 times without replacement forming increasingly larger 
sampling units, using EstimateS v.9.1 software76. In addition, using 
the same methodology, curves were also calculated for study sites 
encompassing a minimum of three BDdat samples (sampling effort 
>600 specimens identified to morphotype level).

Variations in community composition across locations, sites and 
potential biogeographical provinces were further explored using 
BDdat samples. Dissimilarity in faunal composition between all pairs 
of samples was calculated using the Bray–Curtis dissimilarity meas-
ure on square-root transformed (normalized77) taxon abundances. 
Non-metric multidimensional scaling ordinations were conducted to 
visualize the rate of dissimilarity (distance) between all pairs of sam-
ples; isotropic contour lines depicting broadly approximated depth 
ranges were fitted using generalized additive models78 in the resulting 
multidimensional scaling plots to aid visualization of beta-diversity 
patterns across environmental gradients. All data processing and 
analysis were implemented in R v.4.2.1 (ref. 79), using standard analysis 
methods and functions from the packages: ‘vegan’80, ‘AICcmodavg’81, 
‘ggridges’82 and ‘ggplots2’83. We report statistical evidence of variations 
in ecological parameters across environmental gradients (linear regres-
sions, that is R2 and P values) or between biogeographical provinces 
(95% confidence intervals; significant at P < 0.05) using the simplified 
language of evidence84.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data generated for this study, invertebrate abyssal megafauna taxa 
occurrences across the northeast Pacific seafloor, are available at 
https://doi.org/10.5281/zenodo.7982461 (ref. 85). The Abyssal Pacific 
Seafloor Megafauna Atlas (APSMA image-based taxonomical cata-
logue) developed to conduct this study is available at https://doi.
org/10.5281/zenodo.7765164 (ref. 66). Data handling and analyses 
were implemented using standard methods, software tools and code 
functions detailed in the Methods.
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