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Abstract

Governments worldwide are setting ambitious targets for offshore renewable energy development (ORD). However, deployment is
constrained by a lack of understanding of the environmental consequences of ORD, with impacts on protected birds forming a key
environmental consenting challenge. Assessing the impacts of ORD on marine birds is challenging, utilizing interlinked approaches to
understand complex behavioural, energetic, and demographic processes. Consequently, there is considerable uncertainty associated
with ORD assessments for marine birds, with current methods failing to quantify uncertainty in a scientifically robust, evidence-based
manner. This leads to a high degree of precaution and a lack of confidence in the evidence used to inform ORD consenting decisions.
We review the methods used to estimate ornithological ORD impacts in the UK, a country at the forefront of ORD. We identify areas
in which uncertainty quantification could be improved through statistical modelling, data collection, or adaptation of the assessment
process. We develop a framework for end-to-end quantification of uncertainty, integrating uncertainty estimates from individual stages
of the assessment process. Finally, we provide research recommendations to better quantify and reduce uncertainty, to lower future
ORD consenting risk. These recommendations extend beyond the UK and could improve impact assessments in other countries with
different legislative frameworks.
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Introduction

Ambitious targets for expansion of offshore renewable en-
ergy power generation are being set by governments in many
countries around the world. Environmental policies in these
countries require that this growth is delivered in a sustain-
able manner. At the heart of this sustainability goal is the
need to quantify effects on protected wildlife and, in some
regulatory contexts, demonstrate no adverse effect on pop-
ulations of protected species, in particular top predators such
as seabirds. For example, under the EU Birds Directive, Spe-
cial Protection Areas (SPAs), classified for their nationally and
internationally important aggregations of seabirds, require
a Habitats Regulation Appraisal (HRA) where any planned
development is deemed to potentially have an adverse ef-
fect on an SPA (https://www.gov.scot/policies/environmental-
assessment/habitats-regulations-appraisal-hra/). Offshore re-
newable energy developments (ORDs) have the potential to
affect protected seabird populations through collisions with
turbine blades and through displacement from important
habitat (Drewitt and Langston, 2006; Busch et al., 2013;
Thaxter et al., 2015; Dierschke et al., 2016; Welcker and
Nehls, 2016). Seabirds are long-lived animals, meaning their
The Author(s) 2023. Published by Oxford University Press on behalf of Internatio
distributed under the terms of the Creative Commons Attribution License (https:/
distribution, and reproduction in any medium, provided the original work is prop
opulations are sensitive to small increases in adult mortality.
urvival and productivity rates could be impacted by ORDs,
nd because these developments have long proposed lifes-
ans spanning several decades, the potential population con-
equences of the developments on protected seabird popula-
ions could be significant.

Assessing the impacts of ORDs on protected marine bird
opulations requires the use of data from multiple sources
nd a range of modelling approaches to understand a set of
omplex behavioural, energetic, and demographic processes
n the context of a dynamic marine environment. Inevitably,
esults from these assessments have considerable uncertainty
ssociated with them (Masden et al., 2015). Where scientific
ata do not exist or are incomplete and it is therefore not
ossible to complete a full evaluation of the possible risks an
ctivity may cause to the environment, regulators in many
ountries implement the precautionary principle (De Sadelaar,
009; RSPB, 2019). For example, the European Commis-
ion advises that “The implementation of an approach
ased on the precautionary principle should start with a
cientific evaluation, as complete as possible, and where
ossible, identifying at each stage the degree of scientific
nal Council for the Exploration of the Sea. This is an Open Access article
/creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,
erly cited.
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Figure 1. Summary of the sources of uncertainty affecting ornithological offshore windfarm assessments. Redefined from Masden et al. (2015).
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ncertainty” (https://eur-lex.europa.eu/LexUriServ/
exUriServ.do?uri=COM:2000:0001:FIN:EN:PDF). How-
ver, the uncertainty itself can be difficult to evaluate and
ropagate through the assessment process due to data paucity,
he modelling of complex environments, and the limitations
f statistical techniques. Current assessment processes do not
uantify the overall uncertainty associated with the impacts
f ORDs in a scientifically robust, evidence-based manner
Green et al., 2016). In impact assessments, following the
recautionary principle, the degree of precaution applied
hould be proportional to the extent of scientific uncertainty,
ut due to mistreatment of uncertainty, precaution may
ften be applied incorrectly. Approaches for quantifying
ncertainty vary between different stages of the assessment
rocess, and there is a lack of consensus on how uncertainty
hould be presented and interpreted. Historically, uncertainty
as been viewed by the offshore wind sector as a feature of
he process that can only be managed through additional em-
irical data collection. However, better statistical treatment of
ncertainty and a holistic approach to managing uncertainty
rom the beginning to the end of the assessment process are
ikely to yield greater confidence in predicted impacts and
uantitative estimates of uncertainty associated with them,
hereby reducing the degree of precaution that needs to be
pplied in key policy mechanisms such as HRA. Ultimately,
mproved treatment of uncertainty in the assessment process
ill lead to better evidence use in decision making, and the
rst step in this process is acknowledging that uncertainty
xists. Removing uncertainty is not the goal; rather, the
bjective is to make a good decision, which requires a robust
ssessment of the relevant uncertainties (Bickel and Bratvold,
008).
Here, we review the relevant sources of uncertainty in

rnithological offshore wind assessments and the current
stimation and use of uncertainty in assessments. We use the
K as an example because it holds internationally important
opulations of marine birds (Mitchell et al., 2004) and has
ecently set out plans to accelerate ORD power genera-
ion [British Energy Security Strategy (https://www.gov.uk/
overnment/publications/british-energy-security-strategy)].
e provide a generic framework for the end-to-end prop-

gation of uncertainty throughout the ORD assessment
rocess, alongside a series of recommendations for im-
roved quantification and reduction of uncertainty in future
esearch.

efining and identifying sources of
ncertainty

hen assessing environmental impacts, the level and form
f uncertainty depend on the availability of relevant empir-
cal data, data collection and sampling methodologies, anal-
sis and modelling methods, the linguistics used by different
takeholders, and policy frameworks (Masden et al., 2015).
e redefine the framework developed by Masden et al. (2015)

o recognize how understanding ecological processes relies on
eparating and quantifying the contributions and impacts of
ystematic uncertainty versus natural variability (Figure 1; see
he Glossary for full definitions of key terms, Supplementary

aterial S1). Natural variability is a property of natural sys-
ems, which may have many causes. For seabirds, variabil-
ty exists between individuals within a breeding colony re-
ating to physiology, age, or sex (termed individual variabil-
ty), between sub-colonies through social processes and local
ene flow, between colonies due to differing habitat charac-
eristics, and across years due to environmental conditions or
ther aspects of the ecosystem (termed environmental vari-
bility; Figure 1). As natural variability is a property of the
cological system, it cannot be reduced. However, it can be
haracterized and quantified through measurement, such as
y including explanatory covariates used within models or
nalyses of ecological processes, ideally clearly separating its
mpacts from those arising from uncertainty. However, char-
cterizing and quantifying natural variability to successfully
ifferentiate it from uncertainty may require substantial data
ollection over long time periods, particularly for long-lived
pecies such as seabirds.

Uncertainty is introduced due to limitations in describ-
ng, measuring, and representing an ecological system. This
as been termed knowledge uncertainty (Masden et al.,
015; Figure 1). Within ornithological offshore wind assess-
ents, knowledge uncertainty arises from constraints in un-
erstanding and representing the ecological processes through
hich seabirds are affected by ORDs and in understanding

heir baseline dynamics. For example, in the UK, three types
f seabird interactions are typically considered: displacement

https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2000:0001:FIN:EN:PDF
https://www.gov.uk/government/publications/british-energy-security-strategy
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Figure 2. A schematic diagram summarizing the modelling tools involved in the ornithological offshore wind impact assessment process in the UK.
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from habitat, barrier effects, and collision impacts. These cat-
egories capture many underlying behavioural mechanisms,
some of which may be explicitly represented within the as-
sessment process. However, many behaviours are currently
not included, such as habituation, impacts on other trophic
levels affecting predator–prey interactions, and foraging site
fidelity. Most of the underlying behavioural mechanisms can
only be partially described and measured, resulting in knowl-
edge uncertainty that affects ornithological assessment out-
comes. Furthermore, all behaviours have energetic and fitness
consequences for individuals, which translate to long-term ef-
fects on demographic rates for populations and can only par-
tially be described and measured. These limitations all con-
tribute to knowledge uncertainty in assessments.

Knowledge uncertainty is comprised of structural uncer-
tainty and parameter uncertainty. Structural uncertainty de-
pends on how fully the mathematical representation of a
model captures ecological processes. Our definition of param-
eter uncertainty depends on the quality of the data used to
parameterize the model so that measurement and sampling
errors are adequately described (Figure 1). Although natural
variability is often characterized as a component of parameter
uncertainty, we decouple these definitions so that the treat-
ment of each element can be considered in isolation. Better
data collection through experimental design, improvements
in data analyses, and more advanced statistical modelling ap-
proaches can reduce knowledge uncertainty, leading to more
precise estimates.

Within ornithological impact assessments, uncertainty also
arises through linguistic and decision-making processes. Lin-
guistic uncertainty arises because language is vague and/or the
precise meaning of words changes over time or between disci-
plines (Masden et al., 2015). For instance, the use of the word
“precautionary” within assessments was established to have a
precise meaning and interpretation, yet it has a different inter-
pretation for various stakeholders. Moreover, the term “pre-
cautionary” is often used with qualifiers such as “overly” or
“excessive”, further clouding the definition of the term and its
use within decision-making. Decision-making uncertainty re-
lates to how knowledge and predictions are interpreted, com-
municated, and used in the management and policy arenas
(Masden et al., 2015). Whilst important, we do not consider
these two additional sources of uncertainty in depth within
this review, instead focusing on knowledge uncertainty and
environmental variability.

This paper focuses on how environmental variation and
structural and parameter uncertainty are recognized, quan-
ified, and propagated through the assessment process.
hese two processes—natural variability and knowledge
ncertainty—are often confused by practitioners and can be
ifficult to disentangle, but conflating variability with uncer-
ainty can lead to incorrect specification of error (see Supple-
entary Material S1 for an example). The complexities of nat-
ral systems and limitations of ecological data collection mean
hat uncertainty cannot be, in practice, either perfectly quan-
ified or reduced to zero. Yet, its importance within impact
ssessment approaches results in a critical need for improve-
ents aimed at both uncertainty quantification and reduction.

eview of current modelling tools and
stimation of uncertainty: UK example

n the UK, the current modelling framework for the assess-
ent process comprises interlinked modelling tools that ad-
ress aspects of seabird ecology or ORD impact, including the
patial distributions of seabirds at sea, collision risk, displace-
ent, and barrier risks, the apportioning of seabirds at sea to
rotected breeding colonies, and population viability analysis
PVA; Figure 2).

At-sea surveys and tracking data (e.g. from Global Position-
ng System tags, “GPS”) as well as biotic (e.g. colony counts)
nd abiotic (e.g. environmental data) information are synthe-
ized to define baseline spatial distributions of birds, poten-
ially separated by behaviours such as flight or foraging, to
roduce continuous maps of mean density estimates with un-
ertainty (e.g. Johnston et al., 2015; Waggitt et al., 2018). The
patial distribution maps serve as inputs, along with energetic
nd growth information, prey data, windfarm-specific char-
cteristics, and behavioural responses to ORDs, to estimate
isplacement and barrier effects in different seasons. The spa-
ial maps are also combined with models of the behavioural
esponses to ORDs to provide estimates of collision risk in
he breeding and non-breeding seasons. To understand the im-
acts of displacement, barrier, and collision risks of the pro-
osed ORD on protected populations, most often in Special
rotected Areas (SPAs), apportioning is used within the assess-
ent process to attribute effects on seabirds in the breeding

nd non-breeding seasons to each candidate population. Fi-
ally, PVA produces predictions of long-term population con-
equences, which are the final outputs of this approach (Butler
t al. 2020a). Below, we summarize the current methods used
o estimate uncertainty within the ORD ornithological assess-
ent process in the UK.
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patial distributions

patial data are used in the assessment process at vary-
ng scales: broad-scale, offshore wind farm project-level, and
reeding colony-level. Broad-scale data are usually based on
ffshore aerial or boat-based surveys, capturing spatial dis-
ributions of birds and providing insight into seasonal space
se (Waggitt et al., 2020), which may then be used for ma-
ine spatial planning. Project-level abundance data are col-
ected through surveys of ORD footprints and analysed using
ither design- or model-based methods. Design-based meth-
ds use formulae for estimating the quantity of interest (e.g.
ean abundance) directly from the raw data, based solely on

he survey design used for data collection, without the need
or a model. Design-based methods can be used for analysing
roject-level data because they are collected using a simple,
tandardized design (i.e. a systematic survey). Model-based
ethods instead use an explicit model and so rely on addi-

ional assumptions. In the context of project-level abundance
ata, this involves using spatial smoothers and covariates to
stimate abundance in unobserved areas within the survey re-
ion (e.g. Mackenzie et al., 2013). Simpler model-based ap-
roaches, such as generalized linear models (GLMs), could
lso be used, but the advantage of including a spatial smoother
s that it can account for underlying spatial patterns that can-
ot be explained by the covariates. Whilst mean estimates of
roject-level abundance from spatial models are robust, the
odels perform poorly for species present in low numbers, so

t is necessary to use design-based estimates with bootstrap-
ing to obtain confidence intervals. In contrast, if missing data
e.g. transects missed due to weather conditions) mean that
he data collection does not reflect the intended design, then
esign-based approaches are unlikely to be appropriate and
odel-based approaches will be needed. In many situations,

t will be appropriate to apply both design-based and model-
ased approaches to investigate the causes of any substantive
ifferences.
Finally, colony-level utilization distributions of birds in the

reeding season are derived from tracking data (e.g. Wake-
eld et al., 2017) and are used to provide spatial estimates of
he space use and density of birds in the marine habitat around
ach breeding colony. Here, GLMs or their variants (GLMMs,
AMMs) are used to empirically describe the colony-specific

patial distributions of birds in relation to both accessibility
distance to the breeding colony) and environmental hetero-
eneity, although residual autocorrelation is typically not ac-
ounted for within these models and so uncertainty cannot be
efensibly quantified.

isplacement and barrier effects

uantifying the consequences of displacement by ORDs on
seabird population requires estimates of the proportion of

irds displaced and the impact of that displacement on the
opulation’s demographic rates. Displacement is estimated
hrough distributional changes in seabirds before and after
he wind farm is built, usually based on comparisons of pre-
nd post-construction monitoring data (e.g. Vanermen et al.,
015; Dierschke et al., 2016). However, such changes could
esult from some other cause operating in parallel or from
atural seasonal and yearly variability in space use. There-
ore, this distributional approach suffers from the conflation
f both natural variability and knowledge uncertainty. Un-
il recently, accurately estimating the proportion of birds dis-
laced has proved challenging (but see Heinänen et al., 2020;
eschko et al., 2020a, b, Peschko et al., 2021), with natural
ariability in the marine environment compounding the diffi-
ulty in quantifying displacement rates. Historically, this prob-
em has been exacerbated by inconsistent approaches, low sta-
istical power (Maclean et al., 2013), and poor design of post-
onstruction monitoring studies (Marine Management Orga-
ization, 2014). However, more recently, the MRSea package
n R (Mackenzie et al., 2013) provides a more consistent ap-
roach to address some of these issues by defining and pro-
ucing a range of outputs and metrics that are relevant to
he estimation of displacement and by providing a modelling
ramework that can be used to derive these from project-level
ata. The spatial modelling approach used within MRSea is
ot the only statistical approach that could be used to estimate
isplacement. More sophisticated statistical approaches (e.g.
-INLA) and simpler approaches (e.g. GLMs or generalized
dditive models, GAMs) could also be used, and the applica-
ion of these different approaches is context-dependent. How-
ver, MRSea has the advantage of being specifically tailored to
he estimation of displacement and is widely known and ac-
epted in the offshore renewable energy industry. Studies have
lso highlighted clear inter-specific differences in displacement
ates. For example, divers, gannets, and to a lesser extent auks,
how a consistent negative response to wind farms, whereas
thers, such as cormorants, show evidence of attraction, and
everal other species show no clear response (Dierschke et al.,
016). This highlights the need for species-specific approaches
o estimating displacement and barrier effects.

Having quantified the proportion of birds displaced from
n ORD, it is necessary to consider the impact of this dis-
lacement on protected populations. At a population level,
isplacement may affect birds through a reduction in survival
ue to the energetic costs associated with losing an area used
or commuting, foraging, or other essential behaviours and/or
reduction in breeding success due to the increased energetic

osts of provisioning young or increased predation risk of eggs
nd chicks due to adults spending longer away from the nest.
t present, there is little evidence with which to quantify the

mpacts of displacement on demographic rates, although bi-
logging is increasing our understanding of the behaviour and
nergetics of marine birds (Dunn et al., 2020; Duckworth et
l., 2022; Buckingham et al., 2023) and enabling the effects
f behavioural change arising from ORDs on demography
o be estimated empirically. Studies that estimate these links
ill be critical because analyses suggest that increased ener-

etic costs can have a more significant effect on adult sur-
ival than has been assumed in previous assessments (Searle et
l., 2020). Furthermore, life history theory predicts long lived
pecies such as seabirds will prioritize their own survival over
hat of their dependent young. Evidence suggests that seabirds
o attempt to buffer the impacts of increased energetic costs
hrough reduced parental investment in chicks (Suryan et al.,
006; Regular et al., 2014), potentially reducing productivity.
Two methods have been used to estimate the demographic

mpacts arising from the displacement effects of ORDs: the
Displacement Matrix” approach (hereafter the matrix ap-
roach) and the use of individual-based models (IBMs). The
wo methods differ in terms of the complexity of the approach,
he data required, the outputs, and the treatment of uncer-
ainty. The matrix approach uses the density of birds within
he wind farm footprint (and a buffer area around the wind
arm where birds are predicted to be affected) estimated from
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local at-sea survey data multiplied by a displacement rate (per-
centage of adult birds within the footprint and buffer that are
assumed to be displaced, ranging from 0 to 100%) and a dis-
placement mortality rate (percentage of birds that are assumed
to suffer mortality as a consequence of displacement, rang-
ing from 0 to 100%; Joint-SNBC 2017). The resulting matrix
approach table (i.e. proportion of birds potentially displaced
or dying as a result of ORD development) provides a visual
and qualitative consideration of uncertainty in displacement
impacts. The matrix approach only considers the mortality
of adult birds, with no consideration of potential effects on
dependents and, therefore, breeding success. An alternative
approach to estimating displacement is the use of stochastic
IBMs (e.g. SeabORD, Searle et al., 2014, 2018). IBMs still re-
quire an input for displacement rates but improve the bio-
logical realism of displacement mortality rates by incorporat-
ing seabird behaviour, energetics, and demographic processes
into the model, as well as providing estimates of impacts on
both adult birds and their dependents. Current models include
some quantification of uncertainty (e.g. impact of prey levels)
and are relatively sophisticated in the way that variability (e.g.
individual variation in body mass or susceptibility to displace-
ment and choice of foraging location) is accounted for, and
these are aggregated and represented in model output using
confidence intervals (Searle et al., 2018). However, there are
many other parameters within SeabORD for which temporal
and inter-individual variability are not considered, largely due
to a lack of available information on the level of variability
that might plausibly be expected (Searle et al., 2022a).

Collision risk

In the absence of empirical estimates of collisions that can be
generalized to new locations, collision risk models are used in
EIAs to estimate risk. Whilst there are a variety of collision risk
models available (Masden and Cook, 2016), the most widely
used of these is the Band et al. (2007) model, subsequently
adapted for the offshore environment (Band, 2012), and then
into a simulation tool to account for stochastic variation in
parameters (the stochastic Collision Risk Model, sCRM; Mas-
den, 2015, McGregor et al., 2018). Three sets of parameters
are used in the model (McGregor et al., 2018): site-specific
seabird data (monthly densities of birds in flight, site-specific
or generic flight height distributions), generic seabird data
(biometrics, flight characteristics), and turbine and wind farm
data (rotor size, hub height, RPM, etc.). The model itself is
highly sensitive to particular input parameters for which there
is often limited empirical data, resulting in further uncertainty
surrounding predicted impacts (Masden et al., 2021). This
problem is exacerbated because there is often substantial nat-
ural variation in many of these parameters (e.g. flight speed
and height), linked to underlying environmental conditions,
and these relationships are not captured by existing models.
Finally, alternative options are available for implementing the
sCRM, which results in impact assessments presenting several
alternative versions of the collision predictions, introducing
additional complexity in interpretation.

Apportioning

Apportioning is currently used within the assessment process
to identify individuals that are likely to be affected by an ORD
and are part of a protected SPA population. In the UK, appor-
tioning in the breeding season is currently based either on a
imple distance–decay relationship (the NatureScot tool1), or
n spatial models derived from GPS tracking data (Butler et
l., 2020b; Wakefield et al., 2017). In both cases, the propor-
ion of individuals originating from an SPA within a particular
rea of sea is assumed to be equal to the product of the esti-
ated usage of the area of sea by individuals from the colony

based on colony-specific spatial models) and the colony size.
pportioning in the non-breeding season is currently based on
simpler regional approach, Biologically Defined Minimum

opulation Sizes (BDMPS; Furness, 2015), which accounts for
ndividuals from non-UK as well as UK colonies. None of the
urrent apportioning tools account for variability or uncer-
ainty.

opulation viability analysis

opulation Viability Analysis (PVA) provides an established
tatistical framework for translating effects on annual de-
ography into impacts on longer-term population trajectory

Soulé, 1986; Beissinger and McCullough, 2002). Population
odels are run forward in time for impacted and unimpacted
opulations and then compared against each other using a
ange of metrics (Cook and Robinson, 2016; Jitlal et al.,
017). Metrics used in assessments that provide relative com-
arisons of impacted and baseline simulations are preferred
ecause they are less sensitive than absolute comparisons to
isspecification of baseline demographic rates and initial pop-
lation sizes (Cook and Robinson, 2016). Currently, these are
he counterfactual of population size (CPS), which is the ratio
f the final population size of the impacted population divided
y the final population size of the unimpacted population,
nd the counterfactual of population growth rate, defined as
he CPS raised to the power of the inverse of the number of
ears of impact. Key inputs to PVAs are the initial population
ize, the estimated combined annual impacts of the ORDs on
emographic rates, and the baseline demographic rates (age-
pecific survival, productivity, and age at first breeding). PVAs
sed for impact assessments typically assume closed popula-
ions (no immigration or emigration), and some models incor-
orate forms of density dependence. However, PVAs do not
sually include ongoing impacts such as projected changes to
aseline demographic rates under climate or other environ-
ental change (Horswill et al., 2022, Searle et al., 2022b).

ecommendations for improving treatment of
ncertainty in the impact assessment process

esearch prioritization

ecision-making in the face of uncertainty can be strength-
ned by recognizing which sources of uncertainty are “con-
rollable”, meaning they can be minimized and managed, and
hich are “important”, having a significant and qualitative

ffect on management outcomes (Milner-Gulland and Shea,
017). We have used these concepts to lay out a set of re-
earch priorities, identifying current evidence gaps that can
e addressed by scientific approaches and that are likely to

ead to positive management outcomes through better quan-
ification and a reduction in uncertainty. The recommenda-
ions focus on future empirical data collection and the use
f modern analytical methods to exploit information, map-
ing them to the current modelling framework. Quantifying
ncertainty is as important as reducing it in the context of
upporting the decision-making process (Milner-Gulland and
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hea, 2017). Where uncertainty appears to be reduced but
s not properly evaluated overall, the risk of unanticipated
utcomes increases. Therefore, for each research priority, we
rovide a qualitative assessment of its contribution to the
ull quantification of uncertainty and to reducing uncertainty
high or medium; Table 1). In the remainder of this section, we
ake recommendations for a full evaluation of uncertainty

cross the framework, identify the added value of incorpo-
ating post-construction monitoring data, and set out future
evelopments of statistical models that will help fill the evi-
ence gaps. Research priorities are mapped to the main text
hrough bold number referencing, e.g. (1).

patial distributions

nderstanding the space use of birds, including behaviour-
pecific habitat preference, and how these vary between in-
ividuals and in response to environmental variation, is a key
rea in which uncertainty in assessments can be better quan-
ified and reduced (Table 1). More data are being collected
n relation to ORDs and spatial planning, with technological
dvances leading to new survey methods and data types be-
oming available: aerial and boat-based surveys (Hammond
t al., 2002, 2013, 2018), drones (Rush et al., 2018), cam-
ra imaging on wind farms to assess collisions (Skov et al.,
018), biologging devices that track location and collect in-
itu environmental information (Cleasby et al., 2015; Isaks-
on et al., 2021), movement through accelerometers (tri-axial
ovement) (Chimienti et al. 2016), and behaviour through

ime-depth records (Peschko et al., 2020, Duckworth et al.,
021). These advances in data collection present questions
s to the best use of these varying data types. Data collected
sing different surveying techniques often has varying struc-
ures that require specific statistical analysis techniques to ad-
ress intrinsic issues such as autocorrelation and replication.
or example, boat-based observations generate information
bout the abundance of animals at a snapshot in time. By
ontrast, tracking data, generated from tags attached to in-
ividuals, provides spatial and temporal information for one
nimal. Greater knowledge will be gained, and hence uncer-
ainty reduced, if at least some of these data types can be inte-
rated (Matthiopoulos et al., 2022; Schaub and Kery, 2021).
or effective integration, two criteria need to be met: data
ust overlap or align either spatially or temporally, and sta-

istical methods must be developed to deal with intrinsic data
ssues and propagate uncertainty through the model. For ex-
mple, data integration could advance seabird assessments by
ddressing the current failure to adequately consider the dis-
ribution of non-breeding birds during the breeding season,
eading to differences between assessments based on tracking
ata and those based on at-sea surveys (Sansom et al., 2018;
earle et al., 2020). New year-round tracking datasets will al-
ow this to happen (Merkel et al., 2016; Buckingham et al.,
022; Duckworth et al., 2022). Integrated modelling would al-
ow the distribution of non-breeding birds to be estimated and
he uncertainty associated with this component of the popu-
ation to be quantified (1).

Movement models are used to predict behaviours (e.g. for-
ging, resting at sea, diving) and estimate activity budgets
f seabirds fitted with biologgers to investigate flight paths
ith respect to collision risk, barrier effects, and displacement

Cleasby et al., 2015; Warwick-Evans et al., 2017; Peschko
t al., 2020). A class of movement models used for analysing
racking data are hidden markov models (HMMs), which are
tate–space time series models that assume the observed (state-
ependent) time series is driven by an unobservable (hidden)
tate process. They sequence behaviours (states) and can ac-
ount for serial dependence between observations (Patterson
t al., 2008; Langrock et al., 2012). Depending on the com-
lexity of the behavioural states required, combining loca-
ional data with ancillary information such as accelerometers,
ime-depth recorders (TDRs), or environmental covariates can
roduce more plausible models. Using movement models in
he context of assessments can improve the quantification and
eduction of uncertainty because they can provide more in-
ormation about how birds are using an area of sea, particu-
arly if two current limitations can be addressed: model valida-
ion and propagating uncertainty. Typically, model validation
s difficult to achieve because ground-truth data are generally
navailable. However, where animals have been fitted with a
evice that records Global Positioning System (GPS) and time-
epth records (TDR), there is an opportunity to fit a move-
ent model using only location data and use the depth in-

ormation to validate the model’s accuracy in determining be-
avioural states (Browning et al., 2018). Validating a location-
nly movement model could be useful in circumstances where
nly some individuals had TDRs and/or accelorometers but
ll had GPS functionality in the tag and a general movement
odel was required (2).
Typically, HMMs do not consider observation error on lo-

ation but treat the state as part of a stochastic process (Pat-
erson et al., 2008). Continuous-time Markov chain Monte
arlo models calculate velocity and momentum and allow for
ehavioural switching to occur continuously in time rather
han at (discrete) observational times (Parton and Blackwell,
017). They can account for observation error and for irreg-
lar observations. Using continuous-time models allows for
ncertainty to be quantified and for more biologically realistic
rips to be simulated (Blackwell, 2019). In this way, GPS and
t-sea survey data could be integrated through sampling from
utilization distribution generated by the movement model

1, 2).
Non-breeding season distributions present a large com-

onent of current uncertainty within ORD assessments and
hould be prioritized for future research (3). Due to the eth-
cal and logistical challenges of deploying GPS tags on ma-
ine birds for extended periods, non-breeding season utiliza-
ion distributions are typically estimated from data from Ge-
locators (GLS), which are light-level data loggers. They are

ightweight and long-lasting devices that can be attached to
eg rings, meaning they are suitable for deploying on marine
irds for extended periods. However, because a bird’s position
s estimated using ambient light intensities and elapsed time,
LS locations have relatively large locational uncertainties up

o hundreds of km (Merkel et al., 2016), which hinders their
se in assessments relative to the scale of individual offshore
ind farms. Nevertheless, these data can offer insight into the

ong-distance movements and distributions of seabirds during
he non-breeding season (Merkel et al., 2016; Buckingham et
l., 2022; Duckworth et al., 2022) and will be particularly use-
ul for reducing uncertainty in the apportioning methods used
n the non-breeding season (3).

Species distribution or habitat preference maps that form
he inputs to displacement and collision risk models are pro-
uced using spatial data (Wakefield et al., 2017, Waggitt et al.,
019). Habitat preference models associate animal space use
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Table 1. Summary of research priorities for better estimating and reducing uncertainty in seabird offshore wind farm assessments, moving beyond current
tools and methodologies.

Research priorities and relevant stage of assessment

Contribution to
quantifying
uncertainty

Contribution to
reducing knowledge

uncertainty

1 Data integration from different sources and seasons for better knowledge of year-round
distributions to quantify and reduce uncertainty
Spatial distributions and apportioning

High High

2 Improving uncertainty quantification in movement models
Spatial distributions and apportioning

High Medium

3 Better understanding and quantification of year-round distributions and impacts of
displacement to quantify and reduce uncertainty
Spatial distributions, displacement, and apportioning

Medium High

4 Better understanding and quantification of predator–prey interactions, relationship between
prey density and availability, impacts of ORDs on prey distributions and availability to
quantify and reduce uncertainty
Spatial distributions, displacement, and collision

High High

5 Estimate link between displacement effects and changes in demographic rates (productivity and
survival) to better quantify and reduce uncertainty
Spatial distributions, displacement, and apportioning

High High

6 Effects of displacement on different age classes, e.g. immatures and non-breeders to better
quantify and reduce knowledge uncertainty
Displacement

Medium Medium

7 Improve uncertainty quantification within IBMs to better characterize and reduce structural
and parameter uncertainty
Displacement and collision

High Medium

8 Assess sensitivity of collision risk model outputs to variation in input and structural
parameters; understand and quantify covariance between parameters used in collision risk
models to better quantify and reduce structural and parameter uncertainty
Collision

Medium Medium

9 Improve estimates of flight speed and height for species to better characterize and reduce
parameter uncertainty, quantify influence of environmental conditions to better characterize
natural variability, and understand how variation in flight speed and flight height is related to
behaviour (e.g. commuting versus foraging) to reduce knowledge uncertainty
Collision

Medium Medium

10 Improve estimates of avoidance rates and partitioned into micro-, meso-, and macro-avoidance
to better quantify and reduce structural and parameter uncertainty; improve understanding of
the influence of environmental conditions on avoidance to better characterize natural
variability; improve understanding of the contribution of model error to predicted collision
rates and the implications of this for estimates of avoidance rates
Collision

High High

11 Improve estimates for abundance, productivity, adult and immature survival, carryover effects,
and inter-colony movements (including uncertainty in rates) to better quantify and reduce
parameter uncertainty
PVA

High High

12 Empirical estimation of correlation in demographic rates and influence of environmental
stochasticity to better characterize natural variability and improve quantification of structural
and parameter uncertainty
PVA

Medium High

13 Understand relationship between demographic rates and prey availability to better quantify
and reduce knowledge uncertainty; improve estimates for interactions between demographic
rates and climate and other environmental variables to include in population forecasts to better
characterize natural variability
PVA

High High

14 Integrated population modelling and model fitting methods to better quantify structural and
parameter uncertainty by using all available abundance data to inform estimation of
demographic rates; improved models of observation error for abundance estimates to support
this
PVA

Medium Medium

15 Sensitivity analyses for PVAs to help prioritize efforts to reduce structural and parameter
uncertainty
PVA

Medium Medium

16 Better understanding and quantification of density dependent processes in populations to
reduce knowledge uncertainty
PVA

Medium Medium

Priorities are grouped into “medium” and “high” contributions to (a) full quantification of uncertainty and (b) reduction of knowledge uncertainty. Note that
the order of priorities within the table broadly follows their relevance to each stage of the assessment process (shown in bold), moving from estimating spatial
distributions of birds and apportioning to quantifying displacement and collision impacts and comparison of impacts via population modelling and PVA. The
assignment of each research category into “medium” or “high” was done by expert judgement—i.e. the authors’ assessment for how much each proposed
research priority would improve quantification of uncertainty, and reduce knowledge uncertainty, within the context of the UK assessment process.
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ith characteristics of their environment (Aarts et al., 2008).
hen these models are used to predict space use, choosing ap-

ropriate explanatory covariates is important; however, the
arine environment is dynamic and mostly inaccessible, so

ollecting and defining appropriate covariates can be challeng-
ng. Currently, covariates that represent proxies for prey fields
re used due to the paucity of information (Tremblay et al.,
009; Johnston et al., 2015; Waggitt et al., 2018). Associating
op predators with oceanographic covariates such as sea sur-
ace temperature amidst many complex biological and physi-
al processes can make habitat association modelling difficult
ue to weak explanatory power where covariates do not ade-
uately capture heterogeneity in environmental space (Skov et
l., 2016; Wakefield et al., 2017; Waggitt et al., 2018). How-
ver, impact assessments need to account for pre, during, and
ost-development activities, along with seasonal variation in
eabird habitat use due to life history stages (pre-breeding,
reeding, chick incubation, non-breeding, and migratory), as
ell as population response to environmental variability. An
verriding issue is that a full understanding of the complex-
ty of ORD impacts on seabird behaviour and activity bud-
ets, as well as proper quantification of uncertainty, can only
e achieved through the collection of good quality covariates
rom direct prey of seabirds. Using prey data (instead of prox-
es) accounts not only for environmental variability but also
rovides a direct link to the causal mechanisms of key drivers
n seabird demographics. Information on prey fields can then
e combined with oceanographic covariates to identify and
haracterize different scales of seabird distribution and the un-
erlying mechanisms that drive change over space and time (4,
).

pportioning

here apportioning is derived from habitat utilization models
eveloped using GPS tracking data (e.g. Butler et al., 2020b),
ore thorough statistical approaches are needed to prop-

rly address the intrinsic complexities of spatial and tempo-
al autocorrelation associated with such data. Use of such
pproaches would mean that uncertainties around estimated
abitat utilization distributions could be incorporated into as-
essments (1, 2). For species where colony-specific GPS track-
ng data are not yet available or are unobtainable due to
ifficulties in accessing birds for deployment, the rate of de-
ay of utilization with distance can be estimated using forag-
ng ranges derived from published distributions (e.g. Wood-
ard et al., 2019), rather than being fixed as a constant as is

he current approach. Foraging ranges can also be disaggre-
ated by population, region, or meta-population as appropri-
te (2), and the inter-population variability in foraging ranges
s used to quantify uncertainty in apportioning percentages.

ithin the non-breeding season, models of geolocator data
an, where available, be used as a basis for apportioning in
lace of the BDMPS, with these models accounting for the lo-
ational uncertainty associated with geolocator data (3).

isplacement and barrier risks

n the context of ORD displacement impacts, current IBMs
ave limited uncertainty quantification. Structural uncertainty
ithin IBMs should also be addressed with future research
rioritizing improved representation of: flight paths and esti-
ated bird density maps (2); behaviour, energetics, and ORD

nteractions outside the chick-rearing period (3); overall prey
vailability and spatial heterogeneity in prey (4); the joint dis-
ribution between seabirds and prey spatio-temporal dynam-
cs (4); and the relationship between adult mass at the end
f the chick-rearing period and overwinter survival [(5); e.g.
aunt et al., 2020]; and better understanding and incorpo-

ation of impacts on immatures and nonbreeders (6). Uncer-
ainty estimates in IBMs can be improved by estimating pa-
ameters for which empirical data are not available, through
alibration of the model against observed data (7). Standard
alibration processes involve fitting against observed data to
dentify the sets of input parameters that provide the best
atch, according to some metric (e.g. sum of squared differ-

nces, deviance), to observed data on one or more of the model
utputs. However, many commonly used calibration methods
o not account for the uncertainty associated with calibra-
ion. Methods of likelihood-free inference, such as Approxi-
ation Bayesian Computation (ABC; Beaumont et al., 2002;
arjoram et al., 2003; Sisson et al., 2007) do allow for un-

ertainty to be estimated but are infeasible in practice due to
omputational processing time. A potential solution is emu-
ation, which approximates the IBM using a statistical model
Kennedy and O’Hagan, 2001). An emulator runs the IBM
or a relatively small number of sets of input parameters and
onstructs a statistical model that describes how the key out-
uts of the mechanistic model vary in relation to the values of
he input parameters (Oyebamiji et al., 2017; Pietzsch et al.,
020). Uncertainty associated with calibration can be quanti-
ed whilst accounting for the uncertainty that arises from the
elatively small number of runs of the process-based model.

ollision risk

y incorporating stochasticity, the sCRM better accounts for
arameter uncertainty than the deterministic model on which
t is based. However, that underlying model remains un-
hanged and lacks what are likely to be important features
f seabird behaviour, such as relationships with environmen-
al conditions, variation across life history stages, and inter-
ctions with the turbines themselves, thereby contributing to
tructural uncertainty within the model. The current model
lso lacks explicit consideration of covariance in model pa-
ameters and its impact on model output (8). Tracking of
ight paths in three dimensions through wind farms would
enefit collision estimates by reducing structural uncertainty

n how birds respond to turbines (9). This will require high-
esolution GPS tags (e.g. Thaxter et al., 2018; Johnston et
l., 2015, 2022), high-resolution cameras, and tracking algo-
ithms or combinations of both (Skov et al., 2018). Such tech-
ology is available but requires deployment on a large scale
o obtain sample sizes sufficient to begin addressing the be-
avioural and interaction questions of interest and to enable
obust assessment of potential device effects. Significant data
ollection is likely to be needed before any substantial reduc-
ion in this component of structural uncertainty within colli-
ion models can be achieved. Collision predictions from the
CRM are highly sensitive to assumptions about avoidance
ates, and this is a critical focus for impact assessment pur-
oses (10). Avoidance rates for the sCRM are estimated by
omparing the number of collisions recorded at a wind farm to
hose that the model predicts would have occurred in the ab-
ence of any avoidance. As such, they combine the behavioural
esponse of the birds to the wind farm or turbine with struc-
ural uncertainty arising from the simplified model assump-
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tions and parameter uncertainty due to imperfect underpin-
ning data. Current estimates are based on an amalgamation of
data sources, very little of which has been collected at opera-
tional offshore wind farms due to the difficulty of undertaking
long-term studies at these locations (Cook et al., 2018).

Population viability analysis

We have identified three broad areas in which improvements
can be made to better characterize and reduce uncertainty in
PVAs: the representation of structural uncertainty and natural
variability within PVA models, the validation and calibration
of population models used in PVAs, and efforts specifically
aimed at reducing structural uncertainty in PVA models.

First, PVA should improve methods for representing struc-
tural uncertainty and natural variability. Knowledge uncer-
tainty and natural variability in initial population size could
be accounted for through the development of a plausible sta-
tistical model of observation error for seabird count data (11).
Most PVAs currently assume that stochastic variation in de-
mographic rates is independent over time, and that variation
in demographic rates (productivity and survival) are uncorre-
lated. Yet inter-annual variation in demographic rates is un-
likely to be independent because the underlying drivers, such
as climate, exhibit patterns of temporal dependence and be-
cause of carryover effects on demographic rates (Bogdanova et
al., 2017). Correlations between demographic rates are likely
to arise because stochastic environmental effects act simulta-
neously on demographic processes (e.g. adults may prioritize
their survival over productivity). Recent work has estimated
correlations in seabird demographic rates for a single species
breeding in the UK (Horswill et al., 2021), and further work
would improve uncertainty representation within PVAs (12,
13). In populations for which sufficient long-term data are
available, this approach would produce more defensible an-
nual estimates of both survival and productivity.

Second, validation and calibration of models underpinning
PVAs should be progressed (14). Running PVA models retro-
spectively (using the initial population size from a past year)
allows the resulting predicted trends to be compared against
observed trends seen in the population abundance data. Dis-
crepancies between predicted and observed trends indicate ei-
ther errors in the values of PVA inputs and/or structural errors
in the model underpinning the PVA. Statistical models have
been developed that use this discrepancy to estimate poorly
known demographic rates, which lack direct empirical data
and may only be poorly constrained by inference from expert
judgement, as is common for juvenile survival in most seabird
species. Although these models have been used in some con-
texts (e.g. Freeman et al., 2014), they have not been widely
implemented. They are effectively a partial form of data in-
tegration that can be used to quantify, and often reduce, pa-
rameter uncertainty in parameters that are otherwise difficult
to estimate and have a broader application than has currently
been utilized within assessments.

Third, efforts should be made to reduce structural uncer-
tainty within PVAs. The most substantive improvement for
PVA models in resolving structural errors is making their
underlying assumptions more biologically realistic. These in-
clude linking environmental stochasticity to prey availability
and climate change (12), empirically parameterizing density-
dependent processes (16), consideration of inter-specific inter-
actions, inclusion of interactions between different ORD im-
acts (e.g. determining whether such impacts are synergistic or
ntagonistic), consideration of carry-over effects, and includ-
ng dispersal, immigration, and emigration within the context
f metapopulations (11). Prioritizing these extensions requires
onsideration of appropriate model complexity, the defensibil-
ty of additional model parameters underpinned by existing or
ew data, and the likely impact of the extension upon the PVA
odel outputs.

ynthetic approaches to adequately characterizing
nd reducing uncertainty

ensitivity analysis
ensitivity analysis is a valuable tool for examining compo-
ents of a mathematical or statistical abstraction of a system.
his is particularly true in the case of simulations with Monte
arlo treatment of uncertainties, such as those found within

he sCRM, IBMs, and PVAs. A sensitivity analysis evaluates
he practical importance of the various inputs to a model by
erturbing these with resulting changes in outputs examined
n practical terms (e.g. Cook and Robinson, 2016; Donovan
t al., 2017; Jitlal et al., 2017). Sensitivity analysis is also infor-
ative about where research efforts can be focussed to reduce

tructural uncertainty. If the analysis suggests the model is
ensitive to assumptions or parameters, then research to con-
rm the assumptions or increase the precision of the param-
ter estimates can be prioritized. Conversely, non-influential
ssumptions or parameters warrant lesser consideration be-
ause model outcomes are more robust to these inputs. Sen-
itivity analysis can be used to indicate which model inputs
ontribute most to the precision of outputs and thereby to de-
elop a priority list for reducing uncertainties. This is likely
o be particularly helpful in the context of collision models (8,
0), but is also relevant to all modelling components of impact
ssessment whose contribution to uncertainty cannot be eas-
ly evaluated by inspection. For instance, in PVA, commonly
sed counterfactual metrics (e.g. ratios of impacted to baseline
opulation characteristics) are sensitive to inputs that relate
o annual ORD impacts on demographic rates and compara-
ively insensitive to the values of inputs relating to conditions
uch as baseline demographic rates and initial population size
Cook and Robinson, 2016; Jitlal et al., 2017). Further sen-
itivity analysis can be used to determine whether potential
xtensions to PVAs are likely to lead to substantive changes
n key PVA outputs, and prioritizing which of these exten-
ions will lead to substantial improvements in the application
f PVA within ornithological assessments (15).

nd-to-end propagation of uncertainty

he standard assessment process for estimating ORD impacts
n seabirds uses outputs from a linked set of modelling tools
o inform the decision-making process. The choice of which
ools are linked together is dependent on the context of the
mpact assessment and subjective user judgements such as the
hoice of input data. Additional structural uncertainty may
rise within the framework either if there are impacts other
han those currently considered within the assessment process
r if components between the tools interact. For example, dis-
lacement and collision risks are assessed independently and
heir impacts are added together, which ignores any biolog-
cal interaction between the movement and the behavioural
rocesses that underpin displacement and collision effects. At
resent, precaution can be magnified through this process,
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ith precautionary outcomes from each stage of the assess-
ent (Figure 2) compounded together. Therefore, it is im-
ortant to address both the characterization of uncertainty
ithin individual tools and the quantification of the propa-

ated uncertainty within the framework where multiple tools
re linked together, termed end-to-end uncertainty. The frame-
ork of linked tools can be considered as a meta-model within
hich inter- and intra-tool uncertainty can be quantified.
The simplest approach for linking uncertainties between

ools is via simulation. Each simulation randomly generates
he values of any inputs that contain uncertainty and/or
ny internal tool components that involve stochasticity. This
pproach can account for both uncertainty and variability
ithin the common framework. The distribution of the as-

essment process outputs (e.g. PVA metrics) across simulations
hen quantifies the end-to-end uncertainty associated with the
ssessment process. The limitations of the approach are that:
nd-to-end uncertainty will only be meaningful if uncertainty
ithin individual tools and inputs is comprehensive and statis-

ically defensible; a large number of simulations are required
o produce stable estimates of uncertainty; and the approach
ssumes independence between tools. All of these represent
otentially substantive issues in the context of ORD assess-
ents. The first issue can be resolved through improved quan-

ification of uncertainty within the individual tools or within
he input data to the tools, and the second through compu-
ational approaches (e.g. parallel computing) that allow suf-
ciently large numbers of simulations to be used. Solutions
o the final issue are likely to be context-dependent but may
eed to involve restructuring the current models so that there
an be feedback between them (effectively making them com-
onents of a larger, overarching model rather than separate
odels).

se of post construction monitoring

he tools within the assessment process predict the likely im-
acts of future ORDs. As developments become operational,
potential mechanism for reducing uncertainty is through

he incorporation of data that quantifies the impacts of ex-
sting ORDs. These data include at-sea monitoring such as
ensity and distribution data, radar and camera data to de-
ect collisions and micro-avoidance, and land-based/coastal
onitoring of foraging patterns, provisioning and nest at-

endance behaviour, demographic rates, and colony counts,
hich can be used to retrospectively assess the impacts of
RDs upon seabird populations. The most obvious use of
ost-construction monitoring data is to refine the estimates
f key input parameters, such as displacement rates, collision
ates, and avoidance behaviour, for use in future assessments.
s the amount of available data to be included in parameter-

zing models increases, knowledge uncertainty and, in partic-
lar, parameter uncertainty should be reduced. The other key
ole of post-construction monitoring data is in data validation
o detect additional structural errors within the tools used for
ssessment. Incorporating post-construction monitoring data
n this feedback mechanism may appear to increase uncer-
ainty if uncertainty is currently being underestimated (e.g.
roperly accounting for natural variability). However, identi-
ying structural errors and providing the empirical basis to re-
olve them would lead to more biologically realistic modelling
ools and greater confidence in impact assessments. Broader-
cale data (e.g. on population size and abundance) can also be
sed to detect whether the overall ORD impacts produced by
ssessments are consistent with the levels of change in demog-
aphy and abundance that are seen after construction. How-
ver, these data are not able to distinguish the cause of any
iscrepancies—which components of the assessment process
re introducing error—and are also likely to have low statis-
ical power to detect differences (Cook et al., 2019). The pri-
ary focus of post-construction monitoring data collection

hould therefore be on informing and validating specific as-
umptions, inputs, and component tools used within the as-
essment process.

ummary

trategies to reduce uncertainty and obtain a better under-
tanding of the impacts of offshore wind development on
he environment whilst ensuring the sustainability of the ma-
ine ecosystem are only feasible if the sources of uncertainty
re first identified and properly quantified. We have identi-
ed a broad range of areas in which uncertainty quantifi-
ation could be improved. Delivering the underpinning sci-
nce to enable accurate, robust, and defensible ornitholog-
cal ORD impact assessments requires developing and ad-
ancing a credible line of inference from our conceptual un-
erstanding of the ecological and behavioural processes in-
olved through to quantitative impact estimates with uncer-
ainty (Hobbs and Hooten, 2015). This involves represent-
ng our knowledge and understanding of the interactions be-
ween seabirds and ORDs with models and observations of
he key processes shaping these responses, such as seabird
patial habitat use, displacement and barrier effects, and col-
ision impacts. Many of the more substantial evidence gaps
or which uncertainty could be reduced are ones that oper-
te across large spatio-temporal scales. These should be ad-
ressed through strategic studies rather than at the level of in-
ividual offshore wind project post-construction monitoring
tudies. Administering such strategic studies through an advi-
ory group with a core scientific remit and funding provided
y the relevant stakeholders (wind farm developers/operators,
egulators, and statutory agencies) would best facilitate the
arge-scale studies needed. Such an approach would benefit
rom cross-border and international research collaboration.
ll models, whether conceptual, theoretical, or statistical, are

implified abstractions of reality. We rely on the proper quan-
ification of natural variability and uncertainty to bridge the
ap between reality and our modelled representations to pro-
ide inference and to understand their validity for shaping
ecision-making and policy. Similarly, the data that we col-

ect to inform a model will often only partially capture the
rue underlying state of the process we are trying to observe.

failure to recognize or quantify these uncertainties in mod-
ls and data results in poorly informed decision-making where
he rationale is unclear, rather than providing transparent, ob-
ective, evidence-based decision-making informed by propor-
ionate risk assessment. It is therefore imperative that we un-
ertake ornithological ORD impact assessments with prop-
rly quantified uncertainty to inform the appropriate degree
f precaution.
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